
Notes on GenMSIL

c© Miguel Garcia, LAMP,

École Polytechnique Fédérale de Lausanne (EPFL)
http://lamp.epfl.ch/~magarcia

April 28th, 2010

Contents

1 Following the steps of GenMSIL’s elder brother: GenJVM 2

2 From IClass to VM-level type 3
2.1 Nested types . 4

3 Translating type members 5

4 Handling static modules 5
4.1 Module instance field, the GenMSIL story 6
4.2 . . . and now the GenJVM story . 7
4.3 Static initializers . 7
4.4 dumpMirrorClass . 10

5 Adding constructors 10

6 Adding fields the GenMSIL way 11
6.1 Adding outerField and a fake local for debugging purposes 11

7 Adding methods in GenMSIL 12
7.1 Generics, exception list, and annotations (including those for parameters) 13

8 Translating code blocks 13

9 Items not covered in previous sections 13
9.1 invokedynamic . 13
9.2 Forwarders . 13
9.3 GenMSIL’s createDelegateCaller(paramType, resType) 14

10 Conclusions 14

1

http://lamp.epfl.ch/~magarcia

Abstract

I used to believe that GenJVM and GenMSIL just duplicated one-to-one
fields, methods, and code blocks from ICode into bytecode, but in fact
there’s a fair share of non-trivial desugaring going on too. It would be
interesting to identify which of those desugarings could be performed as
ICode-to-ICode transformations. The motivation for this is our ongo-
ing work on Scala.Net, where the compiler currently emits MSIL in the
textual format expected by the IL Assembler. Making GenMSIL directly
produce a .NET assembly (e.g., reusing Microsoft’s Common Compiler
Framework) amounts to rewriting large portions of GenMSIL. Before do-
ing that, we explore in these notes the pros and cons of breaking apart
GenMSIL into two phases (ICode-to-ICode desugarings followed by a more
straightforward CLR-serialization phase). The resulting flexibility might
also prove useful for future backends that may need the results of the first
but not the second subphase (e.g., OpenCL, LLVM, program verification
frameworks, etc.). As a sidenote, when translating a Scala program into a
backend other than JVM or CLR, it is assumed that input programs make
reference only to libraries supported by the target platform. As another
advantage, an ICode-to-ICode phase would avoid unwarranted divergence
across backends (for language features that should be kept consistent).

1 Following the steps of GenMSIL’s elder brother:
GenJVM

The override of ICodePhase.run in JvmPhase performs dead code elimination and
then applies codeGenerator.genClass(cls) to each IClass arriving at this phase.
genClass(IClass) is declared in BytecodeGenerator, which constitutes 99% of
GenJVM. Instead of building all JVM-level types in memory, genClass serializes
to disk each .class before processing the next IClass.

In genClass, all cls.symbol.info.parents after the first one are taken to
be interfaces. Before getting the javaName of their typeSymbol, additional super-
types are added (SerializableClass.tpe, CloneableClass.tpe, and RemoteInterface.tpe)
depending on the cls.symbol.annotations. Afterwards, no modifications to the
list of supertypes takes place.

GenMSIL instead goes first over all IClasses to find an entry point for the
future assembly, the symbol of the method thus found is tracked in (MSIL’s)
ByecodeGenerator.entryPoint. Additionally, the first non-nested IClass during
that iteration gives the string value for ByecodeGenerator.firstSourceName.

A single assembly file will be written to disk (not each CLR-level type indi-
vidually) and it’s the job of initAssembly() to prepare the ground for that (e.g.,
by setting two java.io.File fields: outDir and srcPath). From this point on,
the assembly being generated will be represented as an AssemblyBuilder (whose
constructor takes an AssemblyName, which as of now lacks public key tokens,
identifying the assembly just by assemName):

massembly = AssemblyBuilderFactory.DefineDynamicAssembly(assemblyName)

The last thing initAssembly() does before returning is creating the internal
representation of the main module (where all types and “global methods” will
go). The only global method that gets emitted by writeAssembly is globalMain

to become the assembly’s entry point.

2

mmodule = massembly.DefineDynamicModule(moduleName,

new File(outDir, moduleName).getAbsolutePath())

BTW, it’s not clear why MsilPhase extends GlobalPhase and not ICodePhase

like GenJVM does (an MsilPhase can access IClasses using global.icodes.classes).
After initializing the AssemblyBuilder, GenMSIL goes on to create contents in

a top-down manner:

classes.values foreach codeGenerator.createTypeBuilder

classes.values foreach codeGenerator.createClassMembers

Afterwards, it decorates some more the created types: as shown below,
genClass adds cloning methods, dumps a mirror class for top-level modules
without a companion class, adds the symtab attribute, and other type attributes
dictated by the iclass.sym.annotations. Oh, and one more thing: genMethod

is also invoked on each iclass.methods. In terms of code, this third and last
iteration over classes.values looks as follows:

try {

classes.values foreach codeGenerator.genClass

} finally {

codeGenerator.writeAssembly

}

2 From IClass to VM-level type

With the information collected so far, GenJVM creates a JVM-level type (a
ch.epfl.lamp.fjbg.JClass) for the IClass being processed.

The correspondence IClass↔ JClass need not be tracked outside the genClass

method. In contrat, GenMSIL tracks this correspondence with the types field in
the SymbolLoaders.clrTypes object. That field allows finding a msil.Type for an
IClass.symbol.

During createTypeBuilder(IClass), GenMSIL catches up with GenJVM by com-
puting the supertypes. Please beware that inside file GenMSIL.scala the unquali-
fied Type refers to Type from trait scala.tools.nsc.symtab.Types, not msil.Type,
because of the following import:

import ch.epfl.lamp.compiler.msil.{Type => MsilType, _}

After running

val interfaces: Array[MsilType] =

parents.tail.map(p => msilTypeFromSym(p.typeSymbol)).toArray

interfaces always contains MsilTypes for which a TypeBuilder has already been
created, because of the way msilTypeFromSym works: it creates a builder in case
the types map does not yet map to it. Alternatively, all type representatives
could be created first to add the supertype topology later (I guess this idiom is
more frequent).

TODO add definitions.ObjectClass.tpe as first supertype (to IClasses that
are not interfaces) whenever it’s not in that position, not only when the parents

list is empty

3

At this point, the type representatives created by the JVM and MSIL back-
ends are in both cases connected over the supertype topology. GenMSIL went one
step further in connecting nested types to their declaring types (where “nest-
ing” equates iclass.symbol.isNestedClass) while GenJVM will do that only at
emitClass time (see Sec. 2.1), using as “nesting” criteria the following:

def addOwnInnerClasses(cls: Symbol) {

for (sym <- cls.info.decls.iterator if sym.isClass)

innerClasses = innerClasses + sym;

}

// add inner classes which might not have been referenced yet

atPhase(currentRun.erasurePhase.next) {

addOwnInnerClasses(clasz.symbol)

addOwnInnerClasses(clasz.symbol.linkedClassOfClass)

}

Method addOwnInnerClasses is not the only place where the innerClasses:

Set[Symbol] is assigned, invoking the getter-like javaName(sym: Symbol): String

has that as side-effect:

if (sym.isClass && !sym.rawowner.isPackageClass && !sym.isModuleClass) {

innerClasses = innerClasses + sym;

}

TODO I guess the above behavior has to be preserved in GenMSIL

2.1 Nested types

Nothing in IClass points to nested or owning classes, however the following may
be true: IClass.symbol.isNestedClass. The CLR-level type will have a different
owner in each case (where sym is iclass.symbol):

if (sym.isNestedClass) {

val ownerT = msilTypeFromSym(sym.owner).asInstanceOf[TypeBuilder]

val tBuilder =

ownerT.DefineNestedType(msilName(sym), msilTypeFlags(sym), superType, interfaces)

mapType(sym, tBuilder)

} else {

val tBuilder =

mmodule.DefineType(msilName(sym), msilTypeFlags(sym), superType, interfaces)

mapType(sym, tBuilder)

}

TODO factor mapType(sym, tBuilder) out to appear after the if-then-else

In the GenJVM world, there’s something going on about nested classes as late
as emitClass. Look:

def emitClass(jclass: JClass, sym: Symbol) {

addInnerClasses(jclass) /*- <-- this must have sthg to do with nested classes */

val outfile = getFile(sym, jclass, ".class")

val outstream = new DataOutputStream(outfile.bufferedOutput)

jclass.writeTo(outstream)

outstream.close()

informProgress("wrote " + outfile)

}

4

3 Translating type members

To give some context, in GenMSIL we have explored how TypeBuilders come to
being, and are ready to tackle createClassMembers:

codeGenerator.initAssembly

classes.values foreach codeGenerator.createTypeBuilder

classes.values foreach codeGenerator.createClassMembers /*- <-- we’re about to enter here */

try {

classes.values foreach codeGenerator.genClass

} finally {

codeGenerator.writeAssembly

}

In GenJVM, the first type members to be added to the current JClass are for
static initialization, where we meet isStaticModule as discussed in the following
subsection.

In GenMSIL, createClassMembers follows a different order: it adds fields first,
then methods (unless the IClass is definitions.ArrayClass which also has spe-
cial handling in GenJVM), and finally adds static initializers as parf of handling
static module as discussed next.

4 Handling static modules

Depending on whom you ask, a static module is:

• According to GenJVM.BytecodeGenerator:

def isStaticModule(sym: Symbol): Boolean = {

sym.isModuleClass && !sym.isImplClass && !sym.hasFlag(Flags.LIFTED)

}

• According to GenMSIL.BytecodeGenerator:

// if the module is lifted it does not need to be initialized in

// its static constructor, and the MODULE$ field is not required.

// the outer class will care about it.

private def isStaticModule(sym: Symbol): Boolean = {

// .net inner classes: removed ’!sym.hasFlag(Flags.LIFTED)’, added

// ’sym.isStatic’. -> no longer compatible without skipping flatten!

sym.isModuleClass && sym.isStatic && !sym.isImplClass

}

• According to Symbol:

final def isStaticModule = isModule && isStatic && !isMethod

Firing Find usages for the GenJVM and the GenMSIL versions of the above
allows pinpointing where the emitted code has to abide by “static module se-
mantics”. For example (there are others), it influences how a SuperCall is
executed:

5

Figure 1: Places in GenJVM where code emission depends on isStaticModule

Figure 2: Places in GenMSIL where code emission depends on isStaticModule

case SuperCall(_) => /*- snippet from GenMSIL */

mcode.Emit(OpCodes.Call, constructorInfo)

if (isStaticModule(clasz.symbol) &&

notInitializedModules.contains(clasz.symbol))

{

notInitializedModules -= clasz.symbol

mcode.Emit(OpCodes.Ldarg_0)

mcode.Emit(OpCodes.Stsfld, getModuleInstanceField(clasz.symbol))

}

Instead of cataloging here all those places where code emission depends on
isStaticModule, we’ll cover them in the context of the construct being emit-
ted. Figure 1 shows those places in GenJVM where code emission depends on
isStaticModule, and Figure 2 does the same for GenMSIL.

4.1 Module instance field, the GenMSIL story . . .

At the end of createClassMembers(IClass) in GenMSIL we find:

if (isStaticModule(iclass.symbol)) {

addModuleInstanceField(iclass.symbol)

notInitializedModules += iclass.symbol

addStaticInit(iclass.symbol)

}

6

Figure 3: FieldBuilder hierarchy

addModuleInstanceField retrieves a TypeBuilder for the iclass.symbol not by
using msilTypeFromSym (as we’ve seen so far) but with the help of getType. With
the TypeBuilder thus obtained, a FieldBuilder for MODULE$ is created. Also in
GenMSIL.BytecodeGenerator there’s mapType(sym: Symbol, mType: MsilType) which
simply adds a pair to the clrTypes.types map.

Comparing the similarly named addModuleInstanceField in GenMSIL and GenJVM

reveals them to do the same, with the addition that in MSIL the clrTypes.fields

map (from Symbol to FieldInfo) is used to track the just created FieldBuilder

(Figure 3 shows FieldBuilders to be FieldInfos) using the iclass.symbol as key
(therefore, clrTypes.fields tracks only MODULE$ fields).

4.2 . . . and now the GenJVM story

The static module field is added just after creating the current JClass. The
relevant code is shown in Figure 7 on p. 15 (we’ll revisit a lot that code fragment),
where it reads:

if (isStaticModule(c.symbol) || serialVUID != None || clasz.bootstrapClass.isDefined) {

if (isStaticModule(c.symbol))

addModuleInstanceField; /*- <-- here */

addStaticInit(jclass, c.lookupStaticCtor)

. . .

4.3 Static initializers

As a reminder, Figures 4 and 5 quote from the JVM spec about initializers.
Reading a few more lines in Figure 7 shows that a static initializer is added

whenever the IClass isStaticModule, has a serialization version ID, or par-
ticipates in invokedynamic (Sec. 9.1), or fulfills none of these conditions but
containsStaticCtor. That means, a static module always has a static construc-
tor.

Of both similary named addStaticInit, the GenMSIL version sports longer
comments, so we start with it (reproduced below).

Unlike its GenJVM counterpart, static initializers are added here by GenMSIL

only for IClasses that are static modules. Such static initializer contains three IL
instructions: (1) newobj invoking the primary constructor of the (static module)

7

Figure 4: From the JVM spec (1 of 2)

Figure 5: From the JVM spec (2 of 2)

8

IClass, (2) getting rid of the reference thus created on top of the stack (we’re
interested only on side-effects), and (3) returning.

/** Adds a static initializer which creates an instance of the module class

* (calls the primary constructor).

*

* A special primary constructor will be generated (notInitializedModules)

* which stores the new instance in the MODULE$ field right after the super call.

*/

private def addStaticInit(sym: Symbol) {

val tBuilder = getType(sym).asInstanceOf[TypeBuilder]

val staticInit = tBuilder.DefineConstructor(

(MethodAttributes.Static | /*- <-- MethodAttributes.Static, therefore parameterless */

MethodAttributes.Public).toShort,

CallingConventions.Standard,

MsilType.EmptyTypes)

val sicode = staticInit.GetILGenerator()

val instanceConstructor = constructors(sym.primaryConstructor)

// there are no constructor parameters. Assuming the constructor takes no parameter

// is fine: we call (in the static constructor) the constructor of the module class,

// which takes no arguments - an object definition cannot take constructor arguments.

sicode.Emit(OpCodes.Newobj, instanceConstructor)

// the stsfld is done in the instance constructor, just after the super call.

sicode.Emit(OpCodes.Pop)

sicode.Emit(OpCodes.Ret)

}

Coming back to Figure 7 (GenJVM), the emitted static inits don’t look so
simple. As already noticed those initializers are added to any IClass that
containsStaticCtor (an IMethod) and it is that IMethod that gives the body
of the static initializer.

TODO BTW, also in GenJVM, legacyStaticInitializer(cls, clinit) emits in-
structions pretty much similar to GenMSIL’s addStaticInit (with the addition
of setting the static field serialVersionUID). I guess the JVM version evolved
and now the MSIL version has some catch up to do.

In a nutshell, a static initializer is emitted by GenJVM as follows (this is
an example of an ICode-to-ICode transformation, save for the final genCode(m),
you see what I’m saying, platform-specific issues are intermingled with platform-
independent ones):

val oldLastBlock = m.code.blocks.last

val lastBlock = m.code.newBlock

oldLastBlock.replaceInstruction(oldLastBlock.length - 1, JUMP(lastBlock))

if (isStaticModule(clasz.symbol)) {

// call object’s private ctor from static ctor

lastBlock.emit(NEW(REFERENCE(m.symbol.enclClass)))

lastBlock.emit(CALL_METHOD(m.symbol.enclClass.primaryConstructor, Static(true)))

}

9

. . . add serialVUID

. . . bootstrapClass stuff

lastBlock.emit(RETURN(UNIT))

lastBlock.close

method = m

jmethod = clinitMethod

genCode(m)

4.4 dumpMirrorClass

We’re not yet done with Figure 7.
The equivalent GenMSIL functionality can be found in genClass:

if (isTopLevelModule(sym)) {

if (sym.companionClass == NoSymbol)

dumpMirrorClass(sym)

else

log("No mirror class for module with linked class: " +

sym.fullName)

}

TODO

5 Adding constructors

After the long, long, bunch of activities that Figure 7 sparks, comes the following
snippet in GenJVM’s genClass:

if (clasz.bootstrapClass.isDefined) jclass.setBootstrapClass(clasz.bootstrapClass.get)

clasz.fields foreach genField

clasz.methods foreach genMethod /*- <-- constructors are added here */

GenJVM’s genMethod returns without doing anything for an IMethod that isStaticCtor
(we saw in Sec. 4.3 how those methods are handled). For an argument m such
that m.symbol.isClassConstructor, the return type is set to JType.VOID. Other
than that it’s handled like any other method. BTW, the following shows that
Symbol.isConstructor encompasses the mutually exclusive isClassConstructor

and isMixinConstructor.

final def isClassConstructor = isTerm && (name == nme.CONSTRUCTOR)

final def isMixinConstructor = isTerm && (name == nme.MIXIN_CONSTRUCTOR)

final def isConstructor = isTerm && (name == nme.CONSTRUCTOR) || (name == nme.MIXIN_CONSTRUCTOR)

TODO Most of the work being done in addRemoteException appears in fact
platform-independent (adding a Scala-level annotation that later triggers
adding a platform-specific exception to the method exception list). If so, it
could be moved to an ICode-to-ICode transformation, before classfile serial-
ization takes over

Like GenJVM, GenMSIL also adds constructors while iterating over methods (in
createClassMembers0). In essence, as follows:

10

for (m: IMethod <- iclass.methods) {

val methodSym = m.symbol

val ownerType = mtype // should be == to getType(sym.enclClass).asInstanceOf[TypeBuilder]

var paramTypes = msilParamTypes(methodSym)

val attr = msilMethodFlags(methodSym) // i.e. methodSym.tpe.paramTypes.map(msilType).toArray

if (m.symbol.isClassConstructor) {

val constr =

ownerType.DefineConstructor(attr, CallingConventions.Standard, paramTypes)

for (i <- 0.until(paramTypes.length)) {

constr.DefineParameter(i, ParameterAttributes.None, msilName(m.params(i).sym))

}

mapConstructor(sym, constr)

addAttributes(constr, sym.annotations) // not implemented yet, look in GenJVM for inspiration

} else {

. . .

6 Adding fields the GenMSIL way

Fields are added at the very beginning of createClassMembers0:

def createClassMembers0(iclass: IClass) {

val mtype = getType(iclass.symbol).asInstanceOf[TypeBuilder]

for (ifield <- iclass.fields) {

val sym = ifield.symbol

if (settings.debug.value)

log("Adding field: " + sym.fullName)

var attributes = msilFieldFlags(sym)

val fBuilder = mtype.DefineField(msilName(sym), msilType(sym.tpe), attributes)

fields(sym) = fBuilder

addAttributes(fBuilder, sym.annotations)

}

6.1 Adding outerField and a fake local for debugging pur-
poses

As part of genMethod in GenJVM, the snippet shown in Figure 6 is run just be-
fore genCode(m). I’m telling you this because in GenMSIL similar functionality is
missing. An IMethod.symbol is a closure’s apply whenever:

private def isClosureApply(sym: Symbol): Boolean = {

(sym.name == nme.apply) &&

sym.owner.hasFlag(Flags.SYNTHETIC) &&

sym.owner.tpe.parents.exists { t =>

val TypeRef(_, sym, _) = t;

definitions.FunctionClass exists sym.==

}

}

TODO An ICode-to-ICode transformation? Looks like.

11

Figure 6: Adding outerField and a fake local for debugging purposes (Sec. 6.1)

7 Adding methods in GenMSIL

After adding fields in createClassMembers0, methods are next on the line. As we
saw in Sec. 5 (Adding constructors), both methods and constructors are added
while iterating over iclass.methods, only that an if-then-else in GenMSIL makes
a distinction that GenJVM skips. In essence, methods are added in GenMSIL as
follows:

for (m: IMethod <- iclass.methods) {

val methodSym = m.symbol

val ownerType = mtype

var paramTypes = msilParamTypes(sym)

val attr = msilMethodFlags(sym) // i.e. sym.tpe.paramTypes.map(msilType).toArray

if (m.symbol.isClassConstructor) {

. . .

} else {

var resType = msilType(m.returnType)

val method =

ownerType.DefineMethod(getMethodName(methodSym), attr, resType, paramTypes)

for (i <- 0.until(paramTypes.length)) {

method.DefineParameter(i, ParameterAttributes.None, msilName(m.params(i).sym))

}

if (!methods.contains(methodSym))

mapMethod(methodSym, method)

addAttributes(method, methodSym.annotations) // not implemented yet, look in GenJVM for inspiration

}

}

12

7.1 Generics, exception list, and annotations (including
those for parameters)

Just before returning, the GenJVM version of genMethod deals with the following:

addGenericSignature(jmethod, m.symbol, clasz.symbol)

val (excs, others) = splitAnnotations(m.symbol.annotations, definitions.ThrowsClass)

addExceptionsAttribute(jmethod, excs)

addAnnotations(jmethod, others)

addParamAnnotations(jmethod, m.params.map(_.sym.annotations))

TODO Check how much of the above also belongs to GenMSIL but is missing
there. Please notice that genClass in GenMSIL invokes addSymtabAttribute and
addAttributes, the latter based on the iclass.symbol.annotations.

TODO However addAttributes is an empty stub pending implementation.

TODO In GenMSIL, the auto-generation of clone method has to be fixed. The
existing code can be found in genClass.

8 Translating code blocks

Local.index is accessed by both GenJVM and GenMSIL (and by no previous phase),
where it is written in computeLocalVarsIndex(m: IMethod). The GenJVM version
of computeLocalVarsIndex iterates once over m.locals, while the GenMSIL version
first numbers all m.params and then goes on to number (starting with 0) those
m.locals not in m.params.

/** Represent local variables and parameters */

class Local(val sym: Symbol, val kind: TypeKind, val arg: Boolean) {

var index: Int = -1

TODO

9 Items not covered in previous sections

9.1 invokedynamic

Just before emitting fields and methods, the following is invoked in BytecodeGenerator.genClass(IClass):

if (clasz.bootstrapClass.isDefined) jclass.setBootstrapClass(clasz.bootstrapClass.get)

For the classfile being generated, method setBootstrapClass adds as classfile at-
tribute a JBootstrapInvokeDynamic attribute in order to support the invokedynamic

instruction. Two sources of information on that:

• New JDK 7 Feature: Support for Dynamically Typed Languages in the
JVM http://java.sun.com/developer/technicalArticles/DynTypeLang/

• http://download.java.net/jdk7/docs/api/java/dyn/MethodHandle.html

9.2 Forwarders

http://gabrielsw.blogspot.com/2008/01/playing-with-scala-interoperation-with.html

13

http://java.sun.com/developer/technicalArticles/DynTypeLang/
http://download.java.net/jdk7/docs/api/java/dyn/MethodHandle.html
http://gabrielsw.blogspot.com/2008/01/playing-with-scala-interoperation-with.html

http://lampsvn.epfl.ch/trac/scala/ticket/363

http://lampsvn.epfl.ch/trac/scala/ticket/1735

Try -Xprint:icode -Xprint-icode and then javap -verbose for this program:

class SuperTest {

def superMethod() { }

}

class Test extends SuperTest{

def useSuper { print(superMethod()) }

}

object Test{

def main(args: Array[String]): Unit = {

val t = new Test

print(t.useSuper)

}

}

9.3 GenMSIL’s createDelegateCaller(paramType, resType)

10 Conclusions

Bringing GenMSIL up-to-date with respect to GenJVM involves effort that could be
better spent developing a new phase (that I’ll prototype in the next few days) to
emit CLR bytecode directly. The proof of concept will initially leave out some
aspects that can be added easily later (say, generation of method bodies). The
assemblies thus produced can still be explored with the disassembler and with
CFFExplorer. I’m interested in getting early feedback on whether IKVM allows
using CCI seamlessly from the rest of the cross-compiler (previous tests show
no evidence to the contrary). If the prototype works as expected, GenMSIL will
be replaced in the short term using the techniques field-tested in the prototype.

14

http://lampsvn.epfl.ch/trac/scala/ticket/363
http://lampsvn.epfl.ch/trac/scala/ticket/1735

F
ig

u
re

7:
“C

o
d
e

fr
ag

m
en

t”
in

G
e
n
J
V
M
.
B
y
t
e
c
o
d
e
G
e
n
e
r
a
t
o
r
.
g
e
n
C
l
a
s
s
,

ri
g
th

a
ft

er
cr

ea
ti

n
g

th
e

cu
rr

en
t
J
C
l
a
s
s

15

	Following the steps of GenMSIL's elder brother: GenJVM
	From IClass to VM-level type
	Nested types

	Translating type members
	Handling static modules
	Module instance field, the GenMSIL story …
	…and now the GenJVM story
	Static initializers
	dumpMirrorClass

	Adding constructors
	Adding fields the GenMSIL way
	Adding outerField and a fake local for debugging purposes

	Adding methods in GenMSIL
	Generics, exception list, and annotations (including those for parameters)

	Translating code blocks
	Items not covered in previous sections
	invokedynamic
	Forwarders
	GenMSIL's createDelegateCaller(paramType, resType)

	Conclusions

