
InlineExceptionHandlersPhase

c© Miguel Garcia, LAMP, EPFL
http://lamp.epfl.ch/~magarcia

November 24th, 2011

Abstract

“Inlining an exception handler H of a try T” consists in replacing a
THROW(clazz) ICode instruction in T ’s body with a JUMP to a spliced-in
BasicBlock that duplicates the entry block of H (provided it has been
determined that H invariably catches exceptions thrown at runtime by
the THROW(clazz) in question, Sec. 2). This rewriting preserves semantics
because:

1. The spliced-in BasicBlock is not protected by any handler in T
(instead, it’s protected by all handlers that protect T itself);

2. Regarding basic-block-successors:

(a) Before splicing, T has just one successor S, which is also the
successor of H (ignoring RETURNs).

(b) After splicing, the THROW has been replaced with a JUMP to the
spliced-in BasicBlock, which keeps its original successor (ignor-
ing RETURNs, that successor is S).

For brevity, we talk about a “duplicate handler” although in fact only its
entry block is duplicated. This duplication occurs once per handler, i.e.,
all original THROW instructions whose catch handler can be no other than
H will share a single H duplicate (Sec. 3). The rewriting does not change
the IMethod’s exh list of ExceptionHandler other than by making the
spliced-in BasicBlock be covered in the same way as T ’s body is.

phase name id description

---------- -- -----------

parser 1 parse source into ASTs, perform simple desugaring

namer 2 resolve names, attach symbols to named trees

packageobjects 3 load package objects

typer 4 the meat and potatoes: type the trees

. . .

flatten 17 eliminate inner classes

mixin 18 mixin composition

cleanup 19 platform-specific cleanups, generate reflective calls

icode 20 generate portable intermediate code

inliner 21 optimization: do inlining

/*---*/

inlineExceptionHandlers 22 optimization: inline exception handlers

/*---*/

closelim 23 optimization: eliminate uncalled closures

dce 24 optimization: eliminate dead code

jvm 25 generate JVM bytecode

terminal 26 The last phase in the compiler chain

1

http://lamp.epfl.ch/~magarcia

Figure 1: Sec. 1

Contents

1 Overview 3

2 Finding a handler H none of whose predecessors can catch the
exception type of interest (that H catches, “findExceptionHandler()”) 3

3 Grabbing a handler duplicate (“duplicateExceptionHandlerCache()”) 5

4 Replacing a THROW instruction (“applyBasicBlock()”) 5

5 Duplicating the handler (“duplicateExceptionHandler()”) 6

6 How does this optimization work in Scala.Net? 7

2

1 Overview

Say we have:

try {

throw new NullPointerException("inside try")

} catch {

case _: NullPointerException =>

m.print("inside catch clause")

}

After the inlineExceptionHandlers phase has run we have (Figure 1 on p. 2).
After splicing-in a BasicBlock, in general a new TFA (type-flow analysis)

should be computed because:

// notify the successors changed for the current block

// notify the predecessors changed for the inlined handler block

bblock.touched = true

newHandler.touched = true

TFAs are expensive. Instead, we can postpone computing a new one and con-
tinue iterating those basic-blocks that haven’t been spliced-in (their entry type-
stacks had better not changed due to the splicing). This technique is demon-
strated by the snippet below (todoBlocks contains those basic-blocks added as
part of applyBasicBlock):

private def applyMethod(method: IMethod): Unit = {

if (method.code ne null) {

// create the list of starting blocks

todoBlocks = global.icodes.linearizer.linearize(method)

while (todoBlocks.nonEmpty) {

val levelBlocks = todoBlocks

todoBlocks = Nil

levelBlocks foreach applyBasicBlock // new blocks will be added to todoBlocks

}

}

. . .

Another way to avoid computing MethodTFAs is shown in Sec. 3:

this block was not analyzed, but it’s a copy of some other block so its
type-stack should be the same

2 Finding a handler H none of whose predeces-
sors can catch the exception type of interest
(that H catches, “findExceptionHandler()”)

Say a given THROW(clazz) is protected by a handler H2 that catches clazz, but
a previous catch-clause H1 accepts a subtype of clazz. We can’t be sure that
the THROW in question will always lead to H2. Thus in this case it’s not inlined.
Example (quoting from the source comments):

3

Listing 1: Sec. 2

def findExceptionHandler(

thrownException: TypeKind,

handlersStarts: List[BasicBlock]

): Option[(BasicBlock, TypeKind)] = {

for (handler <- handlers ; LOAD_EXCEPTION(clazz) <- handler take 1) {

val caughtException = toTypeKind(clazz.tpe)

// we’ll do inlining here: createdException <:< thrownException <:< caughtException, good!

if (thrownException <:< caughtException)

return Some((handler, caughtException))

// we can’t do inlining here, the handling mechanism is more precise than we can reason about

if (caughtException <:< thrownException)

return None

// no result yet

}

None

}

try {

val exception: Throwable =

if (cond) new IllegalArgumentException("even")

else new StackOverflowError("odd")

throw exception

} catch {

case e: IllegalArgumentException => . . . // H1

case e: StackOverflowError => . . .

case t: Throwable => . . . // H2

}

Rather than inspecting the ExceptionHandler’s cls field,

class ExceptionHandler(val method: IMethod, val label: String, val cls: Symbol, val pos: Position)

we can also find out which exception-type is caught based on the stack-manipulating
ICode instruction LOAD EXCEPTION(clazz). To recap,

/** Fake instruction. It designates the VM who pushes an exception

* on top of the /empty/ stack at the beginning of each exception handler.

* Note: Unlike other instructions, it consumes all elements on the stack!

* then pushes one exception instance.

*/

case class LOAD_EXCEPTION(clasz: Symbol) extends Instruction {

override def consumed = sys.error("LOAD_EXCEPTION cleans the whole stack")

override def produced = 1

override def producedTypes = REFERENCE(clasz) :: Nil

}

Upon iterating over catch-clauses, as long as the caught-type and the static-
thrown-type are not comparable the outcome is inconclusive (no inlining in case
all caught-types are non-comparable). The first comparable pair (static-thrown-
type, caught-type) leads to making a decision on inlining (Listing 1).

4

3 Grabbing a handler duplicate (“duplicateExceptionHandlerCache()”)

The idea is to avoid duplicating the same handler twice, and knowing when
we’ve tried and failed. That’s the purpose of the handlerCopies map:

/* This map is used to keep track of duplicated exception handlers

* explanation: for each exception handler basic block, there is a copy of it

*

* - some exception handler basic blocks might not be duplicated because

* they have an unknown format, that’s why "Option[(...)]"

*

* - some exception handler duplicates expect the exception on the stack

* while others expect it in a local, that’s why "Option[Local]"

*/

private val handlerCopies =

perRunCaches.newMap[BasicBlock, Option[(Option[Local], BasicBlock)]]

Provided the start-block of the catch-handler in question has the “expected
format” (i.e., it starts with LOAD EXCEPTION(caughtClass)) a copy duplicate is
obtained, some blocks are touched, and copy is added to the waiting list for :

handlerCopiesInverted(copy) = ((handler, caughtException))

todoBlocks ::= copy

The handlerCopiesInverted map allows cutting on the number of type-flows
analyses performed (to just one!) per method. The following phrase cues about
that trick:

this block was not analyzed, but it’s a copy of some other block so its
stack should be the same

In detail:

tfaCache.getOrElse(bblock.label, {

// this block was not analyzed, but it’s a copy of some other block so its stack should be the same

val (origBlock, exception) = handlerCopiesInverted(bblock)

val typeInfo = getTypesAtBlockEntry(origBlock)

val stack =

if (handlerLocal(origBlock).nonEmpty) Nil // empty stack, the handler copy expects an empty stack

else List(exception) // one slot on the stack for the exception

// If we use the mutability property, it crashes the analysis

tfa.lattice.IState(new analysis.VarBinding(typeInfo.vars), new icodes.TypeStack(stack))

})

4 Replacing a THROW instruction (“applyBasicBlock()”)

Assuming that a unique handler has been determined (Sec. 2) and its entry
BasicBlock could be duplicated (Sec. 3) the remaining re-wiring is done in
applyBasicBlock(). Basically, “a THROW is replaced with a JUMP” but that’s only
part of the story. There are two points of variation:

5

1. right before the THROW, the operand stack may or may not contain other
values besides the exception on top; and

2. the handler may expect its exception in a local variable or on the stack.
The former is indicated by exceptionLocalOpt being a Some(local) and
the latter by None.

The four combinations above are covered by the following three case clauses:

// Prepare the new code to replace the THROW instruction

val newCode: List[Instruction] = exceptionLocalOpt match {

/*- the handler expects its exception in local var */

case Some(local) =>

STORE_LOCAL(local) +: typeInfo.tail.map(x => DROP(x)) :+ JUMP(newHandler)

/*- the handler expects its exception on the stack,

which contains just the exception. */

case None if typeInfo.length == 1 =>

JUMP(newHandler) :: Nil

/*- the handler expects its exception on the stack,

but there are other values on it besides the exception. */

case _ =>

val exceptionType = typeInfo.head

val localName = currentClass.cunit.freshTermName("exception$")

val localType = exceptionType

val localSymbol = bblock.method.symbol.newValue(NoPosition, localName).setInfo(localType.toType)

val local = new Local(localSymbol, localType, false)

bblock.method.addLocal(local)

STORE_LOCAL(local) :: typeInfo.tail.map(x => DROP(x)) ::: List(LOAD_LOCAL(local), JUMP(newHandler))

}

• Nota bene: Storing an exception in a local was chosen in a way that avoids
the JVM-bytecode verification error (due to the interplay with “defined
values analysis”) described on p. 25 of the report: http://www.sable.

mcgill.ca/publications/techreports/sable-tr-2003-3.pdf (that re-
port is a very good read as it covers optimization of exception handling
code).

5 Duplicating the handler (“duplicateExceptionHandler()”)

Whatever else an exception handler does, its ICode starts with the LOAD EXCEPTION

instruction (which has no counterpart in bytecode, it simulates for type-flow
purposes the operation of the VM placing the thrown exception on the stack).
The handler duplicate (“copy”), being plain code, can’t contain that instruction
(nor is needed) thus it’s not included in the duplicate. Please notice that saving
the exception to a variable will be done before jumping to the duplicate (Sec. 4)
and thus a STORE LOCAL(local) instruction isn’t copied either:

handler take 2 match {

case Seq(LOAD_EXCEPTION(caughtClass), next) =>

val (dropCount, exceptionLocal) = next match {

case STORE_LOCAL(local) => (2, Some(local)) // we drop both LOAD_EXCEPTION and STORE_LOCAL

6

http://www.sable.mcgill.ca/publications/techreports/sable-tr-2003-3.pdf
http://www.sable.mcgill.ca/publications/techreports/sable-tr-2003-3.pdf

case _ => (1, None) // we only drop the LOAD_EXCEPTION and expect the exception on the stack

}

val caughtException = toTypeKind(caughtClass.tpe)

val copy = handler.code.newBlock

copy.emitOnly(handler drop dropCount: _*)

. . .

A few highlights:

1. The duplicate is made to be protected by those handlers protecting the
original handler (i.e., protecting the Try as a whole)

// extend the handlers of the handler to the copy

for (parentHandler <- handler.method.exh ; if parentHandler covers handler) {

parentHandler.addCoveredBlock(copy)

// notify the parent handler that the successors changed

parentHandler.startBlock.touched = true

}

2. Something that isn’t changed: the successor of the duplicate, which results
from the JUMP or RETURN appearing as last instruction in the duplicate.

3. duplicateExceptionHandler() can receive as argument only a BasicBlock

that is the startBlock of an ExceptionHandler. This is a consequence of:

(handler, caughtException) <- findExceptionHandler(toTypeKind(clazz.tpe), bblock.exceptionSuccessors)

In case the catch-clause consists of a CFG with more than one BasicBlock,
only the entry block is duplicated.

6 How does this optimization work in Scala.Net?

If left as-is, it doesn’t work, because CIL VMs disallow jumps from the outside
into a catch-block (as would happen in a multi-block exception handler inlined
by inlineExceptionHandlers). What about the single-block case? There’s the
issue of leaving an exception handler according to CIL rules, as discussed next.

Bottom line: looks like inlineExceptionHandlers should join this club in
JavaPlatform:

def platformPhases = List(

flatten, // get rid of nested classes

genJVM // generate .class files

) ++ depAnalysisPhase

• A note on terminology: In this subsection we adopt the terminology
of the CIL standard and employ“try-block” to mean a CIL range of in-
structions (in general, a Scala-level try-expression results in a number of
ICode BasicBlocks which are finally mapped to a range of consecutive CIL
instructions). Same goes for catch-block (i.e., a range of instructions de-
rived from a single catch-clause in a Scala catch partial function) and for
finally-block.

7

Structured Exception Handling (SEH) on the Microsoft CLI imposes more
stringent requirements than its JVM counterpart (details in [1]). Regarding
entering catch-blocks, in essence the spec states:

• Control flow arrives to a catch-block (resp. finally-block) only when
transfered by the execution system, thus ruling out fall-through and jumps
(from outside) as means to enter into those blocks (Partition I, §12.4.2.8.1,
“Entry to filters or handlers can only be accomplished through the CLI ex-
ception system”).

Regarding leaving catch-blocks (details in [1]):

• The instruction ret shall not be enclosed in a protected block, or handler
(where “handler” encompasses catch-blocks and finally-blocks).

• a jump instruction enclosed in a try-block must remain intra-block (resp. catch-
block, resp. finally-block)

• the CIL throw instruction may appear freely in a try-block, catch-block,
or finally-block. Same goes for the CIL rethrow instructions, but ICode
does not have such instruction.

• no try-block, catch-block, or finally-block may be left by fall-through.
In these cases, the MSIL backend emits leave <blockAfterTry> to leave a
catch-clause and endfinally to leave a finally-block.

References

[1] Miguel Garcia. Exception handling: from ICode to CIL, 2010.
Notes at The Scala Compiler Corner. http://lamp.epfl.ch/~magarcia/
ScalaCompilerCornerReloaded/2010Q2/ExceptionHandling.pdf.

8

http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2010Q2/ExceptionHandling.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2010Q2/ExceptionHandling.pdf

	Overview
	Finding a handler H none of whose predecessors can catch the exception type of interest (that H catches, ``findExceptionHandler()'')
	Grabbing a handler duplicate (``duplicateExceptionHandlerCache()'')
	Replacing a THROW instruction (``applyBasicBlock()'')
	Duplicating the handler (``duplicateExceptionHandler()'')
	How does this optimization work in Scala.Net?

