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Abstract

Actors are concurrent processes which communicate through asyn-
chronous message passing. Most existing actor languages and libraries
implement actors using virtual machine or operating system threads. The
resulting actor abstractions are rather heavyweight, both in terms of mem-
ory consumption and synchronization. Consequently, their systems are
not suited for resource-constrained devices or highly concurrent systems.
Actor systems that do provide lightweight actors, rely on special runtime
system implementations.
Moreover, virtually all languages with a notion similar to actors support
events or blocking operations only through inversion of control which
leads to fragmentation of program logic and implicit control flow that is
hard to track.
We show how lightweight actors can be implemented on standard, un-
modified virtual machines, such as the Java Virtual Machine. For this
purpose, we propose an event-based computation model which does not
require inversion of control. The presented actor abstractions are imple-
mented as a library for Scala rather than as language extensions.
The evaluation consists of two parts: In the first part we compare perfor-
mance to an existing Java-based actor language. In the second part we
report on experience implementing a distributed auction service as a case
study.
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Chapter 1

Introduction

Concurrent programming is indispensable. On the one hand, distributed
and mobile environments naturally involve concurrency. On the other
hand, there is a general trend towards multi-core processors that are ca-
pable of running multiple threads in parallel.

With actors there exists a computation model which is especially suited
for concurrent and distributed computations [HBS73, Agh86]. Actors are
basically concurrent processes which communicate through asynchronous
message passing. When combined with pattern matching for messages, actor-
based process models have been proven to be very effective, as the success
of Erlang documents [Arm96, NTK03].

Erlang [AVWW96] is a dynamically typed functional programming lan-
guage designed for programming real-time control systems. Examples
of such systems are telephone exchanges, network simulators and dis-
tributed resource controllers. In these systems very large numbers of con-
current processes can be active simultaneously. Moreover, it is very diffi-
cult to predict the number of processes and their memory requirements as
they vary with time.

For the implementation of these processes, operating system threads and
threads of virtual machines, such as the Java Virtual Machine [LY96], are
usually too heavyweight. The main reasons are: (1) Over-provisioning of
stacks leads to quick exhaustion of virtual address space and (2) locking
mechanisms often lack suitable contention managers [DGV04]. Therefore,
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2 CHAPTER 1. INTRODUCTION

Erlang implements concurrent processes by its own runtime system and
not by the underlying operating system [Arm97].

Actor abstractions as lightweight as Erlang’s processes have been un-
available on popular virtual machines so far. At the same time, stan-
dard virtual machines are becoming an increasingly important platform
for exactly the same domain of applications in which Erlang–because
of its process model–has been so successful: Real-time control systems
[MBC+05, PFHV04].

Another domain where virtual machines are expected to become ubiqui-
tous are applications running on mobile devices, such as cellular phones
or personal digital assistants [Law02]. Usually, these devices are exposed
to severe resource constraints. On such devices, only a few hundred kilo-
bytes of memory is available to a virtual machine and applications.

This has important consequences: (1) A virtual machine for mobile devices
usually offers only a restricted subset of the services of a common virtual
machine for desktop or server computers. For example, the KVM [SMb]
has no support for reflection (introspection) and serialization. (2) Pro-
gramming abstractions used by applications have to be very lightweight
to be useful. Again, thread-based concurrency abstractions are too heavy-
weight. Furthermore, programming models have to cope with the re-
stricted set of services a mobile virtual machine provides.

A common alternative to programming with threads is, to use an event-
driven programming model. Programming in explicitly event-driven
models is very difficult [LC02].

Most programming models support event-driven programming only
through inversion of control. Instead of calling blocking operations (e.g. for
obtaining user input), a program merely registers its interest to be resumed
on certain events (e.g. an event signaling a pressed button, or changed
contents of a text field). In the process, event handlers are installed in the
execution environment which are called when certain events occur. The
program never calls these event handlers itself. Instead, the execution en-
vironment dispatches events to the installed handlers. Thus, control over
the execution of program logic is “inverted”.

Virtually all approaches based on inversion of control suffer from the fol-
lowing problems: (1) The interactive logic of a program is fragmented
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across multiple event handlers (or classes, as in the state design pattern
[GHJV95]), and (2) control flow among handlers is expressed implicitly
through manipulation of shared state [CM06].

1.1 Goal

The goal of this thesis is to devise a programming model based on actors
in the style of Erlang [AVWW96]. The programming model should be im-
plemented as a library for Scala, a modern programming language which
unifies functional and object-oriented programming [Oa04]. We want to
adopt the following constraints:

1. All programming abstractions should be introduced as a library
rather than by extending an existing language or inventing a new
language. We believe that by using a modern programming lan-
guage with general and well-defined constructs that work well to-
gether and provide the best of the object-oriented and functional
programming worlds, domain specific languages, such as actor lan-
guages, can be implemented equally well as libraries.

2. Programming abstractions should not rely on special support from
the underlying runtime environment. All library code should be
runnable on unmodified popular virtual machines, such as the Java
Virtual Machine (JVM) [LY96] and Microsoft’s Common Language
Runtime (CLR) [Gou02]. As these virtual machines neither provide
means for explicit stack management, nor fine-grained control over
thread scheduling, we will refer to them as non-cooperative in the fol-
lowing.

3. The implementation of our programming model should be suited for
resource-constrained devices. Actor abstractions need to be memory
efficient, and critical runtime services (e.g. serialization) have to be
designed to be runnable on virtual machines for mobile devices. For
example, certain configurations of virtual machines for embedded
systems do not support reflection [SMb]. Therefore, target virtual
machines cannot be assumed to provide general reflective serializa-
tion mechanisms.
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4. We wish to support a very large number of simultaneously active
actors. Targeting popular runtime environments, such as the JVM,
this means that we cannot directly map actors to heavyweight virtual
machine threads.

5. Our programming abstractions should be useful not only at the inter-
face to other systems that support message passing. Rather, we wish
to use actors as a general structuring abstraction that supports the
composition of large, distributed systems utilizing modern multi-
core processors. One could imagine e.g. a concurrent implemen-
tation of the Scala compiler in terms of actors.

1.2 Proposed Solution

To obtain very lightweight abstractions, we make actors thread-less. This
poses a significant challenge as their execution state has to be saved and
restored to support blocking operations. Moreover, virtual machines, such
as the JVM, provide no means to explicitly manage the execution state of
a program, mainly because of security considerations.

We overcome this problem by using closures as approximations for the
continuation of an actor. By having our blocking operation never return
normally, the continuation is even exactly defined by an appropriate clo-
sure. We can enforce this non-returning property at compile time through
Scala’s type system. At the same time, closures enable a very convenient
programming style.

Although our implementation is event-based, it does not require inver-
sion of control. Moreover, we achieve this without adding programming
abstractions to cope with the modified computation model. The fact that
the underlying computation is event-based is completely hidden from the
programmer.

1.3 Contributions

The contributions of this thesis are three-fold:
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1. We introduce event-based actors as an implementation technique for
scalable actor abstractions on non-cooperative virtual machines.

• To the best of our knowledge, event-based actors are the first
to allow (1) reactive behavior to be expressed without inversion
of control, and (2) unrestricted use of blocking operations, at
the same time. Our actor library outperforms other state-of-
the-art actor languages with respect to message passing speed
and memory consumption by several orders of magnitude. Our
implementation is able to make use of multi-core processors.

• We show that by using Scala, actor primitives can be imple-
mented as a library rather than as language extensions. Thus,
our actor library may serve as an example for the implementa-
tion of domain specific languages in Scala.

2. By extending our event-based actors with a portable runtime sys-
tem, we show how distributed Erlang [Wik94] can be implemented
in Scala. Our library supports virtually all primitives and built-in-
functions which are introduced in the Erlang book [AVWW96]. The
portability of our runtime system is established by two working pro-
totypes based on TCP and the JXTA1 peer-to-peer framework, re-
spectively.

3. We present the design and implementation of a state-of-the-art
combinator library for type-safe serialization. The generated byte
streams are compact, because of (1) structure sharing, and (2)
base128 encoded integers. Our implementation is as efficient as
Kennedy’s [Ken04] without using circular programming [Bir84]. At
the same time we support combinators which are more general than
those of Elsman [Els04].

With our event-based actors we provide abstractions for concurrent pro-
gramming based on asynchronous message passing which, arguably,
make event-driven programming easier. More concretely, explicit message
passing combined with expressive pattern matching allows a declarative pro-
gramming style. Programmers can therefore concentrate on what to com-
municate instead of how. Furthermore, because our approach does not
require inversion of control, we allow most high-level code be written in an
intuitive, imperative thread-like style.

1http://www.jxta.org/





Chapter 2

Background & Related Work

2.1 Actor Model of Computation

Actors were introduced by Hewitt et al. [HBS73] and developed further
by Agha [Agh86]. The actor model provides a self-contained unit that
encapsulates both state and behavior. Communication between actors is
only possible through asynchronous message passing. Upon arrival of a
new message, an actor may react by

1. creating a new actor,

2. sending messages to known actors (messages may contain addresses
of actors),

3. changing its own state.

An actor A may receive messages from any actor B that knows A’s ad-
dress. The order in which messages are received is unspecified. The orig-
inal actor model [Agh86] requires message reception to be complete. Com-
pleteness guarantees that every sent message will be received after a finite
duration. Particularly, no message will be lost. Ensuring completeness is
hard and goes beyond the scope of our work. Instead, we adopt the “send
and pray” semantics of Erlang [AVWW96], i.e. the system may fail to de-
liver a message at any time. We argue that this model is more practical,

7
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especially in the context of mobile and (widely) distributed applications.
Moreover, Erlang’s success in the area of highly concurrent, distributed
and fault-tolerant systems may justify the adoption of the semantics of its
core abstractions [Arm96, NTK03].

2.2 Scala

Scala is a modern, statically typed programming language which unifies
functional and object-oriented programming [Oa04]. It has been devel-
oped from 2001 in the programming methods laboratory at EPFL as part
of a research effort to provide better language support for component soft-
ware.

Scala code is compiled to run on the Java Virtual Machine [LY96] or Mi-
crosoft’s Common Language Runtime [Gou02]. Existing libraries for these
platforms can be reused and extended. Scala shares most of the type sys-
tems and control structures with Java and C#. Therefore, we restrict our-
selves in the following to introduce concepts not found in those languages
which are critical for understanding Scala code presented in this text.

2.2.1 Higher-Order Functions

Scala is a functional language in the sense that every function is a value.
Thus, functions can be passed as parameters to, and returned from other
functions.

For example, consider a function forall which tests if a given predicate
holds for all elements of an array:

def forall[T](xs: Array[T], p: T => boolean) =
!exists(xs, x: T => !p(x))

The type of the predicate p which is to be tested is the function type
T => boolean which has as values all functions that take a value of type
T as an argument and return a boolean value (note that T is a type pa-
rameter). Functional parameters are applied just like normal functions
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(as in p(x)). Scala allows anonymous functions (i.e. functions which are
not given a name) to be defined very concisely. In the example above,
x: T => !p(x) defines an anonymous function which takes a value of
type T and returns the negated boolean result returned by the application
of p.

2.2.2 Case Classes and Pattern Matching

Scala allows algebraic datatypes to be defined using case classes. Case classes
are normal classes tagged with the case modifier. Such classes automati-
cally define a factory method with the same arguments as the constructor.

For example, algebraic terms consisting of numbers and a binary plus op-
eration can be defined as follows:

abstract class Term
case class Num(x: int) extends Term
case class Plus(left: Term, right: Term) extends Term

Instances can be created by simply calling the constructors, as in

Plus(Num(1), Plus(Num(2), Num(3)))

Instances of case classes can be deconstructed using pattern matching. Case
class constructors serve as elements of patterns.

For example,

def eval(term: Term): int =
term match {

case Num(x) => x
case Plus(left, right) =>

eval(left) + eval(right)
}

evaluates algebraic terms.

In general, a matching expression
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x match {
case pat1 => e1

case pat2 => e2

...
}

matches the value x against the patterns pat1, pat2, etc. in the given order.
In the example, patterns are of the form C(x1, ..., xn) where C refers to
a case class constructor and xi denotes a variable. A value matches such
a pattern if it is an instance of the corresponding case class. In the pro-
cess, the value is decomposed and its constituents are bound to variables.
Finally, the corresponding right-hand-side is executed.

Variable patterns match any pattern and can be used to handle default cases.
A variable pattern is a simple identifier which starts with a lower case
letter.

2.2.3 Partial Functions

One of Scala’s defining principles is that every function is a value. As
every value is an object (because of Scala’s unified object model), it fol-
lows that every function is an object. Therefore, function types are actually
classes.

For example, a function of type S => T is an instance of the following ab-
stract class:

abstract class Function1[-S, +T] { def apply(x: S): T }

The prefixes “-” and “+” are variance annotations, signifying contravariance
and covariance, respectively. Functions with more than one argument are
defined in an analogous way. Thus, functions are basically objects with
apply methods.

As function types are classes they can be sub-classed. A very important
subclass is partial functions. These functions are defined only in some part
of their domain. Moreover, they provide a method isDefinedAt which
tests whether it is defined for some value. In Scala’s standard library, par-
tial functions are defined like this:
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trait PartialFunction[-A, +B] extends AnyRef with (A => B) {
def isDefinedAt(x: A): Boolean

}

Instances of (anonymous) partial functions can be defined in a very concise
way. Blocks appearing after a match expression are treated as instances of
partial functions which are defined for every value that matches at least
one of the specified patterns.

For example,

{
case Incr() =>

value = value + 1
case Decr() =>
value = value - 1

case Reset() =>
value = 0

}

defines a partial function which modifies a variable value when applied
to instances of one of the case classes Incr, Decr or Reset.

2.3 Programming Actors in Scala

This section describes a Scala library that implements abstractions similar
to processes in Erlang [AVWW96].

Actors [Agh86] are self-contained, logically active entities (in contrast,
most objects in object-oriented systems are passive and become only ac-
tive when a method is called) that communicate through asynchronous
message passing. Each actor has a mailbox that can be manipulated only
through the provided send and receive abstractions. Thus, the program-
ming model is declarative and allows multiple flows of control.

In Scala, templates for actors with user-defined behavior are normal class
definitions which extend the predefined Actor class. Figure 2.1 shows the
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class Counter extends Actor {
override def run: unit =
loop(0)

def loop(value: int): unit = {
Console.println("Value: " + value)
receive {

case Incr() =>
loop(value + 1)

case Value(p) =>
p ! value
loop(value)

case _ =>
loop(value)

}
}

}

Figure 2.1: A simple counter actor.

definition of a simple counter actor. Concurrent behavior is specified anal-
ogous to threads in Java1: All actively executed code is contained in an
overridden run method. Like a Java thread, an actor has to be started by
calling its start method (inherited from Actor) which, in turn, triggers the
execution of run.

For example,

val counter = new Counter
counter.start

creates a new instance of a counter actor and starts it.

By calling receive passing a list of message patterns with associated actions,
an actor can remove messages from its mailbox and process them. The first
message which matches one of the patterns is removed from the mailbox
and the action corresponding to the first matching pattern is executed (the

1In fact, the Actor class defined in Scala’s standard library extends java.lang.Thread.
Although thread-less, our event-based implementation of actors we describe in chapter 3
provides essentially the same interface for compatibility.
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order of message patterns is significant). If none of the messages in the
mailbox can be matched against one of the patterns (or if the mailbox is
empty), the call to receive blocks until an appropriate message can be
processed. For example, a counter executing the receive statement given
in figure 2.1 when its mailbox contains a single Incr() message, will re-
move the message from its mailbox and recursively call its loop() method
passing an incremented counter value.

The mailbox of a freshly created actor is always empty. Messages can be
added to an actor’s mailbox only through its send method.

For example,

counter send Incr()

sends a Incr() message to our counter, thereby adding the message to its
mailbox. If the counter was blocked, it is unblocked executing the action
associated with Incr(). If it was not blocked (e.g. it was busy execut-
ing the action of a previous message reception), this simply means that
the next call to receive will not block. Note that because message sends
are non-blocking, the counter will execute its action concurrently with the
continuation of the sender.

The message to be sent can have any subtype of scala.AnyRef, the su-
pertype of all reference types. In contrast to channel-based programming
[CS05] where a channel usually has to be (generically) instantiated with
the types of messages it can handle, an actor can receive messages of any
(reference) type.

To transparently support local as well as remote actors (i.e. running on
a different node on the network), it is necessary to refer to actors us-
ing locality descriptors. Analogous to Erlang [AVWW96], each actor is
uniquely identified by a process identifier (PID). An actor’s PID can be ob-
tained through its self property2:

val pid = counter.self

2In Scala accesses to fields and methods are uniform, i.e. they share the same syntax;
thus, the implementation of a property can be changed from a field to (a pair of) acces-
sor methods (for read and write access, respectively), and vice versa, without requiring
changes to client code.
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Sending a message to an actor through its PID is easy3:

pid ! Incr()

By sending its PID to other actors, an actor can become one of their ac-
quaintances. For example, an actor interested in obtaining the value of our
counter needs to send a message Value(p) where p is its PID4:

counter ! Value(self)
receive {

case x: int => Console.println("Result: " + x)
}

The last case clause inside the counter’s receive matches anything not
matched by a preceding case clause. Thus, any message other than Incr()
and Value(p) is ignored.

A method receiveWithin can be used to specify a time span in which a
message should be received allowing an actor to timeout while waiting for
a message. Upon timeout the action associated with a special TIMEOUT()
pattern is fired. Timeouts can be used to suspend an actor, completely
flush the mailbox, or to implement priority messages [AVWW96].

2.4 Actors for Smalltalk

Actalk implements actors as a library for Smalltalk-80 to study the ac-
tor paradigm of computation [Bri89]. Various actor computation models
(e.g. Agha’s actor model [Agh86], the communication protocol of ABCL/1
[YBS86]) are simulated by extending a minimal kernel of pure Smalltalk
objects. No effort is made to use an event-based implementation; Instead,
the concurrency model of the underlying environment is relied upon to
be scalable. However, without extension, Smalltalk-80 does not support
parallel execution of concurrent actors on multi-processors (or multi-core
processors).

3Note that in Scala “!” is a valid name for a method and is not treated in any special
way. Moreover, invocations of methods that take only a single parameter can be written
infix. Thus, counter ! Incr() is short for counter.!(Incr()).

4The reader might be wondering how the type of p is determined as it is never men-
tioned inside the counter’s class. Scala infers the type from the definition of Value.
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ConcurrentSmalltalk [YT87] and Actra [TLD+89] pursue a deeper inte-
gration of actors into the Smalltalk environment. First, they show that
Smalltalk needs to be extended in order to support concurrent actors on
multi-processor machines. Actra extends the Smalltalk/V virtual machine
with an object-based real-time kernel which provides lightweight pro-
cesses. Thus, they rely on suitable support by the virtual machine. In
contrast, we implement scalable actor abstractions on non-cooperative vir-
tual machines.

2.5 Actor Foundry

The Actor Foundry is a class library for the construction of actor-based
systems in Java5. As Java has no support for first-class functions or pat-
tern matching (features typically found in functional programming lan-
guages), we do not expect the combination of Java together with such a li-
brary to be as expressive as typical actor languages or domain specific lan-
guages implemented using modern programming languages which com-
bine functional and object-oriented programming, such as Scala. How-
ever, Scala’s seamless interoperability with Java code makes it possible
to build powerful abstractions using the classes and methods defined in
the Actor Foundry. It has been shown that SALSA code (see 2.6) per-
forms usually an order of magnitude better than Foundry code in Java,
though [VA01].

2.6 SALSA

SALSA (Simple Actor Language, System and Architecture) [VA01] extends
Java with concurrency constructs that directly support the notion of ac-
tors. A preprocessor translates SALSA programs into Java source code
which in turn is linked to a custom-built actor library. The library pro-
vides actor classes which inherit from Java’s thread class. Thus, SALSA
suffers from the same scalability problems as general thread-based pro-
gramming on the JVM. Moreover, the commitment of SALSA to language

5The Actor Foundry: A Java-based Actor Programming Environment, Open System
Lab, 1998. See http://osl.cs.uiuc.edu/.
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extensions contradicts our rationale for a library-based approach. How-
ever, as SALSA implements actors on the JVM, it is somewhat closer re-
lated to our work than Smalltalk-based actors or the Concurrency Control
Runtime (see 2.7). Moreover, performance results have been published
which enables us to compare our system with SALSA, using ports of ex-
isting benchmarks.

2.7 Concurrency Control Runtime

Chrysanthakopoulos and Singh [CS05] discuss the design and implemen-
tation of a channel-based asynchronous messaging library. Channels can
be viewed as special state-less actors which have to be instantiated to indi-
cate the types of messages they can receive. Usually, channels are used by
composing join patterns (statically as well as dynamically), rather than by
explicitly calling low-level operations. Similar to our approach, they im-
plement channels as a library for C#. Instead of using heavyweight oper-
ating system threads they develop their own scheduler to support contin-
uation passing style (CPS) code. Using CLU-style iterators blocking-style
code is CPS-transformed by the C# compiler.

2.8 Timber

Timber [BCJ+02] is an object-oriented and functional programming lan-
guage designed for real-time embedded systems. With respect to concur-
rency, it offers (1) a monitor-like construct for mutual exclusion, and (2)
message passing primitives for both synchronous and asynchronous com-
munication between concurrent reactive objects. The communication inter-
face of reactive objects consists of methods which are executed as reactions
to message sends. Methods can be asynchronous actions or synchronous
requests. Invoking an action lets the sender continue immediately, thereby
introducing concurrency.

Timber provides special support for programming real-time systems. Ac-
tions can be annotated with timing constraints (e.g. by specifying a dead-
line). A scheduler controls the order in which methods are executed try-
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ing to satisfy all timing constraints. Thus, methods are not guaranteed to
be executed in the order in which the corresponding messages are sent.
However, if no timing constraints are given, messages are ordered accord-
ing to their causal connections. If, in the sense of Lamport’s “happened
before” relation [Lam78], a message send must have happened before an-
other send to the same object, the corresponding methods will be executed
in the same order.

Timber is implemented as an extension to Haskell. The concurrent and
stateful computations of reactive objects are based on monads. Thus,
method bodies have to be written using Haskell’s do notation.

Reactive objects cannot call operations that might block indefinitely. In-
stead, they install call-back methods in the computing environment which
executes these operations on behalf of them. Completion of a blocking
operation is typically signaled by an event that occurs inside the environ-
ment. Installed call-back methods serve as event handlers which are in-
voked by the environment. Consequently, their approach suffers from the
usual problems with inversion of control: (1) The interactive logic of a Tim-
ber program is fragmented across multiple event handlers, and (2) con-
trol flow among handlers is expressed implicitly through manipulation of
shared state.

2.9 Frugal Mobile Objects

Frugal objects [GGH+05] (FROBs) are distributed reactive objects that
communicate through typed events. In response to a notification they
can dynamically adapt their behavior to changes in the availability of
resources, such as memory, bandwidth and CPU time. FROBs are pro-
grammed using a logically time-sliced computing model. In each time
slice granted to a FROB by the runtime system, only a single, finite event
handler is allowed to run. Event handlers are forbidden to use looping
constructs of the underlying programming language. The prototype im-
plementation of FROBs in Java cannot statically enforce this, though.

FROBs are basically actors with an event-based computation model, just
as our event-based actors. The goals of FROBs and event-based actors
are orthogonal, though. The former provide a computing model suited for
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resource-constrained devices, whereas our approach offers a programming
model (i.e. a convenient syntax) for event-based actors, such as FROBs.
Currently, FROBs can only be programmed using a fairly low-level Java
API (application programming interface) that directly maps concepts of
the computing model to Java classes and methods. In the future, we plan
to closely cooperate with the authors to integrate our two orthogonal ap-
proaches.

2.10 Java Extensions: JCilk, Responders

JCilk [DLL05] extends the Java language to support the passing of excep-
tions and return values from one thread to its “parent” thread that created
it. It is a true semantic parallel extension of the base language, in the sense
that its semantics is consistent with the existing semantics of Java’s try
and catch constructs. Our implementation of asynchronous exceptions
(see 4.4.2) has been inspired by JCilk.

Recent work by Chin and Millstein [CM06] discusses a control-flow ab-
straction for an event-loop that avoids many of the drawbacks of inversion
of control and the state design pattern [GHJV95]. We introduce a simi-
lar event-loop abstraction built on top of event-based actors which removes
some of the limitations of their approach (see 3.6).

2.11 Summary

Most existing actor languages and libraries implement actors using VM or
operating system threads. As a result, actors are rather heavy-weight, both
in terms of memory consumption and synchronization. Consequently,
their systems are not suited for resource-constrained devices or highly
concurrent systems. Actor systems that do provide light-weight actors,
such as Erlang or Actra, rely on special runtime system implementations.
In contrast, we show how light-weight actors can be implemented on stan-
dard, unmodified virtual machines, such as the JVM. Finally, virtually all
languages with a notion similar to actors support event-driven program-
ming only through inversion of control which leads to fragmentation of
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program logic and implicit control flow that is hard to track. Our contribu-
tion is an implementation technique for actors that supports event-driven
programming avoiding inversion of control.





Chapter 3

Event-Based Actors

Logically, an actor is not bound to a thread of execution. Nevertheless,
virtually all implementations of actor models associate a separate thread
or even an operating system process with each actor [Bri89, TLD+89, BG99,
VA01].

In Scala, thread abstractions of the standard library are mapped onto the
thread model and implementation of the corresponding target platform,
which at the moment consists of the Java Virtual Machine (JVM) [LY96]
and Microsoft’s Common Language Runtime (CLR) [Gou02].

An approach where each actor is assigned its own thread does not scale
on either of the two platforms because the respective thread model is too
heavyweight. The main reasons are: (1) over-provisioning of stacks which
leads to quick exhaustion of virtual address space (at least on 32-bit ma-
chines) and (2) locking mechanisms which lack suitable contention man-
agers [DGV04].

To overcome the resulting problems with scalability, we propose an event-
based implementation. The event-based character of our implementation
stems from the fact that (1) actors are thread-less, and (2) computations
between two events are allowed to run to completion. An event in our
library corresponds to the arrival of a new message in an actor’s mailbox.

The rest of this chapter is structured as follows. First, by means of an
example, we point out the challenges an event-based implementation of

21
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actors has to face. Thereby, the central ideas of our proposed solution are
explained intuitively. In section 3.2 we show how concurrent actors can
be executed on a single thread. Extensions for multi-processors and multi-
core processors are discussed in section 3.3. In section 3.4 we describe a
scheduler for actors which guarantees progress even in the presence of
blocking operations. Finally, applications of actors to event-based pro-
gramming are discussed in section 3.6.

3.1 Execution Example

First, we want to give an intuitive explanation of how our event-based
implementation works. For this purpose, consider the execution of two
actors A and B:

A:

...
B ! Value(7)
...

B:

...
receive {

case Value(x) =>
receive {

case Value(y) =>
Console.println(x + y)

}
}

Because actors and threads are decoupled, for the sake of simplicity, as-
sume that both actors are running on the same thread and that A’s send
statement gets executed first (note that in Scala, methods that take only
one argument can be written infix). Send appends message Value(7) to
B’s mailbox. Because the arrival of a new message might enable the tar-
get actor to continue, send will transfer control to B. Thus, the receive
statement of actor B is executed on the sender’s thread. According to the



3.1. EXECUTION EXAMPLE 23

semantics of receive, the new message is selected and removed from the
mailbox because it matches the first (and only) case of the outer receive.
Then, the corresponding action is executed with the pattern variables
bound to the constituents of the matched message (i.e. x = 7). The block
enclosed in curly braces following the outer receive actually defines a
partial function. Thus, executing the corresponding action is done by ap-
plying the partial function to the matched message:

{
case Value(x) =>

receive {
case Value(y) =>
Console.println(x + y)

}
}.apply(Value(7))

Intuitively, this reduces to

receive {
case Value(y) => Console.println(x + y)

}

where x is bound to the value 7.

Assuming there is no other message in the actor’s mailbox, logically, this
call to receive blocks. Remember that we are still inside the call to send
(i.e. send did not return yet). Thus, blocking the current thread (e.g by
issuing a call to wait()) would also block the call to send.

This is illegal because in our programming model send has a non-blocking
semantics. Instead, we need to suspend B in a way that allows send to
return. For this, inside the (logically) blocking receive, first, we remember
the rest of the computation of B. In this case, it suffices to save the closure
of

receive {
case Value(y) => Console.println(x + y)

}

Second, to let send return, we need to unroll the runtime stack up to the
point where control was transferred to actor B. We do this by throwing a
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special exception inside the blocking receive which gets caught in send.
After catching the exception send returns normally. Thus, send keeps its
non-blocking semantics.

In general, though, it is not sufficient to save a closure to capture the rest
of the computation of an actor. For example, consider an actor executing
the following statements:

val x = receive {
case y: int =>
f(y)

}
g(x)

Here, receive produces a value which is then passed to a function. As-
sume receive blocks. Remember that we need to save the rest of the com-
putation inside the blocking receive.

To save information about statements following receive, we would either
need to (a) save the call-stack, or (b) rely on support for first-class continu-
ations.

Virtual machines like the JVM or Microsoft’s CLR provide no means for
explicit stack management, mainly because of security reasons. Thus,
languages implementing first-class continuations have to simulate the
run-time stack on the heap which poses serious performance problems
[BSS04]. Moreover, programming tools such as debuggers and profilers
rely on run-time information on the native VM stack which they are un-
able to find if the stack that programs are using is allocated on the heap.
Consequently, existing tools cannot be used with programs compiled us-
ing a heap-allocated stack.

Thus, most ports of languages with continuation support (e.g. Scheme
[KCR98], Ruby [Mat02]) onto non-cooperative virtual machines abandon
first-class continuations altogether (e.g. JScheme [AHN], JRuby1). Scala
does not support first-class continuations, primarily because of compati-
bility and interoperability issues with existing Java code.

To conclude, both approaches for managing information about statements
following a call to receive would require changes either to the compiler

1See http://jruby.sourceforge.net.
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or the VM. Following our rationale for a library-based approach, we want
to avoid those changes.

Instead, we require that receive never returns normally. Thus, managing
information about succeeding statements is unnecessary.

Moreover, we can enforce this “no-return” property at compile time
through Scala’s type system which states that statements following calls
to functions (or methods) with return type scala.All will never get exe-
cuted (“dead code”) [Oa04]. Note that returning by throwing an exception
is still possible. In fact, as already mentioned above, our implementation
of receive relies on it.

3.2 Single-Threaded Actors

Before diving into the implementation of our two communication abstrac-
tions we want to point out another issue. As we want to avoid inversion
of control receive will (conceptually) be executed at the expense of the
sender. If all actors are running on a single thread, sending a message to
an actor A will re-evaluate the call to receive which caused A to suspend.

A simplified implementation of send for actors running on a single thread
looks like this:

def send(msg: Message): unit = {
sent += msg
if (continuation != null && continuation.isDefinedAt(msg))

try {
receive(continuation) // saves continuation as side-effect

} catch {
case Done =>
// continuation already saved

}
}

The sent message is appended to the mailbox of the actor which is the tar-
get of the send. Let A denote the target actor. If the continuation attribute
is set to a non-null value then A is suspended waiting for an appropriate
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message (otherwise, A did not execute a call to receive, yet).

continuation refers to (the closure of) the partial function with which
the last blocking receive was called. Thus, we can test if the newly
appended message allows A to continue (trait PartialFunction[-A,+B],
which inherits from the function type (A => B), defines a method
isDefinedAt(x: A): Boolean).

Note that if, instead, we would save receive(f) as continuation for a
blocking receive(f) we would not be able to test this but rather had to
blindly call the continuation. If the newly appended message would not
match any of the defined patterns receive would go through all messages
in the mailbox again trying to find the first matching message. Of course,
the attempt would be in vain as only the newly appended message could
have enabled A to continue.

If A is able to process the newly arrived message we let A continue until
it executes a blocking, nested receive or finishes its computation. In the
former case we need to make sure that send is not blocked but, instead,
can return normally because of its non-blocking semantics.

By catching a special exception of type Done which is thrown by the block-
ing, nested receive (see below), send can pretend not having executed A
at all.

Technically, this trick unrolls the call-stack up to the point where send
transferred control to A. Thus, to complete the explanation of how the
implementation for send works, we need to dive into the implementation
of receive.

3.2.1 Receive

receive selects messages from an actor’s mailbox and is responsible for
saving the continuation as well as abandoning the evaluation context:

def receive(f: PartialFunction[Message, unit]): scala.All = {
sent.dequeueFirst(f.isDefinedAt) match {

case Some(msg) =>
continuation = null
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f(msg)
die()

case None =>
continuation = f

}
throw new Done

}

Naturally, we dequeue the first message in our mailbox which matches
one of the cases defined by the partial function which is pro-
vided as an argument to receive. Note that f.isDefinedAt has
type (Message => boolean). As the type of the resulting object is
Option[Message] which has two cases defined, we can select between
these cases using pattern matching [Oa04]. When there was a message
dequeued we first reset the saved continuation. This is necessary to pre-
vent a former continuation to be called multiple times when there is a send
to the current actor inside the call f(msg). After message processing die()
sets a flag which indicates that the execution of the actor has terminated.
When an actor has died, it is not able to receive messages any more, thus
preventing its mailbox from being flooded.

If we didn’t find a matching message in the mailbox, we remember the
continuation which is the closure of f. In both cases we need to abandon
the evaluation context by throwing a special exception of type Done, so the
sender which originated the call to receive can continue normally (see
above).

3.3 Multi-Processors and Multi-Core Processors

To leverage the increasingly important class of multi-core processors we
want to execute concurrent activities on multiple threads. We rely on mod-
ern virtual machine implementations to execute concurrent VM threads on
multiple processor cores in parallel.

A scheduler decides how many threads to spend for a given workload of
concurrent actors, and, naturally, implements a specific scheduling strat-
egy. Because of its asychronous nature, a call to send introduces a concur-
rent activity, namely the resumption of a previously suspended actor. We
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encapsulate this activity in a task item which gets submitted to the sched-
uler (in a sense this is a rescheduling send [SS02]):

def send(msg: Message): unit = synchronized {
if (continuation != null

&& continuation.isDefinedAt(msg)
&& !scheduled) {

scheduled = true
Scheduler.putTask(new ReceiverTask(this, msg))

}
else
sent += msg

}

If a call to send finds the current continuation of the receiving actor A to
be undefined, A is not waiting for a message. Usually, this is the case
when a task for A has been scheduled that has not been executed, yet.
Basically, send appends the argument message to the mailbox unless the
receiving actor is waiting for a message and is able to process the argument
message. In this case, we schedule the continuation of the receiving actor
for execution by submitting a new task item to the scheduler.

The scheduler maintains a pool of worker threads which execute task
items of type ReceiverTask. A ReceiverTask is basically a Java
java.lang.Runnable that receives a specified message and has an excep-
tion handler that handles requests for abandoning the evaluation context:

class ReceiverTask(actor: MailBox, msg: MailBox#Message)
extends Runnable {

def run(): unit = {
try {

actor receiveMsg msg
}
catch {

case Done =>
// do nothing

}
}

}

receiveMsg is a special form of receive which processes a given message
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according to the actor’s continuation. This is needed to preserve the se-
mantics of receive in a multi-threaded setting as between scheduling and
execution of a task item more messages could be sent to the receiving ac-
tor; thus, the first matching message in the mailbox and the message that
triggered the execution might be different at the time when the task item
is executed.

Actors are not prevented from calling operations which can block indefi-
nitely. In the following we describe a scheduler which guarantees progress
even in the presence of blocking operations.

3.4 Blocking Operations

The event-based character of our implementation stems from the fact that
(1) actors are thread-less, and (2) computations between the reception of
two messages are allowed to run to completion. The second property is
common for event-driven systems [HSW+00] and reflects our assumption
of a rather interactive character for most actors. Consequently, compu-
tations between arrival of messages are expected to be rather short com-
pared to the communication overhead.

Nevertheless, we also want to support long-running, CPU-bound actors.
Such actors should not prevent other actors from making progress.

Likewise, it would be unfortunate if a single blocking actor could cause
the whole application to stop responding, thereby hindering other actors
to make progress.

We face the same problems as user-level thread libraries: Processes yield
control to the scheduler only at certain program points. In-between they
cannot be prevented from calling blocking operations or executing infinite
loops. For example, an actor might call a native method which issues a
blocking system call.

In our case, the scheduler is executed only when sending a message leads
to the resumption of another actor. Because send is not allowed to block,
the receiver (which is resumed) needs to be executed on a different thread.
This way, the sender is not blocked even if the receiver executes a blocking



30 CHAPTER 3. EVENT-BASED ACTORS

operation.

As the scheduler might not have an idle worker thread available (because
all of them are blocked), it needs to create new worker threads as needed.
However, if there is at least one worker thread runnable (i.e. busy execut-
ing an actor), we do not create a new thread. This is to prevent the creation
of too many threads even in the absence of blocking operations.

Actors are still thread-less, though: Each time an actor is suspended be-
cause of a blocking (which means unsuccessful) receive, instead of block-
ing the thread, it is detached from its thread. The thread now becomes
idle, because it has finished executing a receiver task item. It will ask the
scheduler for more work. Thereby, threads are reused for the execution of
multiple actors.

Using this method, an actor-based application with low concurrency can
be executed by as few as two threads, regardless of the number of simul-
taneously active actors.

The first picture in figure 3.1 shows an example for the execution of three
actors on two worker threads. The two columns represent two worker
threads. Time increases downwards. Arrows between columns represent
message sends. A line ending with a horizontal bar means an actor is sus-
pended because of an unsuccessful receive. Upon an appropriate send,
execution of an actor can be resumed on any idle worker thread. For ex-
ample, actor A is executed on two different threads during its lifetime.

The second picture shows a situation where the scheduler has to create a
new worker thread because of blocked worker threads. First, actor A sends
a message to B. Both actors run concurrently, until B issues a blocking
operation, indicated by the cross. Thus, when A sends a message to C,
thereby resuming it, all worker threads other than the thread executing A
are blocked. Because C might call blocking operations, it is not allowed
to be executed on the same thread as A. Therefore, the scheduler creates a
new worker thread, indicated by the third column, which starts executing
C. Meanwhile, B is unblocked and finishes its execution (up until the next
unsuccessful receive). Thus, when C sends its message, A can be resumed
on the worker thread that was used to execute B.
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Figure 3.1: Scheduling actors on worker threads.
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3.4.1 Implementation

Unfortunately, it is impossible for user-level code to find out if a thread
running on the JVM is blocked2. We therefore implemented a simple
heuristic that tries to approximate if a worker thread which executes an
actor is blocked, or not.

The basic idea is that actors provide the scheduler with signs of life dur-
ing their execution. That is, on every send and receive they call a tick
method of the scheduler. The scheduler then looks up the worker thread
which is currently executing the corresponding actor, and updates its time
stamp. When a new receiver task item is submitted to the scheduler, it
first checks if all worker threads are blocked. A worker thread with a “re-
cent” time stamp is assumed to be not blocked. Only if all worker threads
are assumed to be blocked (because of old time stamps), a new worker
thread is created. Otherwise, the receiver task item is simply put into a
queue waiting to be consumed by a worker thread that finished executing
its task item.

Note that using the described approximation, it is impossible to distin-
guish blocked threads from threads that perform a long-running computa-
tion. Thus, a worker thread executing a compute-bound actor is assumed
to be blocked. Consequently, compute-bound actors occupy their worker
thread until they, finally, execute a blocking operation. This means basi-
cally, that compute-bound actors execute on their own thread.

At some point, the scheduler might decide to abandon idle worker
threads, thereby freeing resources. Alternatively, worker threads might
be kept alive, thereby reducing thread creation costs. We implemented a
simple strategy, where newly created worker threads are kept alive indefi-
nitely. However, for some applications it might be worth using a scheduler
which optimizes the number of spare worker threads depending on run-
time profiles. User-defined schedulers are easy to implement and use with
our library.

2Using the Java Debug Interface of the Java Platform Debugger Architecture [SMa]
more detailed information about the status of a VM thread can be obtained. However, the
scheduler would have to be implemented as a debugging client, inspecting an application
running on an external JVM. Also, it is not clear what the overhead of communicating
with the JVM is.
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In summary, additional threads are created only when needed to support
(unexpected) blocking operations. The only blocking operation that we
can handle without thread support is receive. Thus, a large number of
non-cooperative actors (those using blocking operations other than what
our library provides), may lead to a significant increase in memory con-
sumption as the scheduler creates more and more threads. On the other
hand, our approach adds significant flexibility, as the library does not need
to be changed when the user decides to use a new blocking operation.

3.5 Timeouts

In this section we want to describe the handling of timeouts. Following
our philosophy of a very light-weight approach, we do not want to spend
a separate VM thread for running a timer process that keeps track of when
and which actor to wakeup and notify of any timeouts. Moreover, by in-
tegrating timeout handling into our rescheduling send, the implementation
of receive does not need to be changed.

In short, receiveWithin remembers the time when it was called and the
specified duration after which the actor should execute the action associ-
ated with the TIMEOUT() pattern. These values are irrelevant when there is
a matching message in the mailbox that can be processed immediately (as
the actor immediately leaves the receiveWithin). When there is no match-
ing message two cases need to be considered: (1) If the specified timeout
is zero milliseconds (or negative) the timeout action should be executed
immediately (receiving process is not suspended), and (2) if the specified
timeout is positive, together with the continuation function, we remember
that we need to check for timeouts.

Actual handling of timeouts occurs in the implementation of send as this is
the first (and only) point where a receiving actor is activated after possibly
being suspended for some time (rescheduling nature of send). Executing
a specified timeout action is handled by transforming the message-to-be-
received into an instance of the TIMEOUT case class. Otherwise, the code
for scheduling a receiver task remains the same. Alternatively, timeout
actions could be executed via direct dispatch, i.e. without scheduling a re-
ceiver task. This behavior could be justified by arguing that timeout ac-
tions typically execute short back-off code.
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3.6 Event-Driven Applications

In our discussion of event-based actors so far, we were only concerned
with point-to-point communication. For some applications a program-
ming model based solely on asynchronous message passing is too low-
level. A model where components (1) can express their interest in be-
ing notified when a certain type of event occurs (subscribe), and (2) are
able to trigger events (publish) has been proven to help structuring state
transitions in interactive programs. For example, virtually all libraries for
programming graphical user interfaces (GUIs) expect applications to con-
form to some form of this model. However, standard approaches often
cause the interactive logic of a program to be fragmented across multi-
ple handlers or classes (“inversion of control”). Moreover, control flow
among fragments is expressed only indirectly through modifications to
state shared between handlers.

In the following we show how event-based actors can help in imple-
menting a powerful abstraction for publish/subscribe-style program-
ming. Recent work by Chin and Millstein [CM06] discusses “responders,”
a control-flow abstraction for event-loops that avoids many of the draw-
backs of inversion of control and the state design pattern [GHJV95]. We
introduce a similar event-loop abstraction built on top of event-based actors
which removes some of the limitations of their approach.

An event-loop dispatches on a signaled event to handle it appropriately.
Ordinary control-flow constructs may be used to transfer control between
(possibly nested) event-loops. An event can be any message. A message
is treated as an event if the receiving actor is blocked executing an event-
loop. In contrast to “normal” messages, events are dropped (i.e. immedi-
ately removed from the mailbox) if there is no appropriate handler in the
enclosing event-loop.

Figure 3.2 shows our solution to the “guessing game” using event-loops.
Each of the event-loops represents a state of an instance of the game. The
outer event-loop of the start method represents the state of a game that
has not been started, yet. Thus, every signaled event which is different
from StartGame() has no effect on the state, but causes the game to pub-
lish a HaveNotStarted() event. Instead, an event of type StartGame()
will transfer control to a nested event-loop which represents the state of
a newly started game that is ready to respond to the player’s guesses. The
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class GuessingGame extends Publisher {
case class StartGame()
case class Guess(num: int)
val rand = new Random()
def start =
eventloop {

case StartGame() =>
val correctAnswer = rand.nextInt(50)
eventloop {

case Guess(guess) =>
if (guess > correctAnswer)

publish(GuessLower())
else if (guess < correctAnswer)

publish(GuessHigher())
else {

publish(GuessRight())
start

}
case _ => publish(HaveNotFinished())

}
case _ => publish(HaveNotStarted())

}
}

Figure 3.2: An implementation of the guessing game using our actor-based
event-loop.
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inner event-loop is not left until the player guesses the correct answer, at
which point control is transferred to the outer event-loop (by a recursive
call of start), thereby resetting the state.

Note that immediately after calling start, the game actor is suspended,
causing the call-stack to be unwound. Thus, even a long-running session
with many games started and finished will not cause the call-stack to over-
flow.

Having introduced our event-loop abstraction by a series of
examples, we now want to more formally define its seman-
tics by giving a definition in terms of the receive communica-
tion abstraction. An event-loop is a function eventloop of type
(PartialFunction[Message, unit] => scala.All). It takes a set of
event handlers as its argument (note that a single event handler has the
same type). As eventloop contains a (last) call to receive, it shares the
property of not returning normally, thus having return type scala.All
(see above). An event-loop

eventloop {
case P1 => H1

...
case Pn => Hn

}

is equivalent to

def _f = {
case P1 => H1; receive(_f)
...
case Pn => Hn; receive(_f)
case _ => receive(_f)

}
receive(_f)

where P1 . . . Pn are Scala patterns and H1 . . . Hn are closures (of type
(=> unit)). The default case which is listed last in the definition of
_f makes sure that events which are not handled are immediately re-
moved from the actor’s mailbox. The given definition is surprisingly sim-
ple. There are several reasons: First, the pattern matching mechanism of
receive (which, in turn, is provided by Scala’s partial functions) can be
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class Handler(a: Actor,
f: PartialFunction[Message,unit])

extends PartialFunction[Message,unit] {
def isDefinedAt(m: Message): boolean = true
def apply(m: Message): unit = {
if (f.isDefinedAt(m)) f(m)
else {

// do nothing
}
a receive this

}
}

Figure 3.3: Definition of a proxy handler for function arguments passed to
eventloop.

readily reused. By introducing a catch-all pattern as the last case in _f
we turned the actor’s mailbox into an event-queue which is managed by
receive. Also, events arriving during the execution of a particular han-
dler are automatically queued, including events signaled on the executing
actor itself. In contrast, Chin and Millstein’s event-loop throws a runtime
exception if this happens.

The definition of event-loops in terms of receive given above is not suit-
able for direct implementation as it would require a preprocessor or mod-
ifications to the Scala compiler.

Fortunately, the needed partial function can be created dynamically. Sub-
classes of PartialFunction[-A,+B] may override the isDefinedAt() and
apply() methods, thereby defining a custom class of partial functions. In-
dividual partial functions are obtained through instantiation.

Figure 3.3 shows the definition of a class of partial functions of the form of
_f (in the following referred to as “handler”). The Handler class basically
defines a proxy [GHJV95] for functions that are passed as arguments to
eventloop.

Note that the receiving actor has to be explicitly passed as a constructor
argument, because this inside the apply() method refers to the current
handler instance. The definition of eventloop then merely consists of a
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call to receive passing a new instance of our custom handler:

def eventloop(f: PartialFunction[Message,unit]): scala.All =
receive(new Handler(this, f))



Chapter 4

Runtime System

Our programming model should help programmers build systems at a
higher level of abstraction. Unnecessary architectural details, such as net-
work connection management, should be hidden from the programmer.
We aim to achieve this by providing high-level operations, such as spawn-
ing an actor on a remote node, which form part of a virtual architecture. The
disparities between the virtual architecture and the underlying network of
computers are resolved by a runtime system. The runtime system provides

• Location-transparent message delivery,

• Name registering and translation,

• Remote actor creation, and

• Location-transparent error handling

as services for the distributed execution of actors.

4.1 Architecture

The architecture of the runtime system consists of two layers. The layer
on top is independent of the underlying network protocol (analogous to

39
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the architecture described in the Erlang book we call it “NetKernel”). The
layer at the bottom (“service” layer) is specific to the network protocol
used. Factoring out architecture-independent parts makes our runtime
system portable.

4.1.1 Service Layer

The service layer provides

• Remote message delivery,

• Serialization,

• Creation of process identifiers, and

• Connection management

as protocol-specific services.

How a message is delivered to a remote actor executing on a different node
in the network ultimately depends on the underlying network protocol.
However, before we can explain the details of remote message delivery, it
is necessary to introduce process identifiers and name resolution.

Our message passing abstractions are built on operations that permit the
transmission of sequences of bytes to processes running on remote com-
puters. Messages are represented as normal object structures on the heap.
Thus, to pass a message to a remote process, the object structure has to be
turned into a sequence of bytes in such a way that it is possible to recon-
struct an equivalent object structure at the other end. This kind of object
encoding is exactly what serialization is concerned with.

4.1.2 Process Identifiers

Process identifiers (PIDs) are globally unique names for individual actors.
They contain a (globally unique) node name which identifies the node on
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which the actor is running, as well as an identifier used to look up a refer-
ence to the actor inside the (local) node.

As the constituents of the node name depend on the underlying network
protocol (e.g. a node name suitable for TCP contains a port number, which
is useless for a name identifying a JXTA node), we decided to create PIDs
through a factory method [GHJV95] in the service layer.

The service layer also handles connection management. For some network
protocols, such as the JXTA peer-to-peer protocol, the notion of connection
has no meaning. As we largely want to support the programming model
of distributed Erlang, we nevertheless require service layers to implement
a set of connection related functions. Basically, this set consists of Erlang’s
built-in-functions connect, disconnect, isConnected and nodes.

For protocols with automatic discovery mechanisms the first two func-
tions would simply return without doing anything. The result of
isConnected would depend on whether the remote node can be discov-
ered successfully. The set of nodes returned by nodes might include all
nodes that have been discovered in the past.

4.2 Distributed Name Table

The user may register names for PIDs of actors. This additional layer of
indirection offers a way to more abstractly address services running on a
remote node without knowing the PID of a special actor. An actor can
then be referred to using its registered name and the node on which it is
residing.

For example,

register(’rpc, self)

registers the actor which is evaluating this expression (self) on the local
node as “rpc”. A remote node can send messages to this actor in the fol-
lowing way:

name(node, ’rpc) ! msg
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where node is the node local to the “rpc” actor.

Note that names are registered only locally to some node. Thus, the (vir-
tual) name table used for translating (local) names to actors is distributed
among all nodes. Global name services may be implemented on top of the
distributed name table, of course (e.g., see [AVWW96]). We do not provide
an implementation, however.

4.3 Message Delivery Algorithm

Location-transparent message delivery, just as any other service provided
by the runtime system, is only available when accessing an actor through
its PID. For true location-transparency it is necessary that all actors are
accessed through their PIDs, even if they are local to each other. This way,
program development is simplified, as the programmer does not have to
remember if a specific actor is local or not.

As the general message delivery algorithm involves many indirections
which might result in an unacceptable slowdown for local message sends,
we devise an optimization for this special case (see 4.3.1).

To send a message to an actor, the sender calls the “!” method on the PID
of the receiver rpid passing the message to be sent msg as an argument
(sends using registered names are similar). This results in a call to the
NetKernel passing rpid as well as msg.

If rpid denotes an actor residing on the node of the NetKernel, a reference
to the actor a is looked up in a local table, and the message is sent by
calling send on a. In summary, using this algorithm, a local message send
takes three method calls, one comparison and a table look-up.

If rpid denotes an actor running on a remote node, a method of the under-
lying service is invoked passing rpid and msg. The service first serializes
msg into msgSer. Then, it creates a message Send(rpid, msgSer) which,
in turn, gets serialized into sendMsg. A low-level send method of type
Node => (String => unit) then delivers sendMsg as a string to the re-
mote node. The remote node first needs to deserialize the incoming byte
stream and interpret the Send message. The rest proceeds as in a local
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send.

We want to point out a crucial issue when serializing PIDs. A PID some-
times needs to access the services provided by a NetKernel (e.g. for remote
message sends). Thus, PIDs hold a reference to the underlying NetKernel.
This reference has to be updated to point to the local NetKernel whenever
the corresponding PID gets deserialized.

4.3.1 Fast Local Sends

Updating references at deserialization time is a generally useful technique
and is also the basis for an optimization we implemented for local message
sends. The idea is that a PID additionally contains a direct reference to its
actor. This reference can always be used when the PID and its actor reside
on the same node. Of course, the reference has to be set to null whenever
the PID gets deserialized on a node which is not local to the PID’s actor.
On the other hand, if we detect that a PID is deserialized on the node of
its actor we look up the reference to the actor and set it accordingly. With
this optimization in place, a local send involves only a null pointer check
and a call of the send method of the actor.

4.4 Error Handling

In this section we want to discuss abstractions for error handling which
our programming model supports. First, actors can be linked together,
such that actors receive messages when one of their linked actors behaves
in a faulty way. This way, other actors can be monitored and appropriate
actions taken when they terminate abnormally.

Second, we devise a variant of asynchronous exceptions for event-based
actors. Asynchronous exceptions allow familiar error handling methods
to be used in a concurrent context.
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4.4.1 Linked Actors

Our runtime system supports a mechanism for implicit communication
between linked actors. The basic idea is that actors terminate or get appro-
priate error messages when one of their linked actors terminates.

Links are used in Erlang to enable the construction of fault-tolerant sys-
tems. By fault-tolerance we mean the ability to react to events caused by
faulty behavior of (concurrent) components of a system. For this, the run-
time system needs (1) to be able to detect faulty behavior, and (2) to signal
special events to components interested in handling them. Erlang sup-
ports these mechanisms in a location-transparent way.

Our actor library provides an error handling mechanism equivalent to that
of Erlang. In the following we informally quote the semantics of Erlang-
style process links (substituting “actor” for “process” to be consistent with
the rest of this text). After that, we show how links are implemented inside
our runtime system.

Link Semantics

During execution, actors can establish links to other actors. If an actor
terminates (normally or abnormally)1, an exit signal is sent to all actors
which are currently linked to the terminating actor. An exit signal has
type

case class Exit(from: Pid, reason: Symbol) extends SystemMessage

The PID from denotes the terminating actor, reason is any Scala Symbol
(basically a string).

The default behavior of an actor receiving an exit signal where reason is
not ’normal is to terminate and send exit signals to all actors to which it is
currently linked. Exit signals where reason equals ’normal are ignored by

1An actor terminates normally when (1) it either finishes execution, or (2) it evaluates
exit(’normal). It terminates abnormally when (1) it does not handle a thrown exception,
or (2) it calls exit(reason) where reason is not ’normal.
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default. An actor can override its default handling of exit signals, thereby
receiving exit signals as normal messages.

Note that we distinguish exit signals from exit messages. Exit signals are
messages which have a special meaning and are treated in a special way
by the runtime system. An actor receives exit messages (which are not
treated specially) only if it registers its interest to do so with the runtime
system.

Establishing Links

An actor can establish a bidirectional link to another actor with PID p by
evaluating link(p). If the two actors are already linked together, this eval-
uation has no effect. If p is invalid, i.e. referring to a nonexistent actor, the
runtime system sends a message Exit(from, ’invalidPid) to the actor
evaluating link(p).

Evaluating spawnLink(block) creates a new actor which is automatically
linked to the evaluating actor. The behavior of the new actor is specified
by block, a closure of type RemoteActor => unit.

For example,

spawnLink(a => {
a.receive {
case M(p) => p ! Ack()

}
})

creates an (anonymous) actor which acknowledges the reception of a sim-
ple message. Note that, because Scala is statically scoped, inside the body
of the passed closure, this is bound to the actor evaluating spawnLink. To
reference the newly created actor, the closure argument a has to be used.
Evaluating spawnLink behaves as if it had been defined as:

spawnLink(block: RemoteActor => unit) = {
val p = spawn(block)
link(p)
p

}
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However, spawn and link have to be executed atomically. If this was not
the case, the newly spawned actor (defined by block) could be killed (e.g.
by an exit signal), before the spawning actor evaluates link. Thus, the
spawning actor could receive two different exit messages depending on
whether the spawned actor was killed between spawn and link (reason
“invalid PID”) or after the execution of spawnLink.

Removing Links

By evaluating unlink(p) an actor q removes its link to p (if any). The link
is removed bidirectionally, i.e. p also removes its link to q.

To ensure that exit messages are not sent to nonexistent actors, all links are
removed if an actor terminates.

Runtime Support for Links

Establishing a link between a source actor and a target actor proceeds as
follows: First, the local NetKernel registers an unidirectional link between
the (local) source and the target (note that an actor evaluating link(p) for
some PID p is necessarily local to the underlying NetKernel). Basically
it maintains a hash table which maps local actors to sets of, possibly re-
mote, PIDs. If the target actor is local, the NetKernel can directly create a
bidirectional link (which is represented by two unidirectional links). Oth-
erwise, it sends a system message to the remote NetKernel, asking for an
additional unidirectional link. The unlinking procedure is analogous.

More interesting is the handling of terminating actors in the face of actor
links. Whenever it is possible for the runtime system to detect if an actor
terminates, it acts as if the actor had called exit(reason) for some symbol
reason. For example, the start and receive methods catch all exceptions,
so they can call exit supplying some reason depending on the exception
as an argument.

Every call to exit(reason) is passed down to the NetKernel. It basically
traverses the graph of linked actors in depth-first order, thereby coloring
nodes, so as to detect cycles. For each visited PID it proceeds as follows:
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For local actors (i.e. whose node is equal to the node of the NetKernel),
we first check if it has overridden the default behavior. If it is marked as
“trapping exits”, the exit signal is converted to a normal message which is
simply send to the actor. Otherwise, if reason equals ’normal the exit sig-
nal is ignored (by default, exit signals with reason ’normal only cause the
original actor to terminate). For all other values of reason, runtime infor-
mation about the actor is removed from internal tables of the NetKernel,
and exit is called on all transitively linked actors.

If the visited PID denotes a non-local actor, a special system message is
sent to its remote NetKernel. As all (bidirectional) links are removed on
termination, this message also contains the source of the link.

4.4.2 Asynchronous Exceptions

The basic idea of asynchronous exceptions is to be able to handle excep-
tions that are thrown inside a concurrent process. That is, for two different
processes A and B, A shall be able to handle an exception which is thrown
in B but not handled by B. Programming models which lack such a mech-
anism can be hard to use. In the following we devise an exception model
suitable for the case when concurrent processes are actors.

Once actors are running, interaction between them is basically limited to
sending messages (receive is a local operation on the private mailbox),
and establishing and removing links (except for local actors which, ad-
ditionally, are normal objects). The exception model we describe in the
following is consistent with this model of interaction. It merely adds the
ability to install exception handlers when spawning new actors.

For example, a supervising actor might want to restart its slave when it
terminates because of an unhandled exception:

def startSlave() =
trySpawn { a =>
a.doWork()

}
acatch {
case t: Throwable => startSlave()

}
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trySpawn is a method of class Actor which can be used like a new kind of
statement2. Note that trySpawn is non-blocking. Therefore, the exception
handler “goes out of scope” before an exception is thrown.

The semantics of trySpawn

When an exception is thrown, the nearest dynamically enclosing exception
handler is located. Exception handlers are arguments of acatch. Because
trySpawn may be used to spawn new actors on remote machines, an excep-
tion may be thrown on a different machine than where the corresponding
exception handler is installed. Thus, exception handlers are referred to
using exception handler descriptors.

Each actor maintains a stack of exception handler descriptors. Initially,
this stack is empty. Actors which are spawned by a “parent” actor, inherit
their parent’s top of the stack (if any). Evaluating trySpawn creates a new
descriptor which is associated with the specified handler and pushed onto
the stack. Each handler contains (a copy of) their parent’s descriptor (if
any). Consequently, the nearest dynamically enclosing exception handler
descriptor is always the top of the stack.

Handling an exception, using the data structures described above, then
proceeds as follows: If the stack of exception handler descriptors is empty,
the actor terminates abnormally by calling exit (providing a string repre-
sentation of the exception as an argument). This way, exceptions are inte-
grated with actor links. Otherwise, we obtain the descriptor of the nearest
dynamically enclosing exception handler which is the top of the stack. If
the corresponding handler is local, it is simply executed. Otherwise, the
NetKernel sends a special message to the remote node where the handler
is installed.

2We achieve this by combining two basic language properties of Scala: First, any
method may be used as an infix or postfix operator. Thus, trySpawn {...} acatch {...}
is short for trySpawn({...}).acatch({...}). That is, trySpawn({...}) creates an object
with a method acatch. Second, closures are constructed automatically depending on the
expected type. In the example, { a => a.doWork() } is automatically converted into a
closure of type (RemoteActor => unit).
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4.5 Type-Safe Serialization

Messages are usually represented as object structures on the heap. Before
they can be sent over the network, their object graph needs to be serial-
ized (or pickled, or marshalled) into a stream of bytes. Many programming
languages and runtime environments provide general serialization and
deserialization mechanisms. Usually, these serialization mechanisms rely
on introspection (or reflection), i.e. the ability to inspect the contents and
structure of object types at run-time. For instance, the Java programming
language provides a standard API for object serialization which depends
on reflection. Not every Java virtual machine (JVM) supports reflection:
The KVM [SMb], a Java virtual machine suited for resource-constrained
devices, does not include a reflection framework because the additional
space requirements would be prohibitive (the KVM is suitable for devices
with a total memory budget of no more than a few hundred kilobytes).

As the implementation of our distributed programming model shall be
suited for mobile and resource-constrained devices possibly running re-
stricted JVMs, such as the KVM, we want to avoid a general reflective
mechanism that crucially depends on the underlying virtual machine. In-
stead, we provide a combinator library for constructing picklers for user-
defined data types. A pickler is a pair consisting of a pickling and an
unpickling function.

As outlined by Elsman [Els04], pickler combinators have the following
desirable properties:

1. Compactness of pickled data due to type-specialization. The type of
the pickler contains all the information necessary to know how to
pickle and unpickle values of a special type. Thus, no type informa-
tion has to be emitted during pickling.

2. Compactness of pickled data due to structure sharing. Existing pick-
lers can be wrapped in a meta combinator which pickles multiple
copies of the same object structure only once. Unpickling of values
pickled using structure sharing leads to heap compaction.

3. Type safety. The pickling function of a pickler for type t can only be
applied to values of type t. Likewise, the unpickling function of a
pickler for type t can only return values of type t.
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4. No need for runtime type tags. Since the library is written in Scala,
it is possible to define picklers specialized for every possible Scala
type. No runtime type tags are necessary, as picklers are statically
defined.

The user has to provide picklers for every type t, such that there may exist
a value of type t which may be sent to a remote node. With our combina-
tor library we strive to make the construction of user-defined picklers as
simple as possible.

In the following, we first want to present the library interface. By means
of small examples we show how to use combinators provided in the li-
brary. Then, we describe our implementation in Scala, focusing on the
meta combinator for structure sharing. Finally, we describe how the com-
binator library is used inside the runtime system.

4.5.1 Library Interface

The combinators provided in the library construct picklers of type PU[t].
A pickler of type PU[t] encapsulates both pickling and unpickling func-
tions in a single value. These functions are not directly used by an appli-
cation. Instead, two polymorphic functions pickle and unpickle provide
a high-level interface to them. They have the following signatures:

def pickle[t](p: PU[t], a: t): String
def unpickle[t](p: PU[t], stream: String): t

To keep the presented code simple, for now our picklers read and write
strings. In our runtime system, streams are used, instead (see 4.5.3).

Figure 4.1 shows the function signatures of our library combinators. There
are basically two groups of combinators: (1) primitive combinators (for
types such as int and string), and (2) pickler constructors for tuple types
(pair, triple and quad), lists (list), etc.

Finally, there exist two special pickler constructors which not only con-
sume picklers, but also functions: wrap consumes two functions for pre-
and post-processing, respectively. data consumes a tagging function used
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def unit: PU[unit]
def int: PU[int]
def bool: PU[boolean]
def char: PU[char]
def string: PU[String]

def pair[a, b](PU[a], PU[b]): PU[Pair[a, b]]
def triple[a, b, c](PU[a], PU[b], PU[c]): PU[Triple[a, b, c]]
def quad[a, b, c, d](PU[a], PU[b], PU[c], PU[d]): PU[Tuple4[a, b, c, d]]
def list[a](PU[a]): PU[List[a]]
def option[a](PU[a]): PU[Option[a]]
def wrap[a,b](a => b, b => a, PU[a]): PU[b]
def data[a](a => int, List[() => PU[a]]): PU[a]

Figure 4.1: The pickler interface.

to identify disjoint subsets of a type. The former combinator is suited for
pickling record-style types (without variants). The latter handles recursive
algebraic data types.

For example, a pickler for integer-pair lists is constructed by combining
the int, pair and list combinators:

val puPairs = list(pair(int, int))

Suppose we want to pickle values of the following Scala type:

case class Person(name: String, age: int)

Pickling pairs of strings and ints is easy (by using the combinator
pair(string, int)). But, how do we make sure our pickler for Person
refuses to pickle a Cat("Billy", 8) which can be represented similarly?
For this, we use the wrap combinator. It takes two conversion functions
which make sure values are deconstructed and reconstructed in a type-
safe way:

val personPU = wrap(p: Pair[String,int] => Person(p._1, p._2),
p: Person => Pair(p.name, p.age),
pair(string, int))
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As personPU has type PU[Person] it is impossible to apply it to values of
the wrong type.

Picklers for algebraic data types are constructed using the data combi-
nator. Only data types that are not mutually recursive with other data
types are supported. For any number of mutually recursive data types it
is possible to define a suitable combinator, though (see [Els04] for exam-
ple). Given an algebraic data type t with n case class constructors C_1, . . . ,
C_n, a pickler of type PU[t] may be constructed using the data combina-
tor, passing (1) a function mapping a value constructed using C_i to the
integer i (0 <= i < n) and (2) a list of functions f0, . . . , fn−1, where each
function fi has type () => PU[C_i].

So, for instance, consider a pickler for terms in the untyped lambda calcu-
lus:

abstract class Term
case class Var(s: String) extends Term
case class Lam(s: String, t: Term) extends Term
case class App(t1: Term, t2: Term) extends Term

def varPU: PU[Term] =
wrap(Var,

t: Term => t match { case Var(x) => x },
string)

def lamPU: PU[Term] =
wrap(p: Pair[String, Term] => Lam(p._1, p._2),

t: Term => t match { case Lam(s, t) => Pair(s, t) },
pair(string, termPU))

def appPU: PU[Term] =
wrap(p: Pair[Term, Term] => App(p._1, p._2),

t: Term => t match { case App(t1, t2) => Pair(t1, t2) },
pair(termPU, termPU))

def termPU: PU[Term] = data(t: Term => t match
{ case Var(_) => 0; case Lam(_,_) => 1; case App(_,_) => 2 },
List(() => varPU, () => lamPU, () => appPU))
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4.5.2 Implementation

As mentioned before, picklers aggregate a pair of functions, for pickling
and unpickling, respectively, in a single value. A pickler of type PU[t] can
pickle and unpickle values of type t. The abstract type PU[t] is given by
the following definitions:

abstract class PU[t] {
def appP(a: t, state: PicklerState): PicklerState
def appU(state: UnPicklerState): Pair[t, UnPicklerState]

}
abstract class PicklerState(val stream: OutStream,

val dict: PicklerEnv)
abstract class UnPicklerState(val stream: InStream,

val dict: UnPicklerEnv)
abstract class PicklerEnv extends HashMap[Any, int]
abstract class UnPicklerEnv extends HashMap[int, Any]

The pickling function appP consumes a value of type t, thereby transform-
ing the state of the pickler. Conversely, the unpickling function appU pro-
duces a value of type t, and transforms the unpickler state in the process.
Besides a stream of bytes produced so far, the state manipulated during
pickling also includes a pickler environment. The pickler environment is
used for structure sharing (see 4.5.2). Similarly, the unpickling function
needs to maintain an unpickler environment.

Now, to the picklers themselves. Picklers for base types such as integer
simply have to implement the pickling and unpickling functions, thereby
producing or consuming bytes. We leave the handling of environments to
a special share meta combinator.

As an example, consider a pickler for characters:

def char: PU[char] = new PU[char] {
def appP(b: char, s: PicklerState): PicklerState = {

s.stream.write(b)
s

}
def appU(s: UnPicklerState): Pair[char, UnPicklerState] =

Pair(s.stream.readChar, s);
}
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Picklers for integers and booleans are implemented similarly. Picklers for
strings are implemented as picklers for character lists. However, before
we can explain the pickling of lists, we need to introduce two basic com-
binators.

The first, lift, produces a pickler which can only pickle and unpickle a
single value, leaving all state unchanged:

def lift[t](x: t): PU[t] = new PU[t] {
def appP(a: t, state: PicklerState): PicklerState = state;
def appU(state: UnPicklerState) = Pair(x, state);

}

At first sight, this pickler might seem to be useless. We will see, however,
that it is needed in the definition of picklers for tuple types.

The second basic combinator, sequ, encapsulates sequential pickling and
unpickling:

def sequ[t, u](f: u => t, pa: PU[t], k: t => PU[u]) = new PU[u] {
def appP(b: u, s: PicklerState): PicklerState = {
val a = f(b)
val sPrime = pa.appP(a, s)
val pb = k(a)
pb.appP(b, sPrime)

}
def appU(s: UnPicklerState): Pair[u, UnPicklerState] = {
val resPa = pa.appU(s)
val a = resPa._1
val sPrime = resPa._2
val pb = k(a)
pb.appU(sPrime)

}
}

The basic idea is, that a value b of type u is pickled by sequentially ap-
plying two picklers pa and pb, where pb depends on b. First, a projection
function f is applied to the value to be pickled. The resulting value is pick-
led using the first pickler that is supplied as an argument, i.e. pa. Using the
projected value, a pickler pb is obtained which is able to pickle the original
value. Thus, the projected value is “only” pickled to provide enough in-
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formation in the byte stream so that the correct combinator for unpickling
the original value can be selected.

To demonstrate the sequ combinator, consider the definition of a combina-
tor for pairs:

def pair[a, b](pa: PU[a], pb: PU[b]): PU[Pair[a, b]] =
sequ(fst, pa, x => sequ(snd, pb, y => lift(Pair(x, y))));

The fst and snd functions are projections which map a pair to its first or
second component, respectively. So, to pickle a pair p of type Pair[a,b],
we first apply fst to p, thereby projecting out the part that we can pickle
using pa, i.e. the first component of p, namely x. Knowing x, the entire pair
p can be pickled using the following pickler:

sequ(snd, pb, y => lift(Pair(x, y)))

How does this last pickler pickle the entire pair p? It only pickles y, the
second component of p, because it already knows x. Thus, after having
pickled y, nothing remains to be done. Therefore we use lift which re-
sults in a no-op. Conversely, when unpickling, lift(Pair(x, y)) simply
returns Pair(x, y). It does not have to read from the stream, as the previ-
ous picklers already determined x and y.

The wrap combinator pickles values of type b by pre- and post-processing
them using functions of type b => a and a => b, and using a pickler for a
to do the actual pickling and unpickling:

def wrap[a, b](i: a => b, j: b => a, pa: PU[a]): PU[b] =
sequ(j, pa, x: a => lift(i(x)));

Now we are ready to introduce picklers for lists. Lists are pickled by using
the sequential combinator sequ to first pickle the list length (using nat, a
pickler for natural numbers), and then a list of fixed length:

def list[a](pa: PU[a]): PU[List[a]] =
sequ(l: List[a] => l.length, nat, fixedList(pa));

Note that fixedList(pa) is a function of type int => PU[List[a]].
Again, sequ expresses the fact that the special “fixedList pickler” used
to pickle the list depends on the result of applying the projection function
(l: List[a])=>l.length to the argument list.
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Finally, fixedList is a family of picklers which pickle lists of known length
as pairs:

def fixedList[a](pa: PU[a])(n: int): PU[List[a]] = {
def pairToList(p: Pair[a,List[a]]): List[a] =
p._1 :: p._2;

def listToPair(l: List[a]): Pair[a,List[a]] =
l match { case x :: xs => Pair(x, xs) }

if (n == 0) lift(Nil)
else
wrap(pairToList, listToPair, pair(pa, fixedList(pa)(n-1)))

}

An important application of the list combinator is pickling of strings as
character lists:

def string: PU[String] =
wrap(List.toString, (str: String)=>str.toCharArray().toList, list(char));

Single Recursive Data Types

Compared to simple record data types, algebraic data types pose an addi-
tional problem: During pickling and unpickling the used case class con-
structors have to be recorded in the byte stream, so they can be applied in
the correct order when reconstructing values. This is done using a tagging
function tag which assigns distinct integers to the different alternatives.
Using the sequential combinator sequ, values are pickled after their tags:

def data[a](tag: a => int, ps: List[() => PU[a]]): PU[a] =
sequ(tag, int, x: int => ps.apply(x)());

Each function of type ()=>PU[s] in the list we provide to the data combi-
nator yields a pickler of type PU[s] when applied to the empty parameter
list. This lazy evaluation is necessary because of the recursive construction
of picklers. Consider our example of a pickler for terms in the untyped
lambda calculus: If the picklers where eagerly constructed, termPU would
construct a lamPU which would construct a termPU etc. ad infinitum.
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Structure Sharing

In this section we describe a meta combinator which makes existing pick-
lers aware of shared structures in the values to be pickled.

For example, when pickling the lambda term kki, the definition of k
should be encoded only once:

val x = Var("x")
val i = Lam("x", x)
val k = Lam("x", Lam("y", x))
val kki = App(k, App(k, i))

The share combinator uses environment information to remember which
values have been pickled at which location in the byte stream. As pickler
and unpickler environments are threaded through all combinators, this
information gets not destroyed by existing picklers. The share combinator
takes any pickler as argument and produces a pickler of the same type:

def share[a](pa: PU[a]): PU[a]

The basic idea of the share combinator is the following: When pickling
a value a, its location l in the byte stream is recorded in the pickler envi-
ronment. Whenever a value equal to a is pickled, only a reference to the
location of a is written to the output stream.

Figure 4.2 shows the implementation of the share meta combinator. Pick-
ling a value v using structure sharing proceeds as follows: First, we check,
if there is some value equal to v associated with a location l in the pick-
ler environment. In this case, we write a “Ref” tag to the output stream
together with l. Otherwise, a “Def” tag is written to the output stream.
We record the current location of the output stream, pickle the value “nor-
mally”, and add a mapping from v to l to the pickler environment.

Unpickling is simply the inverse operation: First, we read a tag. If we
read a “Def” tag, a new value is about to be defined. Thus, we record
the location l of the input stream. Then, the value is unpickled using the
argument pickler. Finally, we add an entry to the unpickler environment
mapping l to v. If the tag we read in the first step was a “Ref” tag, then
we know that the following integer denotes a stream location. We use it to
look up the resulting value in the unpickler environment.



58 CHAPTER 4. RUNTIME SYSTEM

def share[a](pa: PU[a]): PU[a] = new PU[a] {
def appP(v: a, state: PicklerState): PicklerState = {
val pe = state.dict
pe.get(v) match {

case None =>
val sPrime = refDef.appP(Def(), state.stream)
val l = pe.nextLoc()
val sPrimePrime = pa.appP(v, new PicklerState(sPrime, pe))
pe.update(v, l)
return sPrimePrime

case Some(l) =>
val sPrime = refDef.appP(Ref(), state.stream)
return new PicklerState(nat.appP(l, sPrime), pe)

}
}
def appU(state: UnPicklerState): Pair[a, UnPicklerState] = {
val upe = state.dict
val res = refDef.appU(state.stream)
res._1 match {

case Def() =>
val l = upe.nextLoc
val res2 = pa.appU(new UnPicklerState(res._2, upe))
upe.update(l, res2._1)
return res2

case Ref() =>
val res2 = nat.appU(res._2)
upe.get(res2._1) match {

case None =>
error("invalid unpickler environment")
return null

case Some(v) =>
return Pair(v.asInstanceOf[a],

new UnPicklerState(res2._2, upe))
}

}
}

}

Figure 4.2: A sharing combinator.
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1 02 App(
1 01 1 01 x Lam("x",
1 01 1 01 y Lam("y",
1 00 0 43 Var("x"))),
1 02 App(
0 42 k,
1 01 0 43 Lam("x",
0 46 x)))

Figure 4.3: Sharing example.

For example, we can apply the share combinator to our pickler for lambda
terms:

def sharedTermPU: PU[Term] =
share(data(t: Term => t match {

case Var(_) => 0
case Lam(_,_) => 1
case App(_,_) => 2 },

List(() => varPU, () => lamPU, () => appPU)))

Figure 4.3 presents an application of it to kki. The first and third columns
(if applicable) show the tags used to track definitions and references, “1”
denoting a definition and “0” denoting a reference. Note that the first
definition (the top-level application term) is assigned stream location 41
hexadecimal (we allocate locations starting from 64, so they are easily rec-
ognized in the pickled data). The definition of the lambda term starting
in the second line gets stream location 42 assigned. The variable x, on the
same line, gets location 43 and so on. Note how both definitions of terms
k and x are shared in the pickled data.

Using our structure sharing combinator, it is very easy to introduce a string
table. In fact, the preceding example already made use of it (string "x" is
defined at stream location 43 which appears twice in the pickled data).
The original definition of our string pickler (see above) merely has to be
surrounded by an application of share:

def string: PU[String] =
share(wrap(List.toString,

str: String => str.toCharArray().toList,
list(char)))
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4.5.3 Integration into the Runtime System

In this section we describe the integration of our pickler combinator li-
brary into the runtime system. Every message that needs to be sent to a
remote node has to be serialized before it can be transmitted. The service
layer provides a low-level function which handles transmission of strings
to remote nodes. Thus, serialization of messages (object structures) into
strings has to be done in the layer above, the NetKernel.

However, as we do not provide length information in the pickled data–it is
included implicitly in the type of the pickler–deserialization has to be done
right when the data gets read from the stream. The resulting message then
gets sent to the NetKernel which unpacks it, possibly involving additional
deserialization steps.

A serializer provides the following interface:

abstract class Serializer(kernel: NetKernel) {
def serialize(o: AnyRef, w: Writer): unit
def deserialize(r: Reader): AnyRef
def pid: PU[Pid]

}

Serialization of a value o of type AnyRef proceeds by looking up a suitable
pickler repr in an internal table which maps type names to picklers. To
make sure the same pickler is selected at deserialization time, we start
with encoding the type name (as all bytes are received from a stream, the
length is encoded first). Then, we use the appP function of repr to write
pickled data to the output stream.

Conversely, deserialization proceeds by first reading a type name from
the input stream and looking up the pickler in an internal table. Actual
unpickling is done by applying the appU function to the input stream. Even
though the unpickled value has type AnyRef, no casts are necessary as the
NetKernel reconstructs type information using pattern matching.

Picklers for PIDs are handled in a special way. Remember that PIDs need a
reference to the (local) NetKernel in order to support location-transparent
operations. This reference needs to be adjusted whenever a PID gets dese-
rialized on a remote node. In the process, we also look up a direct reference
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to the PID’s actor if possible to support fast local sends:

def pid = new PU[Pid] {
val nodeIntPU = wrap(p: Pair[TcpNode,int] =>

TcpPid(p._1, p._2, kernel,
if (p._1 == kernel.node)
kernel.getLocalRef(p._2)

else null),
t: TcpPid => Pair(t.node, t.localId),
pair(tcpNodePU, int));

def appP(pid: Pid, state: OutStream): OutStream =
pid match {

case tpid: TcpPid =>
nodeIntPU.appP(tpid, state)

case other =>
error("TcpPid expected")

};
def appU(state: InStream): Pair[Pid,InStream] =
nodeIntPU.appU(state);

}





Chapter 5

Evaluation

In this chapter we evaluate our event-based implementation of actors. In
the first part, we carry out experiments to determine the performance of
basic actor operations. In the second part, we evaluate our approach with
respect to ease of programming. For this, we report on our experience in
implementing a distributed auction service as a case study.

5.1 Performance

In this section we want to examine crucial performance properties of our
event-based implementation of actors. In the process, we compare bench-
mark execution times of event-based actors with a state-of-the-art Java-
based actor language, as well as with a thread-based version of our library.
In some cases, we show the performance of straight-forward implementa-
tions using threads and synchronized data structures. Where possible we
try to use benchmarks that were published before. In addition to execu-
tion time we are also interested in scalability with respect to the number of
simultaneously active actors each system can handle. This type of scala-
bility test will also tell us important facts about the memory consumption
of actors in each system.

63
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5.1.1 Experimental Setup

We present results from three different experimental settings:

Armstrong Test evaluates blocking operations in a queue-based application. We
compare the execution times of three equivalent actor-based imple-
mentations, each written using a different actor language or library.
In the process, we also examine how many actors each system can
handle (for a given maximum heap size). We also show the perfor-
mance of a naïve thread-based implementation.

Mergesort compares a thread-based implementation of our actor library (each
actor executes on its own thread) with our event-driven implemen-
tation. We consider a concurrent implementation of the mergesort
algorithm for sorting a linked list of long integers. To each sublist we
assign an actor which is responsible for sorting it. For each list two
more actors are created that (recursively) sort their respective sub-
lists. The sorted sublists are sent back (as messages) to the respective
parent actor which merges them.

Multicast Protocols compare the performance of basic actor operations in SALSA and
event-based actors. We use three variations of multicast protocols
which have been used to evaluate the performance of a previous ver-
sion of SALSA, a state-of-the-art Java-based actor language [VA01].
However, we only compare with the latest version available at the
time of this writing (SALSA 1.0.2). The used benchmarks are in-
cluded in the SALSA distribution1.

5.1.2 Armstrong Test

In the Armstrong test2 we measure the throughput of blocking operations
in a queue-based application. The application is structured as a ring of
n producers/consumers with a shared queue between each of them. Ini-
tially, k of these queues contain tokens and the others are empty. Each

1Available at http://www.cs.rpi.edu/research/groups/wwc/salsa/index.html.
2named after Joe Armstrong, the creator of Erlang, who posed a similar benchmark as

a challenge for concurrent programming languages at the Lightweight Languages Work-
shop 2002, MIT.
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Figure 5.1: Armstrong test: Configuration of the queue-based application.

producer/consumer loops removing an item from the queue on its right
and placing it in the queue on its left. Figure 5.1 illustrates this configura-
tion.

We chose to include the Armstrong challenge in our performance evalua-
tion for several reasons: First, all actors are created at once, allowing us to
measure start-up time of the ring. That way, we can determine the actor
creation time for each system. Second, it easy to test scalability–increase
the ring size until the system crashes. Third, as blocking operations dom-
inate, we expect to be able to measure overhead of context switches. We
do not claim that the Armstrong test is a realistic application workload,
though.

The following tests were run on a 1.60GHz Intel Pentium M processor
with 512 MB memory, running Sun’s Java HotSpot Client VM 1.5.0 under
Linux 2.6.12. We set the JVM’s maximum heap size to 256 MB to provide
for sufficient physical memory to avoid any disk activity. In each case we
took the median of 5 runs.

The execution times of three equivalent actor-based implementations writ-
ten using (1) our event-based actor library, (2) a thread-based version of a
similar library, and (3) SALSA [VA01], a state-of-the-art Java-based actor
library, respectively, are compared.
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Figure 5.2: Start-up time.
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Figure 5.2 shows start-up times of the ring for up to 2000 processes (note
that both scales are logarithmic). For event-based actors and the naïve
thread-based implementation, start-up time is basically constant. Event-
based actors are about 60% slower than pure threads. For thread-based ac-
tors, start-up time increases exponentially when the number of processes
approaches a thousand. With 4000 processes the JVM crashes because of
exhaustion of maximum heap size. Using SALSA, the VM was unable to
create 2000 processes. As each actor has a thread-based state object asso-
ciated with it, the VM is unable to handle stack space requirements at this
point. In contrast, using event-based actors the ring can be operated with
up to 310000 processes that are created in about 10 seconds. Note that,
because in the actor-based implementations every queue is an actor, the
number of simultaneously active actors is actually two times the number
of processes.

Looking at the generated Java code shows that SALSA spends a lot of time
setting up actors for remote communication (creating locality descriptors,
name table management, etc.), whereas in our case, an actor must an-
nounce explicitly that it wants to participate in remote communications
(by calling alive()). Creation of locality descriptors and name table man-
agement can be delayed up to this point. Also, when an actor is created
in SALSA, it sends itself a special “construct” message which takes addi-
tional time.

In summary, event-based actors provide an alternative to SALSA with in-
expensive start-up times. Moreover, our event-based implementation can
handle a number of actors two orders of magnitude higher than SALSA.

Figure 5.3 shows the number of token passes per second depending on
the ring size. We chose a logarithmic scale for the number of processes
to better depict effects which are confined to a high and strongly increas-
ing number of processes. For up to 1000 processes, increase in through-
put for event-based actors compared to pure threads averages 22%. As
blocking operations clearly dominate, overhead of threads is likely to stem
from context switches and contention for locks. Interestingly, overhead
vanishes for a small number of processes (10 and 20 processes, respec-
tively). This behavior suggests that contention is not an issue in this case,
as uncontended lock management is optimized in Sun’s HotSpot VM 1.5.
Contention for locks becomes significant at about 2000 processes. Finally,
when the number of processes reaches 4000, the threads’ time is consumed
managing the shared buffers rather than exchanging tokens through them.
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At this point throughput of event-based actors is about 3 times higher.

For SALSA, throughput is about two orders of magnitude lower compared
to event-based actors. The average for 10 to 1000 processes amounts to
only 1700 token passes per second. Looking at the generated Java source
code revealed that in SALSA every message send involves a reflective
method call. Using a simple benchmark published at IBM’s “developer-
Works” web site3, we found reflective method calls to be about 30 times
slower than JIT-compiled method calls on our testing machine.

For thread-based actors, throughput is almost constant for up to 200 pro-
cesses (on average about 38000 token passes per second). At 500 processes
it is already less than half of that (15772 token passes per second). Similar
to pure threads, throughput breaks in for 2000 processes (only 5426 token
passes per second). Again, contended locks and context switching over-
head are likely to cause this behavior. The VM is unable to create 4000
processes, because it runs out of memory.

5.1.3 Mergesort

Figure 5.4 compares the performance of an actor-based mergesort imple-
mentation using our event-based library with a thread-based actor library.
Note, that we spawn two more actors whenever the (sub-)list to be sorted
has a length greater than one. For best performance results, a list with no
more than, say, 256 elements would not be splitted but instead sorted with
a sequential algorithm. We do not go this path because we mainly want to
test how our implementation performs with a large number of actors.

All tests were run on an Intel Pentium 4 workstation (3 GHz hyper-
threaded core), running Sun’s Java HotSpot Client VM 1.5.0 under Linux
2.6.11. In each case we took the median of 3 test runs. In summary, our
results with an event-driven implementation outperform an equivalent
thread-based version.

For list sizes of 2048 or 4096 elements event-based actors running on 2
worker threads are about three times faster. As the stack space require-

3See article “Java programming dynamics, Part 2: Introducing reflection” at
http://www-128.ibm.com/developerworks/library/j-dyn0603/.
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len thr sgl 1wt 2wt S(thr/2wt)
1024 1141 504 578 479 2.382
2048 3809 1197 1289 1193 3.193
4096 10792 3928 4132 3817 2.827
8192 (1) 14751 15494 14444 –

Figure 5.4: Performance of the mergesort test with varying list lengths. In
each case we record the sorting time in ms. Column S(thr/2wt) lists the
speedups between the thread-based version and the event-driven version
with 2 worker threads.

ment at this point should not pose a problem to the operating system, we
suppose that context switches between the actors’ threads, which are espe-
cially frequent when lists are small, contribute to the difference in perfor-
mance. When trying to run our thread-based mergesort benchmark with
a list of 8192 elements the virtual machine crashed (1). As in this case
the number of threads approaches several thousand (for a list of 8192 ele-
ments, theoretically there might be 16383 threads active simultaneously),
the virtual machine is unable to create the requested number of native
threads due to large stack space requirements. For a single thread the
overhead of worker threads is less than 15% when sorting a list of 1024
elements. For larger lists the overhead is about 5%.

5.1.4 Multicast

In this section we use three variations of multicast protocols to compare
the performance of basic actor operations in SALSA and event-based ac-
tors. For this, we ported the benchmarks included in the SALSA distribu-
tion to Scala using our actor library.

In the first multicast benchmark, a director sends a simple message to a
number of actors. Messages are sent concurrently by spawning a separate
actor for each message to be sent. The actors participating in the cast finish
execution immediately after receiving their message.

Figure 5.5 shows the time (in milliseconds) needed for the multicast vary-
ing the number of receiving actors. For our actor library we include mea-
surements for single-threaded actors as well as for scheduled actors (using
a simple worker thread allocator).
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Figure 5.6: Acknowledged multicast.

Scheduling overhead varies between 114% and 128% for 10 or 100 actors,
respectively. Note, however, that the single multicast scenario might well
be the worst case: As all messages are sent at once, almost none of the
worker threads allocated by the scheduler are being reused. Thus, thread
creation time dominates the scheduling overhead. For up to 50 actors,
SALSA is about twice as fast as single-threaded event-based actors. How-
ever, the curves for event-based actors tend to be less steep, testifying to
better scalability.

In the acknowledged multicast, depicted in figure 5.6, receipt and process-
ing of a message by the participating actors is acknowledged to the direc-
tor of the cast. In this case, the scheduling overhead of event-based actors
averages 33%. As not all messages are exchanged at once, the scheduler
can reuse worker threads.

Group knowledge multicast, depicted in figure 5.7 adds to this interaction
an acknowledgment of the director to the participating actors that all ac-
tors acknowledged the receipt. As expected, scheduling overhead is even
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smaller in this case, and averages about 28%. For both, acknowledged and
group knowledge multicast, event-based actors are between 2 and about
5.5 times faster than SALSA.

Performance Summary

We presented experimental results obtained using three different classes
of benchmarks. Using a queue-based application we found start-up times
of event-based actors to be about 60% slower then Java threads in a worst
case scenario. Event-based actors support a number of simultaneously ac-
tive actors which is two orders of magnitude higher compared to SALSA.
Message passing is also much faster: Event-based actors are between 2
and 5.5 times (multicast benchmarks), and over 50 times (Armstrong test)
faster than SALSA. Naïve thread-based implementations of our bench-
marks perform surprisingly well. However, for high numbers of threads
(about 2000 in the Armstrong test), lock contention causes performance to
break in. Also, the maximum number of threads is limited due to their
memory consumption.

5.2 Case Study

In this section we report on our experiences with implementing a dis-
tributed auction service using our event-based actors. In the process we
examine typical programming patterns. We will see, that crucial parts of
the code are written in a blocking-style code, thereby avoiding the draw-
backs of inversion of control.

5.2.1 An Electronic Auction Service

Our electronic auction service mediates between clients interested in sell-
ing items and clients interested in purchasing them. For this, a seller cre-
ates an instance of an auction actor, sending its PID to interested clients.
Clients interested in purchasing items do not interact directly with sellers.
Instead, the auction process coordinates all bidding.
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Figure 5.8 shows the implementation of the auction actor. The actor’s
behavior is defined by its run method. Basically, it repeatedly reacts to
messages of type Offer and Inquire, until the auction is closed which
is signalled by the special TIMEOUT() message. Note that after closing
time, the auction stays alive for a period of time, defined by a constant
timeToShutdown, to reply to late clients that the auction is finished.

At some point, clients interested in purchasing an item are interested in re-
ceiving the details of a specific auction which are represented by instances
of the following case class:

case class AuctionDetails(seller: Pid,
descr: String,
minBid: int,
closingDate: long)

Depending on whether the client is interested or not, it may engage into
the bidding process. This particular part of the code is depicted in figure
5.9. Note how this entire non-trivial interaction is captured by an intuitive,
thread-like sequence of statements. State transitions (e.g. from having
received the auction details to waiting for a status message) are explicit in
the control flow. Moreover, all state is kept in local variables.

Portability

Currently, there exist two prototype implementations of our runtime sys-
tem, using TCP sockets and the JXTA peer-to-peer framework, respec-
tively. The presented electronic auction service runs on both platforms.
We implemented a simple driver which creates two clients bidding for a
sample item. The bidding process can be controlled through a GUI.

In summary, our case study shows that, using our library, non-trivial, dis-
tributed actor-based applications can be implemented in a portable man-
ner. Moreover, we showed how typical application-level code can heav-
ily benefit from the intuitive, blocking-style code which is supported by
our event-based actors. In an ongoing effort we implement a distributed,
fault-tolerant data base as an additional case study. Preliminary results are
encouraging.
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class RemoteAuction(seller: Pid,
minBid: int,
closing: long) extends RemoteActor {

val timeToShutdown = 36000000; //msec
val bidIncrement = 10;
var maxBid = minBid - bidIncrement;
var maxBidder: Pid = null;

override def run: unit = {
val span = closing - new Date().getTime();
receiveWithin(span) {

case Offer(bid, client) =>
if (bid >= maxBid + bidIncrement) {

if (maxBid >= minBid) maxBidder ! BeatenOffer(bid);
maxBid = bid; maxBidder = client; client ! BestOffer;

} else {
client ! BeatenOffer(maxBid);

}
run

case Inquire(client) =>
client ! Status(maxBid);
run

case TIMEOUT() =>
if (maxBid >= minBid) {

val reply = AuctionConcluded(seller, maxBidder);
maxBidder ! reply; seller ! reply;

} else {
seller ! AuctionFailed();

}
receiveWithin(timeToShutdown) {

case Offer(_, client) => client ! AuctionOver()
case TIMEOUT() => // do nothing

}
}

}
}

Figure 5.8: An auction actor.
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receive {
case auction: Pid =>
receive {

case AuctionDetails(_, descr, minBid, _) =>
if (interested(descr, minBid) {

auction ! Inquire(self)
receive {
case Status(maxBid) =>

makeOffers(maxBid, auction)
}

}
else

selectNewItem()
}

}

Figure 5.9: Code snippet showing how client actors receive the details of
an auction.





Chapter 6

Discussion

6.1 Call/Return Semantics

Calls to receive are restricted in that they never return normally. What if
an actor wants to return a value after it received a message? Sometimes
we are not interested in transmitting explicit information in a return value
but merely in synchronous message sends. In this case the receiving actor
also needs to send back the usually implicit information that it received
the message. Therefore, we collectively refer to the two cases depicted
above (synchronous sends returning a value or not) as call/return semantics
of message sends.

There are basically three ways how call/return semantics can be imple-
mented using non-returning receives:

1. Together with the message the sender passes a continuation function
which contains the remaining computation of the sender. The re-
ceiver calls this function at every return point in the program. Return
values can be passed as arguments to the continuation function.

2. Together with the message the sender passes a customer. The passed
customer is an actor which is supposed to receive a message which
optionally contains return values. Often the customer coincides with
the sender. In this case, a send with call/return semantics looks like
this:
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target ! Message(self)
receive {

case Reply(o) => ...
}

3. Return values are passed through shared memory, i.e. objects residing
on the (shared) heap. For simplicity, we assume that a single value is
to be returned through a single object which we call the “container”.
Sender and receiver have to agree on the container used to pass the
return value. For this, the sender may simply pass the container to-
gether with the message. Following the send it can retrieve the re-
turn value from the container:

target ! Message(o); val x = o.get(); ...

The receiver simply puts its return value into the container:

receive {
case Message(o) => o.put(retval)

}

In summary, the coexistence of actors and objects dramatically simplifies
the realization of sends with call/return semantics. The receiver can sim-
ply manipulate objects on the shared heap. Customer passing offers cal-
l/return semantics in a location-transparent way when process identifiers
are used as customers. Finally, customer passing tends to be much eas-
ier to use than continuation passing, as customers usually provide a more
coarse-grained entity and have to be provided only at very specific pro-
gram points. Also, continuation passing is more difficult to use in a dis-
tributed setting as functions have to be serialized instead of process iden-
tifiers.

6.2 Event-Loop Abstraction

Our implementation of event-loops given above essentially retains the
benefits of Chin and Millstein’s approach. On the one hand, the handlers
can share state kept in the enclosing scope of their event-loop. Thus, it is
easy to ensure that such state is properly manipulated in a modular way.
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def state1 = eventloop {
case A() =>
def state2 = eventloop {

case A() => state3
case B() => state1

}
state2

case B() =>
def state3 = eventloop {

case A() => state1
case B() => state2

}
state3

}

Figure 6.1: A finite state machine containing all possible transitions be-
tween three states. Reflexive transitions are implicitly provided by the
semantics of eventloop.

Moreover, state transitions are made explicit by control-flow rather than
implicit through updates to data shared among several event handlers.

Moreover, our approach removes some limitations of Chin and Millstein’s
responders.

1. In their approach, responding methods (the procedural abstraction
for responders) are always in a different static scope than the re-
sponding block and hence cannot access the responding block’s local
variables. Therefore, any state needed by a responding method must
be explicitly passed as an argument.

In contrast, our event-loops can be nested. This way, local variables
of enclosing event-loops are accessible.

2. Responders, have no support for directly jumping among named
event-loops.

In our case, function (or method) definitions that solely consist of
an event-loop can be viewed as named event-loops which permit
arbitrary jumps among themselves. As Scala permits nested func-
tion definitions, nested event-loops can be named, too. For example,
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figure 6.1 shows a finite state machine containing all possible transi-
tions between three states1.

3. All responding code runs in its own thread. For complex GUIs, such
as Eclipse, this approach might pose scalability problems.

In contrast, leveraging event-based actors, our event-loops are
thread-less. Thus, large numbers of fine-grained event-loops can be
used.

6.3 Type-Safe Serialization

In the definition of our pickler abstractions we introduced pickler environ-
ments. These environments keep track of values pickled (or unpickled) so
far.

Pickler environments are passed through existing picklers according to
the order in which picklers are applied. This, in turn, is the same order
in which bytes are written to the stream. As the construction of our un-
picklers is consistent with this order, unpickling functions never have to
reverse the list of bytes before unpickling.

The presented combinators are therefore as efficient as those of Kennedy
[Ken04]. Kennedy uses circular programming [Bir84] to efficiently thread
the pickler state and the stream of bytes in opposite directions. We believe
that circular programs should be avoided as they, arguably, make sequen-
tial reasoning about program behavior substantially more difficult.

Besides Kennedy’s combinator library for Haskell [Ken04], our library is
based on a similar library for Standard ML by Elsman [Els04]. In Elsman’s
library, the pair combinator is primitive, i.e. not defined in terms of a
more general combinator, such as the presented sequential combinator. In
Kennedy’s library, code shared by the pair, wrap, list and alt (called
data in this text) combinators is factored out into the sequential combina-
tor sequ.

1Note that unhandled events cause the particular event-loops to be executed recur-
sively.
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6.4 Limitations

6.4.1 Exception Handling

We want to point out an important limitation of our current exception han-
dling mechanism (see 4.4.2). Updating the state of an actor inside an ex-
ception handler should be done exclusively using synchronized methods.
Currently it is not checked if the actor which installed the exception han-
dler is running at the time of exception handling. Thus, mutual exclusive
execution of exception handlers inside an actor is not enforced statically.

We suggest the following solution: Before executing an exception handler,
we check if the actor is suspended or not. This can be done by checking if
it has a valid continuation set. In this case, the actor is suspended and we
can safely execute the handler. To make sure, that the actor is not resumed
during exception handling, we temporarily reset its continuation to null.
This will prevent send from scheduling a task item.

If the actor is not suspended at the time an exception is thrown–its contin-
uation is null–we queue the exception handler descriptor. The next time
the actor blocks, we execute the exception handler as in the case when the
actor is found suspended.

6.4.2 Timeouts

We provide a variant of receive which can be used to specify periods of
time after which a special TIMEOUT() message should be received. The
mechanism we describe in section 3.5 works well together with our event-
based implementation scheme. Checks for timeouts are integrated into the
send operation and receive is unchanged.

However, because the delivery of timeout messages is only triggered when
an event occurs (i.e. a new message arrives), timeouts are somewhat im-
precise. We provide no estimation or experimental results that charac-
terize their precision. Moreover, we expect timeouts that generate events
rather than consume them, to be much more precise. However, our current
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mechanism is suitable to specify deadlines. Experience with our case study
shows that, sometimes real timeouts can be replaced with deadlines.



Chapter 7

Conclusion

We have shown how lightweight actor abstractions can be implemented
on standard, unmodified virtual machines, such as the JVM. For this, we
used closures as continuations for actors which are more lightweight than
threads.

By enforcing that our blocking receive operation never returns normally,
dead code is indicated to the user. We found the ability to specify this
non-returning property through Scala’s type system to be fundamental
and important. However, in most mainstream languages, such as Java or
C#, the programmer is not able to specify this property in her code, even
though it is statically verifiable by the compiler.

By lazily creating threads we were able to guarantee progress even in the
presence of arbitrary blocking operations. This technique combined with
our event-based implementation yields a unique abstraction. To the best
of our knowledge, event-based actors are the first to allow (1) reactive be-
havior to be expressed without inversion of control, and (2) unrestricted
use of blocking operations, at the same time.

However, we found standard virtual machines to be very restrictive with
respect to thread handling. For example, on the JVM, (1) operations for
suspending and resuming a thread are not dead-lock safe, and (2) user-
code cannot find out if a thread is blocked. This makes it very hard to
implement efficient concurrency abstractions that are dispatched on mul-
tiple threads.
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Nonetheless, our actor implementation outperforms other state-of-the-art
actor languages with respect to message passing speed and memory con-
sumption by several orders of magnitude. Consequently, a very large
number of simultaneously active actors is supported.

We extended our event-based actors with a portable runtime system. The
supported programming model closely resembles that of distributed Er-
lang. Two working prototypes based on TCP and the JXTA peer-to-peer
framework, respectively, attest to the portability of our runtime system.

Certain configurations of virtual machines for mobile devices do not sup-
port introspection services. Therefore, we implemented a combinator li-
brary for type-safe serialization which is as efficient and powerful as other
state-of-the-art libraries. As a result, our runtime system is suitable for
resource-constrained devices.

All programming abstractions were introduced as a library for Scala rather
than as language extensions. We regard four of Scala’s language features
as essential for the implementation of domain specific languages as li-
braries: (1) Higher-order functions, (2) lightweight closure syntax, (3) pat-
tern matching, and (4) partial functions. In Scala, these features can be
combined to yield unique abstractions that are flexible and easy to use.

7.1 Future Work

First, it would be worthwhile to remove some limitations of our asyn-
chronous exception handling mechanism. We already discussed the mu-
tual exclusive execution of exception handlers and a possible solution in
6.4.1. However, one could go further than that. In the proposed solution
the asynchronous exception is queued when the handling actor is found
to be busy. Alternatively, a special exception could be thrown inside the
handling actor. The exception handler for this special exception would
then transfer control directly to the handler of the asynchronous excep-
tion. This way, asynchronous exceptions would have a semantics closer to
the existing exception handling mechanisms in Java and Scala.

In the near future we are going to cooperate with the authors of the FROB
computation model to integrate our two orthogonal approaches to event-
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based actors. For this, we plan to modify our event-based implementation
to use their low-level Java library. Consequently, we expect to be able to
combine the convenience and efficiency of our programming model with
the advantages of their resource-aware computing model.

Currently, it is not possible to specify real-time requirements for an actor’s
behavior. However, our programming model could be modified to allow
that. For example, the signature of receive could be modified to require
certain types of functions as message handlers, say, “actions”. Actions
would be closures annotated with deadlines or baselines.

Each of those actions would correspond to a task item that is scheduled
for execution when a matching message arrives. These task items could
be scheduled by a scheduler which implements an appropriate strategy,
such as earliest-deadline-first.
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