
Foundations of Path-Dependent Types

Nada Amin∗ Tiark Rompf †∗ Martin Odersky∗
∗EPFL: {first.last}@epfl.ch

†Oracle Labs: {first.last}@oracle.com

Abstract
A scalable programming language is one in which the same
concepts can describe small as well as large parts. Towards
this goal, Scala unifies concepts from object and module
systems. An essential ingredient of this unification is the
concept of objects with type members, which can be ref-
erenced through path-dependent types. Unfortunately, path-
dependent types are not well-understood, and have been a
roadblock in grounding the Scala type system on firm the-
ory.

We study several calculi for path-dependent types. We
present µDOT which captures the essence – DOT stands
for Dependent Object Types. We explore the design space
bottom-up, teasing apart inherent from accidental complexi-
ties, while fully mechanizing our models at each step. Even
in this simple setting, many interesting patterns arise from
the interaction of structural and nominal features.

Whereas our simple calculus enjoys many desirable and
intuitive properties, we demonstrate that the theory gets
much more complicated once we add another Scala feature,
type refinement, or extend the subtyping relation to a lattice.
We discuss possible remedies and trade-offs in modeling
type systems for Scala-like languages.

Categories and Subject Descriptors D.3.3 [Language
Constructs and Features]: Abstract data types, Classes and
objects, polymorphism; D.3.1 [Formal Definitions and
Theory]: Syntax, Semantics; F.3.3 [Studies of Program
Constructs]: Object-oriented constructs, type structure; F.3.2
[Semantics or Programming Languages]: Operational se-
mantics

General Terms Languages, Theory

Keywords calculus, objects, dependent types

[Copyright notice will appear here once ’preprint’ option is removed.]

1. Introduction
A scalable programming language is one in which the same
concepts can describe small as well as large parts. Towards
this goal, Scala unifies concepts from object and module
systems. An essential ingredient of this unification is to
support objects that contain type members in addition to
fields and methods.

To make any use of type members, programmers need a
way to refer to them. This means that types must be able
to refer to objects, i.e. contain terms that serve as static
approximation of a set of dynamic objects. In other words,
some level of dependent types is required; the usual notion
is that of path-dependent types.

Despite many attempts, Scala’s type system has never
been fully formalized. Newer languages like Kotlin and Cey-
lon have shied away from adding a corresponding feature.
Previous type systems that studied similar constructs have
mainly focused on aspects such as implementation inheri-
tance, family polymorphism and virtual classes.

Our motivation is twofold. First, we believe objects with
type members are not fully understood. It is not clear what
causes the complexity, which pieces of complexity are es-
sential to the concept or accidental to a language implemen-
tation or calculus that tries to achieve something else. Sec-
ond, we believe objects with type members are really useful.
They can encode a variety of other, usually separate type
system features. Most importantly, they unify concepts from
object and module systems, by adding a notion of nominality
to otherwise structural systems.

The main contribution of this paper is to liberate path-
dependent types from questions of inheritance, refinements,
etc. and show that a core calculus of objects with type mem-
bers has a clean and intuitive theory, with many desirable
properties including type safety. We demonstrate that much
of the perceived complexity of type members in a full lan-
guage is the result of interaction with other features. In par-
ticular we show that adding another Scala feature, type re-
finement, or giving the subtyping relation lattice structure
breaks the intuitive behavior in at least one aspect and makes
a proof of type safety much harder to establish. We discuss
the resulting trade-offs and possible directions for the type
system designer.

1 2014/9/1

1.1 Motivating Example in Scala
The key use case for path-dependent types is to model nom-
inality through abstract type members, as we show through
an example in Scala inspired by [15].

Nominality through Abstract Type Members An animal
eats food of a certain type that depends on the animal. We
model an animal with a trait Animal that has an abstract
type member type Food. The variable a denotes the self (i.e.
this) object, in the scope defining the trait Animal. So we
can refer to the abstract type member type Food as a type
through a type selection: a.Food – a.Food is a path-dependent
type, in general, a chain, starting with an immutable variable,
of immutable field selections, ending with a type selection.
Notice that the type selection a.Food can appear both covari-
antly, as in the method def gets, where it is the return type,
and contravariantly, as in the method def eats, where it is a
parameter type.

trait Animal { a =>
type Food
def eats(food: a.Food): Unit = {}
def gets: a.Food

}

A cow is an animal that eats grass. A lion is an animal
that eats meat. We can model these two animals by refining
the trait Animal.

trait Grass
trait Meat
trait Cow extends Animal with Meat {
type Food = Grass
def gets = new Grass {}

}
trait Lion extends Animal {
type Food = Meat
def gets = new Meat {}

}

Now, let’s have leo the Lion eat milka the Cow. This is
possible, because Cow is a subtype of Meat:

val leo = new Lion {}
val milka = new Cow {}
leo.eats(milka)

The lion leo can also eat whatever it gets:

leo.eats(leo.gets)

On the other hand, if we have lambda the (unknown)
Animal, then we cannot feed it milka the Cow. After all,
lambda the Animal might well be a Cow – or even, milka
itself:

val lambda: Animal = milka
lambda.eats(milka) // type mismatch

// found : Cow
// required: lambda.Food

Still, lambda can eat whatever it gets:

lambda.eats(lambda.gets)

The path-dependent type arising from the type member
Food drives this example. In the trait Animal, the type Food is
a fully abstract type member. Conceptually, its lower bound
is bottom (the uninhabited type) and its upper bound is top
(the type of all values). In the traits Cow and Lion, we refine
the type member Food – this is allowed, as long as the bounds
in the subtype are not wider than the bounds in the supertype.
On the one hand, the Scala type system admits that leo the
Lion eats milka the Cow, because leo.Food, appearing in a
contravariant position, is lower-bounded by the type Meat
and the type Cow is a subtype of the type Meat. On the other
hand, the Scala type system refuses that lambda the unknown
Animal eats milka the Cow – because lambda.Food, being
fully abstract, is lower-bounded by bottom – and of course,
the type Cow is not a subtype of bottom. Still, lambda the
(unknown) Animal can eat whatever it gets, because that
has type lambda.Food – through subtyping reflexivity, we get
nominality as an emergent property of type members and
path-dependent types.

Composition and Refinement through Subtyping Lattice
Note that even though we have used traits and inheritance
in this example, these mechanisms are not essential here for
the subtyping relations. In Section 2, we show a variant that
uses only path-dependent types and achieves type abstrac-
tion through ascription (up-cast) instead of inheritance.

To keep the core calculus simple, we deliberately choose
not to model inheritance and mixin composition. Still, we
want the core calculus to be rich enough so that we could
express inheritance and mixing composition by translating
them to the core. For this requirement, we find it important
to also explore a calculus with a complete subtyping lattice,
such that meets and joins are defined for all types. With such
a core calculus, programming patterns involving greatest
lower bounds and least upper bounds would be naturally
handled. For example, two animals might want to share a
bite:

def share(a1: Animal)(a2: Animal)(bite: a1.Food with a2.Food) {
a1.eats(bite)
a2.eats(bite)

}

Two lions, leo and simba, can indeed share a bite:

val simba = new Lion {}
share(leo)(simba)(leo.gets) // ok

However, lambda the (unknown) Animal cannot share a
bite with leo the Lion:

share(leo)(lambda)(leo.gets) // error: type mismatch
// found : Meat
// required: leo.Food with lambda.Food

Even without a full subtyping lattice, we will see that
just adding unrestricted refinements breaks some intuitive
properties that we expect of subtyping, such as transitivity
and environment narrowing. The Scala compiler has ad-hoc

2 2014/9/1

restrictions to prevent these issues on an implementation
level, but nobody has a proof that these tweaks are sufficient.

1.2 Contributions
In this paper, we explore the foundations of path-dependent
types. We make the following contributions:

• We distill the essence of path-dependent types with a sim-
ple system of types – µDOTT – comprised of just records
with type members and type selections on variables (Sec-
tion 3). We show that this simple system captures the
essential programming patterns (Section 3.1) and satis-
fies the intuitive and mutually dependent properties of
environment narrowing and subtyping transitivity (Sec-
tion 3.2). Finally, we show that adding type refinement
or extending subtyping to a lattice breaks at least one
of these intuitive properties in their full generality (Sec-
tion 3.3).

• We augment our simple system of types into a full-
fledged but still simple calculus, µDOT, with a term
syntax, term typing, big-step operational semantics, and
value typing. In big-step evaluation, path-dependent
types close over their defining environments, which we
model through a “two-headed” subtyping judgement with
an environment for each type (Section 4).

• We provide a mechanized proof of the type-safety of
µDOT, highlighting the reusable insights and techniques.
The proof is set up with extensibility in mind: being
based on big-step semantics, it does not depend on a gen-
eral environment narrowing property for arbitrary terms,
but only on a weaker statement for paths starting with a
self name, which is required to uphold subtyping transi-
tivity (Section 5).

• We demonstrate a fundamental trade-off between nomi-
nality, refinements, and subtyping transitivity. We discuss
how we can still build sound type systems that combine
these features (but may incur other restrictions) by care-
fully orchestrating multiple subtyping notions. For exam-
ple, we can use a nominal system for type assignment
and “erase” to a transitive system for the proofs. Another
option is to combine a “strong” subtyping notion (with
environment narrowing) with the regular one, if we can
limit regular transitivity to only rely on “strong” but not
regular environment narrowing (Section 7).

We survey related work in Section 8 and offer a conclud-
ing discussion in Section 9.

2. The Essence of Scala
Before formally defining µDOT, we quickly recap how ob-
jects with type members can encode other language features.
This will set the stage for the formal development in Sec-
tions 3 and 4, and clarify the subset of Scala modeled by the
calculi.

type Meat = { def newMeat = new {
type IsMeat = Any type IsMeat = Any

} }
type Grass = { def newGrass = new {
type IsGrass = Any type IsGrass = Any

} }
type Animal = { a => def newCow = new {
type Food type IsMeat = Any
def eats(food: a.Food): Unit type Food = Grass
def gets: a.Food def eats(food: Grass) = ()

} def gets = newGrass
type Cow = { }
type IsMeat = Any def newLion = new {
type Food <: Grass type Food = Meat
def eats(food: Grass): Unit def eats(food: Meat) = ()
def gets: Grass def gets = newMeat

} }
type Lion = {
type Food = Meat val milka = newCow
def eats(food: Meat): Unit val leo = newLion
def gets: Meat leo.eats(milka)

}

Figure 1. Cow and Lion example expressed in Scala subset
that maps to µDOT

We first revisit the introductory example from Sec-
tion 1.1. In this paper, we are not concerned with traits,
classes, or implementation inheritance at all, so we present a
version that does not use these features in Figure 1. This re-
stricted subset of Scala maps directly to µDOT. Each trait
maps to the type it represents and each concrete trait in
addition to a constructor that builds objects of that type.
We express purely nominal subtyping relations through the
presence of certain type members (e.g. IsMeat). Thus, we
use type members to represent all nominal types, not only
some.

In Scala, function literals of type A=>B are represented
as objects of a trait Function1[A,B] that implement a sin-
gle method def apply(x:A):B. This desugaring carries over
directly to µDOT.

2.1 Type Refinement
Subtyping allows us to treat a type as a less precise one.
Scala provides a dual mechanism that enables us to create a
more precise type by refining an existing one.

We could use refinement in the definition of Cow:

type Cow = Animal { a =>
type Food <: Grass
def gets: Grass

}

Here, we are expressing Cow as a more precise version of
Animal.

This example can easily be expressed without refine-
ment, because the definition of Animal is concrete. If the type
Animal were more abstract, for example only upper-bounded

3 2014/9/1

by instead of aliasing its defining record, then the definition
of Cow expressed without refinement would be lacking, as
it would not capture the intention that Cow is a subtype of
Animal.

When refining an abstract type, we speak of “open refine-
ment”. As an aside, if the type Cowwas an open refinement of
an abstract type Animal, then it would also be difficult to cre-
ate a new Cow from scratch, since one would not know how
to conform to its Animal nature.

We can think of refinement as a special case of intersec-
tion, between a type and a record type which defines ad-
ditional members or refines already defined members. One
difference is that a refinement may refer to members of the
type being refined, as if the “self” variable closes over both
types of the intersection, while one usually expects each type
of an intersection to be well-formed independently.

For example, we can express the type Hoarder as a re-
finement of the type Animal, with an additional member that
refers to the abstract type member Food of Animal:

type Hoarder = Animal { a =>
def stash(food: a.Food)

}

To express the type Hoarder by desugaring the refinement
into an intersection type, we need a “self” variable (here a)
to close over the intersection type, in order to refer to the
abstract type member Food of Animal:

type Hoarder = { a =>
Animal & {
def stash(food: a.Food)

}
}

The core µDOT calculus does not support intersections or
refinements. We describe the problems with naive extensions
in Section 3.3 and possible remedies in Section 7.

2.2 Mixins != Intersection Types
In Scala, mixins aren’t quite intersection types. Scala, and
the previous calculi attempting to model it, conflate the con-
cepts of compound types (which inherit the members of
several parent types) and mixin composition (which build
classes from other classes and traits). At first glance, this of-
fers an economy of concepts. However, it is problematic be-
cause mixin composition and intersection types have quite
different properties. In the case of several inherited mem-
bers with the same name, mixin composition has to pick one
which overrides the others. It uses for that the concept of lin-
earization of a trait hierarchy. Typically, given two indepen-
dent traits T1 and T2 with a common method m, the mixin
composition T1 with T2 would pick the m in T2, whereas
the member in T1 would be available via a super-call. All
this makes sense from an implementation standpoint. From
a typing standpoint it is more awkward, because it breaks
commutativity and with it several monotonicity properties.

2.3 Subtyping Lattice
Scala currently lacks a full subtyping lattice, because great-
est lower bounds and least upper bounds do not always exist.
Here is an example:

trait A { type T <: A }
trait B { type T <: B }
trait C extends A with B { type T <: C }
trait D extends A with B { type T <: D }

The least upper bound of types C and D does not have a finite
representation because the type member T can be refined
arbitrarily:

val cond: Boolean
val o: A with B{type T <: A with B{type T <: A with B*...*\} =
if (cond) (new C{}) else (new D{})

On the other hand, the type inference engine must arbitrarily
settle eagerly on a finite type to represent the least upper
bound. This approximation can be a source of inefficiency,
brittleness and impredictability:

val i = if (cond) (new C{}) else (new D{}) // type inferred
val i1 = (i : A with B) // ok
val i2 = (i : A with B{type T <: A with B}) // ok
val i3 = (i : A with B{type T <: A with B{type T <: A with B}})
// error: type mismatch;
// found : A with B{type T <: A with B}
// required: A with B{type T <: A with B{type T <: A with B}}

If the core calculus had classical intersection and union
types, then the type inference engine could simply lazily
construct the least upper bound of types C and D as its union
C ∨ D.

3. Objects with Type Members: µDOTT

To illustrate the semantics of path-dependent types, we start
with a simple system of types, comprising only record types
with type members, and path-dependent types selecting a
member type. Figures 2 and 3 specify its syntax and its
semantics.

x, y, z Variable
S,U, T ::= Type
{z ⇒ D} Record Type
x.L Type Selection

D ::= Member Declaration
type L : S..U Type Member
type L <: U Type Member (Upper-Bounded)

Figure 2. µDOTT : Syntax of Types

The empty record type {z ⇒} is a natural top type
for this system. We will see later that a bottom type is
semantically complex, and so we exclude it from this simple
system. However, we still want to reason about fully abstract
types (conceptually, with lower bound bottom and upper
bound top) – hence, we include the special case of a type

4 2014/9/1

member that is only upper-bounded: the syntax “type L <:
U” defines a type member which is only upper-bounded by
a type U , while the syntax “type L : S..U”, a type member
which is both lower-bounded by a type S and upper-bounded
by a type U .

The semantics of µDOTT is specified through four judge-
ments: subtyping, well-formedness, expansion and member-
ship.

For subtyping, we admit reflexivity on all well-formed
types. Additionally, type selections can be structurally “opened”,
on the left through the upper bound, and on the right through
the lower bound (only if it exists). Record types are directly
compared only with other record types, in order to keep the
self-binding variable in sync.

For well-formedness, in this simple system, we check
“proper” bounds both when they are declared and when they
are used. Though this double-checking restricts the use of
recursion in the types, it also ensures that a type always
expands, which is necessary for environment narrowing.

Subtyping is regular, in that it implies well-formedness.
In REC-<:-REC, we explicitly ensure that the record type
on the right-hand side is well-formed, because the induction
hypothesis of regularity only ensures that the right-hand
declarations are well-formed in a context where the self type
is bound to the left-hand record type. This is not enough:
we want to rule out right-hand record types referring to
members that only exist on the (presumably more precise)
left-hand side.

A type expands to all the declarations in the record type
obtained by following the upper bounds of type selections
(if any) until reaching a record type. In the expansion judge-
ment, Γ ` T ≺z D, the subscript z denotes the self variable
in the declarationsD. Membership looks up a particular dec-
laration in the expansion.

Though we later discuss why augmenting this simple sys-
tem of types with a subtyping lattice is problematic, we
would like to point out here that it also can offer an econ-
omy of concepts in at least two aspects. First, introducing
a bottom type nullifies the need for the special case of type
members that are only bounded from above. Second, inter-
section types enable declarations to be specified and checked
separately, so only membership, not expansion, is required.
Surprisingly, membership need not be related to subtyping –
the only requirement on membership is uniqueness.

3.1 Nominal Abstraction through Ascription
A record type S is a subtype of a record type U if it defines at
least all the type members of U, and for each one of those, the
bounds it specifies are no wider. This requirement matches
our zoo example of section 1.1, where the supertype Animal
specified the Food type member with fully abstract bounds,
and the subtype Cow narrowed the Food type member to alias
the type Grass. Let’s define such record types in µDOTT –
note that we use abbreviations, not part of the object lan-

guage, for convenience, to avoid repeating the same record
types.

abbrev Grass = { g => type IsGrass: {id => } .. {id => } }
abbrev Animal = { a => type Food <: { f => } }
abbrev Cow = { a => type Food: Grass .. Grass }

Our semantics enables us to establish the subtyping
proposition Cow <: Animal (via REC-<:-REC). Assuming the
binding a: Cow, we can establish the subtyping propositions
Grass <: a.Food <: Grass (via <:-TSEL and TSEL-<:), but
not assuming the binding a: Animal. So if we have a Cow a,
we can upcast it to an Animal, and hide the fact that it can eat
Grass, but still be able to feed it a.Food nominally (via REFL)
– a form of data abstraction.

3.2 Environment Narrowing and Subtyping
Transitivity

The µDOTT system satisfies a number of intuitive and gen-
eral properties. We discuss two important ones next.

Environment Narrowing If we have an Animal, and later
find out it is a Cow, this should not invalidate any findings
we made about the Animal – that is anything we prove
assuming a: Animal should still hold assuming a: Cow. More
generally, anything proved assuming the binding x: U should
still hold assuming the binding x: S if the type S is a subtype
of the type U. This intuitive monotonic property is known as
environment narrowing.

Environment narrowing plays a key role in type preserva-
tion proofs via small-step operational semantics. With path-
dependent types, environment narrowing is also needed to
establish subtyping transitivity. Furthermore, the proof of
environment narrowing uses subtyping transitivity, so the
two proofs need to be set up through a mutual induction.

Γa, (x : U),Γb ` T <: T ′

Γa ` S <: U

Γa, (x : S),Γb ` T <: T ′
(<:-NARROW)

Subtyping Transitivity Subtyping transitivity is another
intuitive property.

Γ ` S <: T , T <: U

Γ ` S <: U
(<:-TRANS)

Since types may be path-dependent types, we rely on
environment narrowing to establish subtyping transitivity. In
a chain, Γ ` S <: T and Γ ` T <: U both derived by
REC-<:-REC, we prove Γ ` S <: U through narrowing the
right-hand assumption of the premises to match the left-hand
assumption.

Even in this simple type system, the proof of environment
narrowing and subtyping transitivity is not trivial. We ex-
plain the problems and our proof methodology in Section 6.

5 2014/9/1

3.3 No Naive Subtyping Lattice or Refinements
The µDOTT system is set up carefully, so that well-formed
type members always have “good” bounds, i.e. the lower
bound is always a subtype of the upper bound. This restric-
tion is essential for subtyping transitivity, in order to con-
clude that S <: U whenever S <: x.L (via TSEL-<:) and
x.L <: U (via <:-TSEL).

In general, subtyping allows us to treat a type as a less
precise one. We would like to add a dual mechanism that
would enable us to create a more precise type by refining an
existing one. Where subtyping allows us to widen the bounds
of a type member, refinement would enable us to narrow its
bounds.

The situation becomes quite complicated if we allow
open refinement, i.e. combining refinements from different
places. If type bounds are narrowed to two disjoint ranges,
the composition would no longer be well-formed. Unfortu-
nately this situation is not easy to determine. The particu-
lar problematic case occurs when refining a path-dependent
type x.L. Assuming a certain type T for x, a refinement U of
T might look valid, but environment narrowing tells us that
we can replace the binding of x with type S <: T , which
might be a refinement of T that is incompatible with U .

To make the discussion more concrete, let us consider
extending the subtyping relation of µDOTT to a lattice by
adding bottom and top types, and classical intersection and
union constructors (∧ and ∨). Intersection types are a gen-
eral encoding of open refinements.

As an example, consider the type abbrev T = a.Food ∧ Grass.
Assuming a is an Animal, this resulting type is at most inhab-
ited by all things Grass. Assuming b of type T, b.IsGrass
would have perfectly good bounds. But suppose, we now
know that the object a furthermore is a Lion, and a.Food is
then Meat, defined as follows:

abbrev No = { n => type IsNot: {id => } .. {id => } }
abbrev Meat = { g => type IsGrass: No .. No }
abbrev Lion = { a => type Food: Meat .. Meat }

We now know that the type T is unrealizable, and as-
suming b: T, the type selection b.IsGrass would have “bad”
bounds: the lower bound would be { id => } while the up-
per bound would have a type member IsNot – so clearly, it
would not be a supertype.

What went wrong? Once we introduce a subtyping lattice,
we can discover that we are in an impossible situation only
after narrowing, when more precise information about a
variable is available. The canonical impossible situation is
a variable of type bottom, and it is completely unclear what
bounds a type selection on a bottom variable should assume.

What bounds should a type selection on a bottom variable
be? Since we can always narrow the type of a variable to
bottom, the bounds should be whatever they were before
the narrowing – so perhaps, arbitrary as long as “good”?
The problem now is that we have no leverage for subtyping

transitivity when the middle man is x.L assuming x has type
bottom. Indeed, the arbitrary bounds used to derive S <: x.L
would bear no relation to the arbitrary bounds used to derive
x.L <: U, so how would we confirm that S <: U?

Perhaps, we could admit that the lattice collapses in an
unrealizable context, but then we would need to be able to
detect unrealizable contexts and explicitly permit even more
collapsing. Otherwise, it is possible to get into a situation
where narrowing an unrealizable context breaks an estab-
lished proposition.

We conclude the discussion at this point by noting that
there is no easy way to add refinements to our type system,
and that any extension in this direction will likely sacrifice
general environment narrowing. Note however that this does
not rule out the possibility of weaker statements, for example
a form of environment narrowing that is just enough to carry
the transitive case of REC-<:-REC. We will come back to
these considerations in section 7.

4. The µDOT Calculus
We now complete the system of types µDOTT to a full-
fledged calculus µDOT by adding a term syntax, term typ-
ing, a big-step operational semantics and value typing. Fig-
ures 4, 5 and 6 specify the additions to syntax and (static and
dynamic) semantics.

D ::= . . . Member Declaration
def m : S → U Method Member

s, t, u ::= Term
x Variable
new (z ⇒ I) Object Creation
t.m(t′) Method Invocation

I ::= Member Initialization
type L : S..U Type Member
type L <: U Type Member (Upper-Bounded)
def m(x : S) : U = t Method Member

v ::= Value
<z ⇒ E in H> Closure

E ::= Run-Time Member Definitions
def m(x) = t Method Member

H ::= x : v Run-Time Environment

Figure 4. µDOT: Syntax

Regarding syntax, we augment record types with decla-
rations for method members. Our term language comprises
variables, object creation expressions, and method invoca-
tions. Our values are closures, which package method defi-
nitions and the lexically scoped run-time environment of the
object definition site.

Regarding semantics, the typing of terms is syntax-
directed (one case per shape of terms), plus an additional
non-algorithmic subsumption case which applies to any
term. New object creation expressions ensure that the type
resulting from the initialization is well-formed and that the

6 2014/9/1

method definitions type-check, while the self-binding vari-
able and the parameter are in scope. For method invocations,
note that we avoid membership, but rely on subsumption to
find a record with exactly the method declaration needed –
since membership is only defined on variables, not arbitrary
terms.

Now, that we have a full-fledged calculus, let us illustrate
some of the possibilities offered by path-dependent types.
In the examples, we use syntactic sugar for let-binding a
variable: val x : T = tx; (t : U) desugars into (new (_ ⇒
def app(x : T) : U = t)).app(tx).

By widening the bounds of a type member, we can ab-
stract from implementation details. At one extreme, we can
widen the bounds of a type member so that it is only upper-
bounded, rendering its type selection nominal and control-
ling the creation process of objects of this nominal type.
Here is an example:

val o: {o =>
type A <: {a => }
def m(x: {a => }): o.A

} = new (o =>
type A: {a => } .. {a => }
def m(x: {a => }): o.A = x

);
o.m(new(a =>)): o.A

From the inside of the object creation of o, the type
member A is an alias for the empty record type, the top type.
From the outside, the bounds are widened, so that it can
no longer be opened from below. Thus, from the outside,
the only way to get an instance of the type o.A is to call
the method o.m. What’s surprising is that this method o.m
is only the identity function, and yet, from the outside, its
argument type is not a subtype of its return type. In a small-
step setting, invoking such an identity method would violate
type preservation!

This example suggests that preservation of types and
preservation of type abstractions are incompatible, at least
without some restrictions on where path-dependent types
can appear. This problem has been studied in the context of
ML modules [6, 20]. Here is an example similar to the one
discussed above in Standard ML [13, 23], using an opaque
ascription:

signature O = sig
type A
val m : int -> A

end

structure MyO :> O = struct
type A = int
fun m(x) = x

end

MyO.m(10): MyO.A; (* ok *)
10: int; (* ok *)
10: MyO.A; (* error *)

MyO.m(10): int; (* error *)

In our formalism, we use a big-step operational seman-
tics, which simplifies relating path-dependent types. Still,
we will see in section 5 that we still need to relate path-
dependent types across different lexical environments.

5. Type Safety of µDOT
We prove the type-safety of the µDOT calculus. Our ap-
proach is based on Siek’s three easy lemmas [28], which
were inspired by the vc paper [11]. The formal development
is available online at oopsla14.namin.net.

We first highlight our proof of type preservation, showing
that if a term type-checks and evaluates to a value, then that
value type-checks in agreement. To prove full type-safety,
type preservation is not enough. We extend our evaluation
relation into a total relation by explicitly specifying the time-
out and stuck cases. Figure 7 presents such an extended total
evaluation relation. Given this extended total evaluation re-
lation, we show that if a term type-checks, then, given any
evaluation (and we can always get one for a given n, since
the evaluation is total), the result of the evaluation is either
a timeout or a value which type-checks in agreement – but
crucially, the result is not stuck.

Γ ` t : T
H : Γ

H ` t ⇓ v

Γ ` v : T
(PRESERVATION)

Γ ` t : T
H : Γ

H ` t ⇓n r
(r = timeout)|(r = v & Γ ` v : T)

(SAFETY)

Being based on big-step semantics, the proof does not de-
pend on a general environment narrowing property for typ-
ing of arbitrary terms, which would be unlikely to hold in
extensions of the calculus. Instead, it is centered around a
collection of inversion lemmas that rely only on subtyping
transitivity to factor out subsumption introduced by SUB and
VSUB. Thus, the proof model carries over to possible exten-
sions of µDOT that support only a limited environment nar-
rowing statement to carry the REC-<:-REC case in subtyp-
ing transitivity but not environment narrowing in its general
form.

Once all the inversion lemmas described in section 5.2
are in place, the proof of type preservation is rather straight-
forward, but one additional mechanism is needed when in-
voking a method from a closure, which we highlight next.

5.1 “Two-Headed” Subtyping across Environments
When we invoke a closure, we evaluate its body in the run-
time environment from the closure’s definition site, not its
site of invocation. Therefore, since variables are lexically

7 2014/9/1

scoped, we may have different run-time – and hence, static
– environments at each site. With path-dependent types, not
only terms depend on the environment but also types. Thus,
when we invoke a closure, we need to relate the parame-
ter type of the definition site with the argument type of the
invocation site. Likewise, we need to relate the type of the
value returned from the method body with the expected re-
turn type at the invocation site. Effectively, a type closes over
its defining environment, and subtyping needs to relate two
types with respect to their two corresponding environments.

This leads us to a two-headed subtyping relation with an
environment on each side:

Γ ` T <: T ′ a Γ′

If Γ = Γ′, we continue to write Γ ` T <: T ′.
Most subtyping rules extend straightforwardly to two en-

vironments – the only tweaking is to identify and correctly
relate self-variables across environments: when extending
each of the two environments with a self-variable, we record
that they are related, and then, we exploit this information
when comparing type selections through reflexivity.

For the semantics of typing values, we allow subsumption
across environments (rule VSUB in Figure 5), which pre-
cisely models the method call case. The inversion lemmas
crucially depend on transitivity of the two-headed subtyping
relation to resolve the subsumption case.

5.2 Inversion Lemmas
Except for the two-environment trick to resolve path-dependent
types of different lexical scopes, our proof of type-safety
looks otherwise unsurprising for a system that combines
big-step semantics and subtyping. In particular, we use in-
version lemmas as expected to factor out subsumption. In
summary, the proof of type safety is by induction on the
evaluation, and each case in the evaluation is solved through
an inversion lemma. Each inversion lemma captures the es-
sential constraints of the typing derivation for a particular
shape of terms – since evaluation is syntax-directed, there
is an inversion lemma for each case in the syntax of terms.
Each proof of an inversion lemma proceeds by induction on
the typing derivation – there are always two cases to con-
sider: the particular base case for this shape of term, and
the subsumption case. Since evaluating an application relies
on the function evaluating to a closure, we also need an in-
version lemma on value typing for this case. The inversion
lemma are described in Figures 8 and 9.

6. Proving Transitivity and Narrowing
We have stated in Section 3.2 that µDOT enjoys the proper-
ties of environment narrowing and subtyping transitivity:

Γa, (x : U),Γb ` T <: T ′

Γa ` S <: U

Γa, (x : S),Γb ` T <: T ′
(<:-NARROW)

Γ ` S <: T , T <: U

Γ ` S <: U
(<:-TRANS)

While simple to state, proving these lemmas is actually
quite involved. We outline several failed proof attempts be-
low before describing our final successful proof strategy.

Attempt 0: Independent Proofs This clearly doesn’t work:
narrowing and transitivity are mutually dependent.

Since types may be record types, subtyping transitivity
relies on environment narrowing. In a chain,

{z ⇒ D1} <: {z ⇒ D2} <: {z ⇒ D3}

both derived by REC-<:-REC, we need to prove {z ⇒
D1} <: {z ⇒ D3} through narrowing the right-hand

assumption of the premises

z : {z ⇒ D2} ` {z ⇒ D2} <: {z ⇒ D3}

to match the left-hand assumption

z : {z ⇒ D1} ` {z ⇒ D2} <: {z ⇒ D3}

and then apply transitivity again to derive

z : {z ⇒ D1} ` {z ⇒ D1} <: {z ⇒ D3}

which completes the case.
Narrowing also uses transitivity: consider T <: p.L with

bounds S..U that are narrowed to S’..U’. We have T <: S and
S <: S’ and derive T <: S <: S’.

Attempt 1: Induction on Subtyping Derivations We can
try a proof by induction on the subtyping derivations in
the premise. For the termination measure, we use the size
of the derivations – at least one of them decreases when
invoking an induction hypothesis. To deal with derivations
in contravariant position, we keep a notion of polarity so
that we can switch the two derivations, and the polarity to
maintain a decreasing measure.

Problem: both the covariant and contravariant version
must use narrowing on the right hand derivation, but that
one only gets smaller in one of them.

Attempt 2: Induction on the Middle Type For Γ ` T1 <:
T2 <: T3, we can try induction on T2. This is the strategy
commonly employed for proofs of system F<:, which also
requires a mutually inductive proof for transitivity and nar-
rowing (see e.g. the PoplMark Challenge [3]).

Problem: the key difference to F<: is that there, only
subtyping rules of the form X <: T exist but not T <: X ,
for type variables X .

In µDOT however we have both variants, and we need to
handle the case T1 <: p.L <: T2, the analogue of which
cannot occur in F<:. Given bounds S..U , we obtain from the
premises derivations T1 <: S <: U and S <: U <: T2, but
we cannot use induction on them because neither of S nor U
is a syntactic subterm of p.L.

8 2014/9/1

Attempt 3: Induction on Well-Formedness Witness In-
stead of induction on T2, we could do induction on Γ `
T2 wf. Well-formedness of a type selection can include well-
formedness of the bounds, so the previous case goes through.

Problem: we run in cycles.
Since only finite expansions are ever needed in practice, a

possible solution (which we have explored but not finished)
may be to parameterize subtyping over the maximum deriva-
tion depth needed.

Attempt 4: Delaying Transitivity Define Γ ` T <:? T ′

that admits transitivity as an additional axiom. The narrow-
ing proof becomes independent of transitivity.

Problem: inversion lemmas become much harder – for ex-
ample, relating method members in VINV-CLO-M, because
one cannot reason structurally on subtyping derivations.

Success: Push-Back of Transitivity Axioms From T <:?

T ′ compute T <: T ′ by pushing top-level uses of the
transitivity axiom one level down into the derivation.

The issue is again that T <:? T ′ might resolve to T <:?

p.L <:? T ′ through the transitivity axiom, which, assuming
bounds S..U leaves us with a chain T <:? S <:? U <:? T ′

whose elements may again use transitivity at the top level.
Our solution involves two separate steps. First we define

a one-step inversion that takes T1 <: T2 and T2 <: T3 where
T2 6= p.L and returns T1 <: T3.

As a second step, we tackle chains resulting from T1 <:?

Tn. We start with Tn and accumulate all the primitive steps
in a list, i.e. successively build up a representation of T1 <:
. . . , <: (Tn−2 <: (Tn−1 <: Tn)) from the right. Whenever
we add a new derivation on the left, we check if we are in a
T1 <: p.L <: T2 situation and replace p.L with its bounds.

This gives us a list of steps without p.Ls in the middle,
so we can just go through and reduce with the one-step
inversion to obtain the final T1 <: Tn result.

Outlook This layered proof structure seems well-suited to
extensions. The main requirement is that we can’t narrow to
types that don’t expand.

The hope is that any realizable type, i.e. type that can
be assigned as a result of an object creation, must expand.
Furthermore, for soundness, the static expansion relied on to
type-check an object creation must be exact – see the aside
in the discussion of open refinements in Section 2.1.

For extensions to µDOT, in big-step style, we might thus
get away with a restricted form of narrowing, which is only
valid when narrowing to a realizable context, guaranteed to
be realizable because it is derived from typing values with
precisely known expansions.

In a small-step style proof, the trade-offs might be dif-
ferent: one might admit unrestricted narrowing and confine
transitivity pushback to realizable contexts. Perhaps, one
way to achieve this option would be to admit subsumption
anywhere – even on paths of type selections – except where
precise expansion is required during type-checking of ob-

ject creations. Then, narrowing would be trivial but transi-
tivity would need to be carefully controlled: in the body of
a method with an unrealizable parameter type, it might be
possible to collapse the lattice by deriving > <: ⊥ or other
absurd relations through the subsumption of bad bounds
to incompatible good bounds via transitivity. For example,
take a parameter z of unrealizable type {z ⇒ type X :
>..>} ∧ {z ⇒ type X : ⊥..⊥}. Now, within the body,
we could derive > <: ⊥ via transitivity on z.X: the judge-
ment > <: z.X subsuming z to {z ⇒ type X : >..>} and
the judgement z.X <: ⊥ subsuming z to {z ⇒ type X :
⊥..⊥}. Clearly, the proof of transitivity pushback cannot
(and should not) be extended to such inconsistent middle
men.

7. Reconciling Nominality and Refinements
The µDOT calculus supports nominality but not general re-
finement. We can also build sound type systems with gen-
eral refinements but without nominality. Building a sound
calculus which combines both features is harder. Indeed, as
detailed in Section 6, we cannot expect subtyping to enjoy
the intuitive properties of narrowing and transitivity in all
contexts, once extensions can express unrealizable types or
incompatible subtypes.

We explore the design space and trade-offs around sup-
porting both nominality and general refinements in the same
calculus. We first define these two features, and then discuss
the tension between them.

Nominality As in µDOT, a type selection can be treated
nominally, based on its name, even in the context of sub-
typing types where the selected type member has dif-
ferent bounds. In particular, this subtyping proposition
should hold as it does in µDOT:
{ z => type A: X .. X; def id(z.A):z.A }<:
{ z => type A <: { a => }; def id(z.A):z.A }
where X is a valid but irrelevant type. Notice the resem-
blance with establishing that Cow is a subtype of Animal.

General Refinements If we admit types {z ⇒ T ∧ T ′} in-
stead of just {z ⇒ D} we obtain general open refine-
ments, powerful enough to express types arising through
OOP constructs like inheritance and mixins.

Historically, we developed our understanding of the de-
sign space by iteratively adding features in a bottom-up fash-
ion. In our exploration of general refinements, we started
with a calculus that had only one subtyping relation, which
was two-headed to support the typing of both terms and val-
ues as explained in Section 5.1.

Given that setting, essentially, we have two choices for
defining the REC-<:-REC rule in subtyping, assuming we
have general refinements. We describe the choices starting
with the empty context for exposition.

9 2014/9/1

z : T ` T <: T ′ a z : T ′

{z ⇒ T} <: {z ⇒ T ′}
(A)

z : T ` T <: T ′ a z : T

{z ⇒ T} <: {z ⇒ T ′}
(B)

The choice boils down to whether we use the right-hand
type (A) or left-hand type (B) for the self in the right-hand
context. Changing nothing else, choice (A) achieves transi-
tivity but gives up nominality because reflexivity no longer
applies to z.A once the environments on each side diverge;
choice (B) achieves nominality but gives up transitivity be-
cause environment narrowing no longer applies once we ad-
mit intersection types. Notice that µDOT makes choice (B)
without giving up transitivity, because narrowing applies.

Now, let us go ahead with choice (A), but “patch” the
calculus to admit z : T ` z.A <: z.A a z : T ′

to restore reflexive nominality. This naive patch breaks
transitivity. Suppose T defines type A: S .. U and T’ de-
fines type A: S’ .. U’ with strictly wider bounds. Then,
S <: z.A(S .. U) <: z.A(S’ .. U’), but we cannot show
S <: z.A(S’ .. U’) since S’ <: S, not the other way around!
We can “patch” once more by ignoring lower bounds, and al-
ways comparing upper bounds. Then, we give up nominality
as type ascription.

Two Kinds of Subtyping: Static and Dynamic Because
our calculus combines a big-step operational semantics with
a type system based on subtyping, we discovered a way
out of this dilemma: we can use different subtyping seman-
tics when typing expressions (statically) and values (dynam-
ically). For expressions, we want to be strict in order to
achieve nominality, even at the expense of transitivity. For
values, we want to be lenient, in order to ensure transitivity.
In such a setting, we mechanically proved that the calculus
is type-safe as long as the static strict semantics imply the
dynamic lenient semantics.

For example, we can apply the final “patch” that ignores
lower bounds only to the lenient dynamic calculus, so that
the strict static calculus still has nominality as type ascrip-
tion. However, this system can only be proven sound, if the
first “patch” that restores reflexive nominality is admitted
only if the bounds on the left-hand side are no wider than
the bounds on the right-hand side. Hence, reflexive nominal-
ity is supported only in covariant position, which is rather
limiting. With additional machinery to flip the bounds in
contravariant positions, it might possible to restore full re-
flexive nominality using the same underlying technique. In
short, the key take-away is that the semantics of subtyping
need not be the same for terms and values; they can be more
relaxed when typing values than when typing terms without
affecting soundness.

Another avenue to try is the following: value typing can
be more precise than term typing, because the exact run-time
environments are known. Instead of using a static approxi-

mation of a run-time environment, we can actually construct
a precise and unique static environment from a run-time en-
vironment, given the precise and unique static expansion of
each value. We can then use this precise static environment,
known to be realizable, to ensure that all static approxima-
tions of it are compatible. This way, we can take subtyping
derivations coming from inversion lemmas of term typing –
defined on an approximate static environment – and narrow
these subtyping derivations to the more precise static envi-
ronment constructed from the value environment.

Two Kinds of Subtyping: Strong and Weak Let us now
take a step back and consider an alternative point in the
design space, which again uses two subtyping relations but
in a different way.

First, we observe that our type safety proof does not rely
on a general environment narrowing statement, but only on a
single use of environment narrowing in one particular case of
the subtyping transitivity proof: the middle type is a general
refinement and both subtyping subderivations are derived by
REC-<:-REC.

Now, the idea is to strengthen the premise of REC-<:-REC
to require just as much additional fuel to enable environment
narrowing in this particular case. This is where the second,
alternative subtyping relation comes in: instead of using the
regular subtyping relation <: we can re-define REC-<:-REC
to use a stronger relation <<: in the premise:

z : T ` T <<: T ′

{z ⇒ T} <: {z ⇒ T ′}
(C)

If we are able to define <<: such that it is transitive, sup-
ports environment narrowing, and implies regular subtyping
<:, we achieve transitivity of <: by design.

A necessary requirement for environment narrowing of
<<: is implied by the original definition of REC-<:-REC: if
T <<: T ′, then for all (non-method) declarations D′ in (the
expansion of) T ′, there must exist a declaration D in (the
expansion of) T , such that the latter subsumes the former,
z : T ` D <: D′.

We conjecture that, for µDOT extended with a subtyp-
ing lattice, this requirement may also be sufficient and could
be taken as a definition of <<:, provided that expansion for
intersection types is defined appropriately. This conjecture
seems in line with the realizability requirements for narrow-
ing defined at the end of Section 6.

Resolution In some sense, the two-headed subtyping judge-
ment as we envisioned it at the outset was trying to achieve
too much. On the one hand, it was intended to opaquely
relate types across distinct environments to reconcile each
definition site of a closure with some call site. On the other
hand, it was also trying to maintain the notion of nominality
through reflexivity of path-dependent types of Section 3.1,
in the face of new extensions. However, we cannot expect

10 2014/9/1

“environment hopping” to be sensibly defined, when a su-
pertype might have two incompatible subtypes – which is
already the case in µDOT, for example: let the supertype
be U = {z ⇒ type X <: >} and the two subtypes be
S1 = {z ⇒ type X : >..>} and S2 = {z ⇒ type X :
{x ⇒ def m : > → >}..{x ⇒ def m : > → >}}. Now, it
wouldn’t be valid to hop from G2 = z : S2 to G1 = z : S2

via GU = z : U , in the subtyping chain ∅ ` {x ⇒ def m :
> → >} <: z.X a G2, then G2 a z.X <: z.X ` GU ,
and finally GU a z.X <: z.X ` G1 as the transitive con-
clusion ∅ ` {x ⇒ def m : > → >} <: z.X a G1 would
not be sound.

The layered proof structure of Section 6 resolves this dual
use of the two-headed subtyping judgement by limiting its
use to the first intention – relating distinct environments.
Therefore, reflexivity through nominality only holds when
the two environments are exactly the same. Then, hopping
between distinct approximations of the same run-time en-
vironment is allowed only through narrowing to the most
precise environment (which is known to be realizable even
in extensions as it is constructed from typing values), thus
ensuring compatibility of environments across several hops.

8. Related Work
ML Module Systems Dependent types have been known in
programming languages at least since the ML module sys-
tem. The original approach to modules in SML [21] could
expose the implementation of a type member in a transpar-
ent binding, but equations between type members of an ab-
stract signature were only introduced by Harper and Lillib-
ridge [14] and Leroy [19]. Unlike the calculi studied here,
their systems are stratified, i.e. definitions can only depend
on earlier definitions in the same type, which allows to en-
sure well-formedness of definitions by construction. Hence,
recursion is not allowed. Also, type bounds are not consid-
ered. Similarly to Scala’s approach, the MixML language [8]
drops the stratification requirement and also allows modules
as first class values.

Path-dependent Types in OO Languages In object-oriented
programming languages, path-dependent types were first
proposed for family polymorphism by Ernst [9]. Formal
treatments of them in object-oriented languages have been
studied by Odersky et al.[7, 26]. Their models are consider-
ably more complicated than the setting studied here because
they also need to express inheritance including mixin lin-
earization and some notion of classes.

Other research generalizes this even further by introduc-
ing virtual classes [10, 12, 25]. Virtual classes abstract not
only over the type, but also over classes and inheritance: in
a class extension, the actual superclass used at run-time can
be a subclass of the class that appears statically in the ex-
tends clause. This feature is powerful but also hard to con-
trol, because the unknown superclass might introduce bind-
ings which conflict with those in the subclass. Consequently,

type systems for virtual classes either need additional restric-
tions or more type machinery to control these interactions.

The Tribe calculus [5] builds an ownership type sys-
tem [4] on top of a core calculus which models virtual
classes. The soundness proof for the core calculus seems to
be tied to the ownership types system.

The vc calculus [11] models virtual classes with path-
dependent types. vc restricts paths to start with “this”, though
it provides a way (“out”) to refer to the enclosing object. In
µDOT, any variable including self-binding variables can take
part in a type selection. Like µDOT, vc is defined using big-
step evaluation rules.

Foundations for Scala Since the early days of Scala,
grounding its type system on firm theory has been an area of
active research, and several calculi were proposed to capture
various aspects of the language. Alas, over the course of 10
years no verifiable type safety proof for any of these systems
has been established.

Notable previous efforts include νObj [26], Feather-
weight Scala [7] and Scalina [24]. The νObj calculus re-
lies on features beyond the full Scala language, for example
classes as first-class values, and contains a comparatively
large type language, including distinct notions of singleton
types, type selections, record types, class types and com-
pound types, which make νObj rather unwieldy in practice
and not very suitable to extensions. In particular, subtyp-
ing does not provide unique upper or lower bounds, and
mixin composition is not commutative. Type checking in
νObj was shown to be undecidable through an encoding of
the F<: system. The νObj paper [26] claims a type sound-
ness result, but there is no machine-verified proof. Feath-
erweight Scala was an attempt at a calculus with decidable
type checking, but soundness was explicitly left as future
work [7]. Scalina [24] was proposed as a formal underpin-
ning for introducing higher-kinded types in Scala. Among
other constructs, it contains concepts such as un-members,
un-types and un-kinds to model contravariant refinements.
Soundness of Scalina has not been established.

All these previous systems have in common that their
models are considerably more complicated than the setting
studied here, in particular due to the choice of including par-
ticular notions of classes, implementation inheritance and
mixin linearization. Due to this complexity, none of the pre-
vious formal models proved suitable as a core calculus that
could serve as a basis for mechanized proofs of various ex-
tensions, and more importantly, none of the previous calculi
provided much insight into why type soundness was hard to
prove.

The Essence of Path Dependent Types Compared to pre-
vious work that aimed to describe an existing language more
or less precisely, µDOT focuses on the essence of path-
dependent types and nothing else. It reduces complexity as
far as eschewing fields in the term language, and having
only variables as paths. Despite and due to such restrictions,

11 2014/9/1

µDOT is more general than previous models as it does not
assume a class-based language or any other particular choice
of implementation reuse.

Previous work [2] on a core calculus for path-dependent
types based on a small-step operational semantics with a
store to identify objects explained the difficulty of relat-
ing paths at different stages of reductions. In a big-step ap-
proach, the challenge is to bootstrap self-references without
compromising expressivity: since values are closures – if a
closure now has fields initialized by terms during object cre-
ation, those terms need to be evaluated before the object.

This present work has provided valuable insights why
previous efforts to formalize the Scala type system have
failed, and it shows that a core calculus, without the baggage
of a full language, has a clean and intuitive theory.

To the best of our knowledge, µDOT is the first calculus
with path-dependent types that has a fully mechanized type
soundness proof.

9. Conclusion and Future Work
We conclude our exploration of path-dependent types with a
few lessons from the past, and avenues for the future.

Process We have tried various approaches for designing a
core calculus for path-dependent types, and proving it sound.
In total, we went through about 30 variations of mecha-
nized models. At the risk of oversimplifying, we classify
the approaches in two dimensions: top-down vs. bottom-up
and proof-driven vs. query-driven. Top-down means start-
ing with the full calculus, and bottom-up means adding the
wanted features one-by-one. Proof-driven means trying to
show some general result about the calculus, and query-
driven means trying out some particular examples. Both
when working bottom-up or top-down, we found it essential
to alternate proof-driven and query-driven phases; however,
these phases play different roles in each approach. In a top-
down approach, we go proof-driven until we get stuck, and
then we go query-driven to pinpoint a counterexample. In a
bottom-up approach, we go query-driven to understand the
expressivity and limitations of what we proved. Switching
from a top-down to a bottom-up approach resulted in more
reusable insights in terms of which feature combinations are
problematic.

Tools During our journey, we have used many tools, in-
cluding Coq [22], Dafny [18], Twelf [27], Redex [17]. Dafny
worked well for exploring the proof structure top-down in an
efficient high-level way. Redex worked well for query-driven
phases, and pinpointing counterexamples. Twelf worked
well in a bottom-up process alternating proving and query-
ing – and surprisingly, in our current workflow, we use
Twelf almost exclusively (almost, because for queries, we
use Twelf as a backend only by tacking a frontend writ-
ten in Scala to translate examples to the AST used in the
Twelf models). Though Twelf is rather low-level, being a

proof checker more than a proof assistant, in a bottom-up
process, it is insightful to see exactly which steps of the
proof break when adding a new feature. Though Twelf’s
query engine is rather simple, not to mention incomplete,
we were surprised by the examples we were able to express
after careful re-ordering of the clauses despite using bla-
tantly non-algorithmic rules like subsumption. It has also
been insightful to sometimes get a confirmed exhaustively
checked negative result for a query, showing that it is inex-
pressible in the model. More importantly, we found it crucial
to use the same system for proving and querying, not only
for convenience but especially for confidence.

Big-Step Operational Semantics We believe that big-step
operational semantics deserves to be more widely used. It
is often dismissed because of the tedious requirement of
explicit “stuck” cases. In practice, we find it convenient to
prove just preservation first, and then extend the preservation
lemma to a full type safety theorem in a separate iteration,
by adding the necessary step indexes. We also find that when
working bottom-up on the type system, the evaluation stays
the same, and so the core proof remains the same – what
changes are the proofs of the subtyping properties such as
environment weakening and transtivity.

In small-step operational semantics based on rewrit-
ing [31], the substitution lemma is crucial and often tricky.
The substitution model is nice conceptually, but may not
actually correspond to evaluation of programs. The main
difficulty is assigning types to partially evaluated terms – an
almost artificial requirement if the end goal is to show that
“well-typed terms don’t get stuck”.

Foundations We hope that µDOT will serve as a “feather-
weight” calculus in the spirit of [16], on top of which more
features can be studied or into which other features can be
translated. For example, expressing Ross Tate’s Mixed-Site
Variance [30] on top of a DOT-like calculus would be an
interesting case study. Of course a long-term goal is to pro-
vide a firm basis for future versions of Scala and similar lan-
guages, in form of type systems with fewer but more power-
ful building blocks: traits, mixin composition / refinements,
path-dependent types – but nothing more. Since µDOT does
not model any notion of classes or inheritance, we anticipate
that it may be a useful foundation for class-less languages as
well. In particular, we believe that the ability to model nom-
inal abstraction as ascription in an otherwise structural type
system will be useful in the context of gradual typing [29].

Mind the Gap! A key contribution of this paper is to docu-
ment important insights why previous attempts to formalize
the Scala type system have failed, and to show that a core
calculus, without the baggage of a full language, has a clean
and intuitive theory – thus, exposing the sausage factory of
designing calculi, and the mine fields in the landscape [1].

12 2014/9/1

Subtyping of Types Γ ` S <: U

Γ ` T wf
Γ ` T <: T

(REFL)

Γ ` x 3 type L : S..U , S′ <: S , S <: U

Γ ` S′ <: x.L
(<:-TSEL)

Γ ` x 3 type L : S..U , U <: U ′ , S <: U

Γ ` x.L <: U ′
(TSEL-<:)

Γ ` x 3 type L <: U , U <: U ′

Γ ` x.L <: U ′
(TSELu-<:)

Γ ` {z ⇒ D′} wf ;

∀i,D′
i︷ ︸︸ ︷

Γ, z : {z ⇒ D} ` Di <: D′i

Γ ` {z ⇒ D} <: {z ⇒ D′}
(REC-<:-REC)

Subtyping of Declarations Γ ` D <: D′

Γ ` S′ <: S , U <: U ′

Γ ` S <: U , S′ <: U ′

Γ ` (type L : S..U) <: (type L : S′..U ′)
(TDECL-<:-TDECL)

Γ ` U <: U ′ , S <: U

Γ ` (type L : S..U) <: (type L <: U ′)
(TDECL-<:-TDECLu)

Γ ` U <: U ′

Γ ` (type L <: U) <: (type L <: U ′)
(TDECLu-<:-TDECLu)

Well-Formed Types Γ ` T wf

Γ ` x 3 type L : S..U , S <: U

Γ ` x.L wf
(TSEL-WF)

Γ ` x 3 type L <: U , U wf
Γ ` x.L wf

(TSELu-WF)

∀i,Di︷ ︸︸ ︷
Γ, z : {z ⇒ D} ` Di wf

Γ ` {z ⇒ D} wf
(REC-WF)

Well-Formed Declarations Γ ` D wf

Γ ` S <: U

Γ ` (type L : S..U) wf
(TDECL-WF)

Γ ` U wf
Γ ` (type L <: U) wf

(TDECLu-WF)

Expansion Γ ` T ≺z D

Γ ` x 3 type L : S..U , U ≺x D

Γ ` x.L ≺x D
(TSEL-≺)

Γ ` x 3 type L <: U , U ≺x D

Γ ` x.L ≺x D
(TSELu-≺)

Γ ` {z ⇒ D} ≺z D (REC-≺)

Membership Γ ` x 3 D

(x : T) ∈ Γ
Γ ` T ≺x D

Γ ` x 3 Di

(VAR-3)

Figure 3. µDOTT : Semantics of Types

13 2014/9/1

Typing of Terms Γ ` t : T

(x : T) ∈ Γ

Γ ` x : T
(VAR)

Γ ` t : {_⇒ def m : S → U} , t′ : S

Γ ` t.m(t′) : U
(APP)

Ii : Di

Γ ` {z ⇒ D} wf
∀i,Ii=(def m(x:S):U=t)︷ ︸︸ ︷

Γ, x : S, z : {z ⇒ D} ` t : U

Γ ` new (z ⇒ I) : {z ⇒ D}
(NEW)

Γ ` t : T , T <: T ′

Γ ` t : T ′
(SUB)

Conversion of Initializations to Declarations I : D

(type L : S..U) : (type L : S..U) (T-I2D)

(type L <: U) : (type L <: U) (Tu-I2D)

(def m(x : S) : U = t) : (def m : S → U) (M-I2D)

Typing of Values Γ ` v : T

H : ΓH

∀i≤N︷ ︸︸ ︷
DT

i = (type Li : ST
i ..U

T
i) or (type Li <: UT

i)
∀i,Ei=(def mi(xi)=ti)︷ ︸︸ ︷

DM
i = (def mi : SM

i → UM
i)

∀i,Ei︷ ︸︸ ︷
ΓH , z : {z ⇒ DTDM}, x : SM

i ` ti : UM
i

ΓH , z : {z ⇒ DTDM} ` {z ⇒ DTDM} <: T a Γ

Γ ` <z ⇒ E in H> : T
(VCLO)

Γ ` v : T
Γ ` T <: T ′ a Γ′

Γ′ ` v : T ′
(VSUB)

Typing of Run-Time Environments H : Γ

∅ : ∅ (WFE-NIL) (x : v) : (x : T)
(x : T , y : Ty) ` vy : Ty

(x : v, y : vy) : (x : T , y : Ty)
(WFE-CONS)

Subtyping of Declarations ... Γ ` D <: D′

Γ ` S′ <: S , U <: U ′

Γ ` (def m : S → U) <: (def m : S′ → U ′)
(MDECL-<:-MDECL)

Well-Formed Declarations ... Γ ` D wf

Γ ` S wf , U wf
Γ ` (def m : S → U) wf

(MDECL-WF)

Figure 5. µDOT: Extra Static Semantics

14 2014/9/1

Evaluation H ` t ⇓ v

(x : v) ∈ H
H ` x ⇓ v

(EVAR)

E =

∀i,Ii=(def mi(xi:Si):Ui=ti)︷ ︸︸ ︷
def mi(xi) = ti

H ` new (z ⇒ I) ⇓ <z ⇒ E in H>
(ENEW)

H ` t ⇓ <z ⇒ mi(xi) = ti in H
t>

H ` t′ ⇓ v′

Ht, z : <z ⇒ mi(xi) = ti in H
t> , xi : v′ ` ti ⇓ vi

H ` t.mi(t
′) ⇓ vi

(EAPP)

Figure 6. µDOT: Dynamic Semantics

Total Evaluation H ` t ⇓n (v|timeout|stuck)

(x : v) ∈ H
H ` x ⇓n+1 v

(TE-VAR)

E =

∀i,Ii=(def mi(xi:Si):Ui=ti)︷ ︸︸ ︷
def mi(xi) = ti

H ` new (z ⇒ I) ⇓n+1 <z ⇒ E in H>
(TE-NEW)

H ` t ⇓n+1 <z ⇒ mi(xi) = ti in H
t>

H ` t′ ⇓n+1 v
′

Ht, z : <z ⇒ mi(xi) = ti in H
t> , xi : v′ ` ti ⇓n vi

H ` t.mi(t
′) ⇓n+1 vi

(TE-APP)

H ` t ⇓0 timeout (TE-TIMEOUT)

H ` t ⇓n+1 timeout
H ` t.mi(t

′) ⇓n+1 timeout
(TE-APP-TIMEOUT-1)

H ` t ⇓n+1 <z ⇒ mi(xi) = ti in H
t>

H ` t′ ⇓n+1 timeout
H ` t.mi(t

′) ⇓n+1 timeout
(TE-APP-TIMEOUT-2)

H ` t ⇓n+1 <z ⇒ mi(xi) = ti in H
t>

H ` t′ ⇓n+1 v
′

Ht, z : <z ⇒ mi(xi) = ti in H
t> , xi : v′ ` ti ⇓n timeout

H ` t.mi(t
′) ⇓n+1 timeout

(TE-APP-TIMEOUT-3)

H ` t ⇓n+1 <z ⇒ mi(xi) = ti in H
t>

m 6∈ mi

H ` t.m(t′) ⇓n+1 stuck
(TE-APP-STUCK-1)

H ` t ⇓n+1 <z ⇒ mi(xi) = ti in H
t>

H ` t′ ⇓n+1 stuck
H ` t.mi(t

′) ⇓n+1 stuck
(TE-APP-STUCK-2)

H ` t ⇓n+1 <z ⇒ mi(xi) = ti in H
t>

H ` t′ ⇓n+1 v
′

Ht, z : <z ⇒ mi(xi) = ti in H
t> , xi : v′ ` ti ⇓n stuck

H ` t.mi(t
′) ⇓n+1 stuck

(TE-APP-STUCK-3)

Figure 7. µDOT: Total Dynamic Semantics

15 2014/9/1

If a variable type-checks to a type, inversion asserts that the variable is bound to a subtype in the typing environment:

Γ ` x : T

(x : T ′) ∈ Γ
Γ ` T ′ <: T

(INV-VAR)

If a method invocation type-checks, inversion asserts that the term invoked has an arrow type, whose parameter type matches
the type of the argument, and whose return type is a subtype of the type of the invocation:

Γ ` t.m(t′) : T

Γ ` t : {_⇒ def m : S → U}
Γ ` t′ : S

Γ ` U <: T

(INV-APP)

If a new object creation type-checks, inversion asserts that the result type is a subtype of a record type matching the initialization
of the object:

Γ ` new (z ⇒ I) : T

Ii : Di
∀i,Ii=(def m(x:S):U=t)︷ ︸︸ ︷

Γ, x : S, z : {z ⇒ D} ` t : U
Γ ` {z ⇒ D} <: T

(INV-NEW)

Figure 8. Inversion of Typing of Terms

If a closure type-checks to an arrow type, then inversion asserts that the closure holds an appropriate definition for that method:

Γ ` <z ⇒ E in H> : {_⇒ def m : S → U}
H : ΓH

(def m(x) = t) ∈ E
ΓH , z : T, x : S ` t : U

ΓH , z : T ` {_⇒ def m : S → U} <: {_⇒ def m : S → U} a Γ
ΓH , z : T ` <z ⇒ E in H> : T

(VINV-CLO-M)

Figure 9. Inversion of Typing of Values

16 2014/9/1

Acknowledgments
We thank Adriaan Moors, Donna Malayeri and Geoffrey
Washburn for previous work on DOT. We thank Amal
Ahmed, Derek Dreyer, Samuel Grütter, Scott Kilpatrick,
Viktor Kuncak, Lukas Rytz and Jeremy Siek for insightful
discussions.

This research was supported by the European Research
Council (ERC) under grant 587327 DOPPLER.

References
[1] N. Amin and T. Rompf. Mind the gap: Artifacts vs insights in

pl theory. In OBT, 2014. URL http://popl-obt-2014.cs.

brown.edu/papers/gap.pdf.

[2] N. Amin, A. Moors, and M. Odersky. Dependent object types.
In FOOL, 2012.

[3] B. E. Aydemir, A. Bohannon, M. Fairbairn, J. N. Foster, B. C.
Pierce, P. Sewell, D. Vytiniotis, G. Washburn, S. Weirich, and
S. Zdancewic. Mechanized metatheory for the masses: The
PoplMark Challenge. In TPHOLs, 2005.

[4] N. R. Cameron, J. Noble, and T. Wrigstad. Tribal ownership.
In OOPSLA, 2010.

[5] D. Clarke, S. Drossopoulou, J. Noble, and T. Wrigstad. Tribe:
a simple virtual class calculus. In AOSD, 2007.

[6] J. Courant. An applicative module calculus. In TAPSOFT:
Theory and Practice of Software Development. 1997.

[7] V. Cremet, F. Garillot, S. Lenglet, and M. Odersky. A core
calculus for Scala type checking. In MFCS, 2006.

[8] D. Dreyer and A. Rossberg. Mixin’ up the ML module system.
In ICFP, 2008.

[9] E. Ernst. Family polymorphism. In ECOOP, 2001.

[10] E. Ernst. Higher-order hierarchies. In ECOOP, 2003.

[11] E. Ernst, K. Ostermann, and W. R. Cook. A virtual class
calculus. In POPL, 2006.

[12] V. Gasiunas, M. Mezini, and K. Ostermann. Dependent
classes. In OOPSLA, 2007.

[13] R. Harper. Programming in standard ml, 2013.

[14] R. Harper and M. Lillibridge. A type-theoretic approach to
higher-order modules with sharing. In POPL, 1994.

[15] A. Igarashi and B. C. Pierce. Foundations for virtual types.
Inf. Comput., 175(1):34–49, 2002.

[16] A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight java: a
minimal core calculus for java and gj. ACM Trans. Program.
Lang. Syst., 23(3), 2001.

[17] C. Klein, J. Clements, C. Dimoulas, C. Eastlund, M. Felleisen,
M. Flatt, J. A. McCarthy, J. Rafkind, S. Tobin-Hochstadt, and
R. B. Findler. Run your research: on the effectiveness of
lightweight mechanization. In POPL, 2012.

[18] K. R. M. Leino. Dafny: An automatic program verifier for
functional correctness. In LPAR (Dakar), 2010.

[19] X. Leroy. Manifest types, modules and separate compilation.
In POPL, 1994.

[20] X. Leroy. A modular module system. Journal of Functional
Programming, 10:269–303, May 2000.

[21] D. Macqueen. Using dependent types to express modular
structure. In POPL, 1986.

[22] The Coq development team. The Coq proof assistant refer-
ence manual, 2012. URL http://coq.inria.fr. Version
8.4.

[23] R. Milner, M. Tofte, and D. Macqueen. The Definition of
Standard ML. MIT Press, Cambridge, MA, USA, 1997.

[24] A. Moors, F. Piessens, and M. Odersky. Safe type-level
abstraction in Scala. In FOOL, 2008.

[25] N. Nystrom, S. Chong, and A. C. Myers. Scalable extensibil-
ity via nested inheritance. In OOPSLA, 2004.

[26] M. Odersky, V. Cremet, C. Röckl, and M. Zenger. A nominal
theory of objects with dependent types. In ECOOP, 2003.

[27] F. Pfenning and C. Schürmann. In CADE, 1999.

[28] J. Siek. Type safety in three easy lemmas.
http://siek.blogspot.ch/2013/05/

type-safety-in-three-easy-lemmas.html, 2013.

[29] J. G. Siek and W. Taha. Gradual typing for objects. In
ECOOP, 2007.

[30] R. Tate. Mixed-site variance. In FOOL, 2013.

[31] A. K. Wright and M. Felleisen. A syntactic approach to type
soundness. Inf. Comput., 115(1):38–94, 1994.

17 2014/9/1

