Emitting Scala class files via ASM

(© Miguel Garcia, LAMP, EPFL
http://lamp.epfl.ch/~magarcia

April 4, 2012

Abstract

ASI\/JElis a high-performance bytecode manipulation library that automat-
ically computes the stack map tables required in JVM class files version
50 and up. For this and other reasons (future-proofing against upcoming
class file formats, more widely available developer know-how on ASM) the
GenASM backend of the Scala compiler for JVM relies on ASM.

These notes describe the implementation, for those willing to:

e understand how it works,
e extend it (e.g., adding support for Java 7/8 goodies), or

e develop derivatives. For example, emitting Dalvik VM bytecode via
ASMDEXEI, taking three-address codeEl as input.

Contents

{1 Background|

[1.2 ASTs arriving at GenASM: [Code|
1.3 Control Flow Graph|

2 GenASM: Overview|

2.1 Functionality shared by all class builders (JBuilder)|.
2.2 Functionality to build plain and mirror classes (JCommonBuilder)
2.3 Building plain classes (JPlainBuilder)[.
2.4 The rest: JMirrorBuilder and JBeanInfoBuilder|

Thttp://asm.ow2.org/
%http://asm.ow2.org/asmdex-index.html

w N NN

[C BN BEN B erRIVL]

Shttp://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q2/Moving3A.pdf

http://lamp.epfl.ch/~magarcia
http://asm.ow2.org/
http://asm.ow2.org/asmdex-index.html
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q2/Moving3A.pdf

1 Background
1.1 ASM

When writing classfiles, ASM can be used in either stream-oriented or tree-
building modes, the latter making sense in case further passes or transformations
are needed. GenASM uses the stream-oriented API which is both suitable and
faster. The output thus produced is a byte array (the class file contents) whose
serialization is delegated to a BytecodeWriter, of which there are different kinds:

ST 'EB}-'tecudeWriter in BytecodeWriters

I“.- DirectTolarfileWriter in BytecodeWriters ()
'f'JavapB}-tecndeWriterin BytecodeWriters ()
67 ClassBytecodeWriter in BytecodeWriters [
(T) DumpBytecodeWriter in BytecodeWriters ()

Besides the core functionality of preparing a class file for serialization, ASM
can be leveraged for other tasks. For example, a future ScalapBytecodeWriterﬂ
could take asm.util.Textifier as starting point. There are areas where javap
ouput is less than ideal (e.g. when comparing different versions of the same
class file):

e unreadable pickle (see also https://github.com/paulp/pickler—visualizer)

e two constant pools, while having identical contents, may be displayed
differently due to physical layout.

e stack maps are displayed in encoded form by javap, their expansion makes
more sense instead.

1.2 ASTs arriving at GenASM: ICode

The ICode language consists of VM-neutral stack-based instructions that oper-
ate on VM-level types (i.e., erasure has been performed and the type hierarchy
has been adapted to VM capabilities, e.g. there are no Scala traits anymore just
VM-level classes and interfaces). There’s no significant semantic gap between
ICode and JVM bytecode thus GenAsM mostly performs a straightforward map-
ping, save for two minor complications (exception handlers including finalizers,
and forward jumps) that require some bookkeeping on the part of GenASM, as
described next.
An IMethod comprises:

e a list of locals (some of which are params),

e a list of exception handlers each covering a set of blocks and defining the
handler code (consisting of blocks with one of them distinguished as the
start block)

e a list of blocks that comprise all the blocks above, as well as blocks not
covered by any exception handler.

4http://www.scala-lang.org/docu/files/tools/scalap.html

https://github.com/paulp/pickler-visualizer
http://www.scala-lang.org/docu/files/tools/scalap.html

e the entry point to the method (one of the blocks above, aliased by IMethod.startBlock

and IMethod.code.startBlock).

1.3 Control Flow Graph

Navigating the CFG is tricky because BasicBlock.successors includes the start
block of each exception handler covering the block in question (i.e., it conflates
normal and exceptional control flow). Separating normal from exceptional con-

trol flow involves:

e normal control flow: Only certain instructions may direct control flow
to some other block (“fall-through” is represented explicitly via JuMpP):

def directSuccessors: List[BasicBlock] =
if (isEmpty) Nil else lastInstruction match {

case =>

if (closed)

else Nil

case JUMP(whereto) => whereto :: Nil
case CJUMP(succ, fail, _, _) => fail :: succ ::
case CZJUMP(succ, fail, _, _) => fail :: succ ::
case SWITCH(_, labels) => labels

case RETURN(_) => Nil

case THROW(_) => Nil

Nil
Nil

dumpClassesAndAbort ("The last instruction %s not a control flow instr

uction:

e exceptional control flow:

def exceptionSuccessorsForBlock(block: BasicBlock): List[BasicBlock] =
method.exh collect { case x if x covers block => x.startBlock }

There’s no directPredecessors, and predecessors conflates normal and ex-

ceptional control flow.

2 GenASM: Overview

The high-level structure of GenASM becomes evident in the run() override of
the compiler phase it contributes to the pipeline. In a nutshell (Listing [1)) for
each IClass in the input the decision is made wether a mirror class should be
generated in addition to the “plain” class (one more class, a BeanInfo class,
may also be generated). This division of labor is reflected in subclasses that

progressively add more specialized functionality:

=iz JBuilder in GenASM ()

-1 (Gg JCommonBuilder in GenASh
(G JPlainBuilder in GenASM
-If-.lMirru:urEiuiIder in GenAsM

-ﬁ-JBeanInanuilder in GenASsh

" + lastInstruction)

Listing 1: Sec.

override def run() {
var sortedClasses = classes.values.tolList sortBy (”" + _.symbol.fullName)

val bytecodeWriter = initBytecodeWriter(sortedClasses filter isJavaEntryPoint)
val plainCodeGen = new JPlainBuilder(bytecodeWriter)

val mirrorCodeGen = new JMirrorBuilder(bytecodeWriter)

val beanInfoCodeGen = new JBeanInfoBuilder(bytecodeWriter)

while(!sortedClasses.isEmpty) {
val ¢ = sortedClasses.head

if (isStaticModule(c.symbol) &&
isTopLevelModule (c.symbol) &&
(c.symbol.companionClass == NoSymbol)) {
mirrorCodeGen.genMirrorClass(c.symbol, c.cunit)

}
plainCodeGen.genClass(c)
if (c.symbol hasAnnotation BeanInfoAttr) { beanInfoCodeGen.genBeanInfoClass(c) }
sortedClasses = sortedClasses.tail
classes -= c.symbol // GC opportunity
}
bytecodeWriter.close()
classes.clear()

reverseJavaName.clear ()

} // end of AsmPhase.run()

Although that design helps with code comprehension, there’s still shared mu-
table state reused by each kind of generator (for plain classes, for mirror classes,
etc.) with the goal of avoiding instantiating a new instance when emitting a
new IClass. This decision can be revised in the future.

Similary, some members that would logically belong in one of the class
builders are owned instead by GenAsSM (of which there’s only one instance) again
for the purpose of avoiding repeated invocation of their constructors. Except
for the readability impact no harm is done because most such members are ei-
ther immutable (red squares in Figure [1)) or non-side-effecting query methods
(tagged with an oval in Figure [1f).

The only members of GenASM accessing mutable data structures (that come
to mind!) are javaNameCache and reverseJavaName (blue rounded-corners square
in Figure [1) which map between symbols and bytecode-level names during code
generation and also when computing least-upper-bounds (as part of computing
stack map tables). In more detail, javaNameCache contains entries for classes as
well as members, while reverseJavalName only for class symbols (which are thus
mapped to bytecode-level internal names).

o (GmiGenASM:
[v] phaseName

'\j_) newPhase(Phasze): nsc.Phase

(1) outputDirectory(Symbol): AbstractFile

'i) getFile(AbstractFile, String, String): AbstractFile

'i) getFile(Symbol, String, String): AbstractFile

(0] pickledBytes

] javaMNarmeCache

Li_] reverselavaMlame

(e e = e 2

[+

&

&

a Vlnt

ublicBit5et(Int): Boclean

isRemete(Symbol): Any

Lf_) JavaFlags(Symbol): Int

Lf_) JavaFieldFlags(Symbel): Int

Lf) isTopLevelModule(Symbol): Boclean

'\f) isStaticModule(Symbel): Boolean

(1) inameToSymbol(5tring): GenASM.this.type#global#Symbol

(1) jsymbal(Symbol): GenASM.thistypeZglobalZsymbol

(1) superClasses(Symbal): scala.List[GenASM.this.typezglob

% firstCommonSuffix(List[Symbol], List[Symbol]): Gen

iseLUB(Symbol, Symbol): GenASM.this,

(1) getComm i ; ing

v | classfileVersion

[¥] majorVersion

Lﬂ extraProc

(V] JAVA_LANG_OBIECT

(V] JAVA_LANG_STRING

V| classLiteral

'\j_) isMonUnitValueTK(TypeKind): Boolean

V] jBoxTe

[v] jUnbexTo
—

&

[+

=

E -

ymbol]
this.type#global#5y
global#Symbol

E-#
J 6I
P

Figure 1: Sec.

[¥] EMPTY_ITYPE_ARRAY

[¥] EMPTY_STRING_ARRAY

1] rmdesc_arglessvoid

[¥] CLASS_COMSTRUCTOR_NAME

[¥] INSTANCE_CONSTRUCTOR_MAME
(1) createlClass(Int, String, String, String, Array[String]}: ClassWriter
fJ createl Attribute(String, Array[Byte], Int, Int): CustormAttr

(1) writelfMotTooBig(String, String, asm.ClassWriter, Symbol): Unit
(1) mkdrray(Traversable[asm. Typel): Array[Typel

e e e o e B e I

E

&

i) descriptor(TypeKind): String

f, descriptor(Symbol): String
@ JjavaType(TypeKind): Type
(1) javaType(Type): Type

(1) javaType(Symbol): Type

L javafrray Type(asm.Type): Type
(1) isDEp - -

b oEEn

Figure 2: Sec.

2.1 Functionality shared by all class builders (JBuilder)

1. keeping track of JVM-level inner classes referred somewhere in the class
being emitted (red box in Figure [2)).

2. mapping symbols (for classes and members) to JVM-level names, in par-
ticular mapping of class symbols to internal names (as above, red box in
Figure [2).

3. mapping from

e the type representation used by ICode (TypeKind instances, which in
turn rely on symbols and types used throughout the compiler); to

e the type representation used by ASM asm. Type, which includes method
descriptors (green oval in Figure .

The first item is taken care of by the methods that map symbols (second
item). In detail, the JVM requires including an InnerClasses attribute list-
ing those defined or referred to from the class in question. JBuilder.javaName ()
tracks that behind the scenes (adding to the running list in JBuilder.innerClassBuffer,
which starts empty just before emitting a class). Beware of situations where an
internal name is needed but the potential side-effect on innerClassBuffer is not
desired (e.g. getCommonSuperClass()). In those cases, invoke javaBinaryName ()
on the class symbol instead.

B T T I S PP A I P T]

- | f) sh ouldEmitAnnotation(AnnotationInfo): Anyé

+ f | needsGenericSignature(Symbel): Boolean

- (1) getCurrentCUnit(): GenASM.this.typefglobal#CompilationUnit

- (1) getGenericSignature(Symbol, Symbol): String

EISl f VubytesToCharArray(Array[Byte]): Array[Char]E

+ f VarrEncode(ScalaSigBytes): Array[String]é

+ (1) strEncode(ScalaSigBytes): String!

+ f emitArgument(asm.AnnotationVisitor, String, ClassfileAnnotArg): Unité

+ f VemitAssocs(asm.AnnotationVisitor, List[(Name, ClassfileAnnotArg)]): Unité

+ f emitAnnotations(asm.ClassVisitor, List[AnnotationInfo]): Unité
+ f HemitAnnotations(asm.MethodVisitor, List{Annotationlnfo]): Unité
+ f iemitAnnotations(asm.FieldVisitor, List{AnnotationInfo]): Unitg

+ f iemitParamAnnotations(asm.MethodVisitor, List[List[AnnotationInfo]l): Unité

Figure 3: Sec.

2.2 Functionality to build plain and mirror classes (JCommonBuilder)

e pickles: pickleMarkerLocal, pickleMarkerForeign, getAnnotPickle(). Be-
cause a pickle is emitted as a Java 5.0 annotation, the functionality to
emit annotations is also relevant for pickling.

e Java 5.0 annotations: as shown in Figure
e Java generic signature

e Forwarders

2.3 Building plain classes (JPlainBuilder)

The behavior of JPlainBuilder is in large part determined by ASM requirements
on invocation order of methods in the sream-oriented API. These typestate or
API protocol requirements are documented in the ASM User Guide and thus
not reproduced here. To give an idea, a MethodWriter has the protocol:

visitAnnotationDefault?
(visitAnnotation | visitParameterAnnotation | visitAttribute)*
(visitCode
(visitTryCatchBlock | visitLabel | visitFrame | visitXxxInsn | visitLocalVariable | visitLineNumber)*
visitMaxs)?
visitEnd

The bulk of code generation is performed in JPlainBuilder.genCode() (that’s
almost 1KLOC). To aid readability, it contains local methods and can be con-
sidered sub-divided into (as indicated by source comments):

1. Setting up one-to-one correspondence between ASM Labels and BasicBlocks
linearization

2. demarcating exception handler boundaries (visitTryCatchBlock() must be
invoked before visitLabel() in genBlock())

3. Utilities to later emit debug info for local variables and method params
(LocalVariablesTable bytecode attribute).

4. Bookkeeping (to later emit debug info) of association between line-number
and instruction position.

5. Utilities to emit code proper (most prominently: genBlock()).

2.4 The rest: JMirrorBuilder and JBeanInfoBuilder
These builders taken together are about 1/10th the size of that for plain classes:

V) cunit
(1) getCurrentCUnit(): GenASM.this.typefglobal#Com,
f I genMirrorClass(Symbol, CompilationUnit): Unit
(1) this(BytecodeWriter)
= (Gy JBeaninfoBuilder
f I genBeanlnfoClass(IClass): Unit
(1) this(BytecodeWriter)

	Background
	ASM
	ASTs arriving at GenASM: ICode
	Control Flow Graph

	GenASM: Overview
	Functionality shared by all class builders (JBuilder)
	Functionality to build plain and mirror classes (JCommonBuilder)
	Building plain classes (JPlainBuilder)
	The rest: JMirrorBuilder and JBeanInfoBuilder

