A proposal for scsh packages

Michel Schinz
August 20, 2005

1 Introduction

The aim of the following proposal is to define a standard for the packaging, distribution,
installation, use and removal of libraries for scsh. Such packaged libraries are called scsh
packages or simply packages below.

This proposal attempts to cover both libraries containing only Scheme code and li-
braries containing additional C code. It does not try to cover applications written in
scsh, which are currently considered to be outside of its scope.

1.1 Package identification and naming

Packages are identified by a globally-unique name. This name should start with an
ASCII letter (a-z or A-Z) and should consist only of ASCII letters, digits or hyphens ‘- ".
Package names are case-sensitive, but there should not be two packages with names
which differ only by their capitalisation.

Rationale This restriction on package names ensures that they can be used
to name directories on current operating systems.

Several versions of a given package can exist. A version is identified by a sequence
of non-negative integers. Versions are ordered lexicographically.

A version has a printed representation which is obtained by separating (the printed
representation of) its components by dots. For example, the printed representation of
a version composed of the integer 1 followed by the integer 2 is the string 1.2 . Below,
versions are usually represented using their printed representation for simplicity, but it
is important to keep in mind that versions are sequences of integers, not strings.

A specific version of a package is therefore identified by a name and a version. The
full name of a version of a package is obtained by concatenating;:

¢ the name of the package,

e a hyphen’-’,

o the printed representation of the version.

In what follows, the term package is often used to designate a specific version of a
package, but this should be clear from the context.

2 Distributing packages

Packages are usually distributed as a stand-alone archive containing the code and doc-
umentation to install, as well as a file describing the installation procedure. However, it
is also possible to distribute the scsh-specific installation procedure separately from the
main code and documentation. This is typically useful to turn general Scheme libraries
into scsh packages.

2.1 Stand-alone packages

Stand-alone packages are distributed in a single tar archive, which can optionally be
compressed by gzip or bzip2 . The name of the archive is composed by appending;:

o the full name of the package,
e the string .tar indicating thatit's a tar archive,

o either the string .gz if the archive is compressed using gzip , or the string .bz2
if the archive is compressed using bzip2 , or nothing if the archive is not com-
pressed.

The archive of a stand-alone package is organised so that it contains one top-level
directory whose name is the full name of the package. This directory is called the package
unpacking directory. All the files belonging to the package are stored below it.

The unpacking directory contains at least the following files:

pkg-def.scm a Scheme file containing the installation procedure for the package (see

§BD,

README textual file containing a short description of the package,

COPYINGa textual file containing the license of the package.

2.2 Split packages

Split packages are distributed as two separate archives. The first one, called the upstream
archive, contains the code and documentation of the package. The second one, called the
downstream archive, contains the scsh-specific installation procedure for the package.
Ideally, the upstream archive should follow the rules laid out in the previous section
for stand-alone archives. Most of the time, however, the author of the upstream package

2

has no reason to be aware of the current policy, or simply to adhere to it. The name
and layout of the downstream archive should therefore mirror the one of the upstream
archive, as follows:

1. the name of the downstream archive is composed by appending:
e the string pkg - (the three letters ‘p’, ‘k” and ‘g’ followed by an underscore
character),

e the name of the upstream archive, including its version but excluding exten-
sions indicating the archive type and/or compression method,

e an underscore character,
¢ asingle number indicating the version of the downstream archive,
e thestring .tar indicating thatit’s a tar archive,

e either the string .9z if the archive is compressed using gzip , or the string
.bz2 if the archive is compressed using bzip2 , or nothing if the archive is
not compressed.

2. the downstream archive should contain at least the file pkg-def.scm placed in a
directory with the same name as the “main” directory of the upstream archive.

These conventions ensure that split packages behave almost like stand-alone packages
after the two archives have been unpacked at the same location.

3 Downloading and installing packages

A package can be installed on a target machine by downloading its archive, expanding
it and finally running the installation script located in the unpacking directory.

3.1 Layouts

The installation script installs files according to some given layout. A layout maps ab-
stract locations to concrete directories on the target machine. For example, a layout
could map the abstract location doc, where documentation is stored, to the directory
lusr/local/share/doc/my_package

Currently, the following abstract locations are defined:

base The “base” location of a package, where the package loading script load.scm
resides.

active Location containing a symbolic link, with the same name as the package (ex-
cluding the version), pointing to the base location of the package. This link is used
to designate the active version of a package — the one to load when a package is
requested by giving only its name, without an explicit version.

3

scheme Location containing all Scheme code. If the package comes with some exam-
ples showing its usage, they are put in a sub-directory called examples of this
location.

lib Location containing platform-dependent files, like shared libraries. This location
contains one sub-directory per platform for which packages have been installed,
and nothing else.

doc Location containing all the package documentation. This location contains one
or more sub-directories, one per format in which the documentation is available.
The contents of these sub-directories is standardised as follows, to make it easy
for users to find the document they need:

html Directory containing the HTML documentation of the package, if any; this
directory should at least contain one file called index.html serving as an
entry point to the documentation.

pdf Directory containing the PDF documentation of the package, if any; this di-
rectory should contain at least one file called <package_name>.pdf where
<package_name> is the name of the package.

ps Directory containing the PostScript documentation of the package, if any; this
directory should contain at least one file called <package_name>.ps where
<package_name> is the name of the package.

text Directory containing the raw textual documentation of the package, if any.

misc-shared Location containing miscellaneous data which does not belong to any
directory above, and which is platform-independent.

The directories to which a layout maps these abstract locations are not absolute di-
rectories, but rather relative ones. They are relative to a prefix, specified at installation
time using the --prefix ~ option, as explained in section 3.2

Example Let’s imagine that a user is installing version 1.2 of a package called
foo . This package contains a file called COPYINGwhich has to be installed in
sub-directory license of the doc location. If the user chooses to use the de-
fault layout, which maps doc to directory <scsh-version>/<package_
full_name>/doc (see §[.1.1), and specifies /usr/local/share/scsh/
modules as a prefix, then the COPYINGile will end up in:

/usr/local/share/scsh/modules/ 0.6/foo-1.2/doc/ license/COPYING
1 2 3

(provided the user is running scsh v0.6.x) Part 1 is the prefix, part 2 is the
layout’s mapping for the doc location, and part 3 is the file name relative to
the location.

3.1.1 Predefined layouts

Every installation script comes with a set of predefined layouts which serve different
aims. They are described below

The directories to which these layouts map locations often have a name which in-
cludes the current version of scsh and/or the full name of the package. In what follows,
the notation <version> represents the printed representation of the first two compo-
nents of scsh’s version (e.g. 0.6 for scsh v0.6.x). The notation <pkg_fname> represents
the full name of the package being installed.

The scsh layout The scsh layout is the default layout. It maps all locations to sub-
directories of a single directory, called the package installation directory, which contains
nothing but the files of the package being installed. Its name is simply the full name of
the package in question, and it resides in the prefix directory.

The scsh layout maps locations as given in the following table:

Location Directory (relative to prefix)
base <version>/<pkg_fname>

active <version>

scheme <version>/<pkg_fname>/scheme
lib <version>/<pkg_fname>/lib

doc <version>/<pkg_fname>/doc
misc-shared <version>/<pkg_fname>

This layout is well suited for installations performed without the assistance of an
additional package manager, because it makes many common operations easy. For ex-
ample, finding to which package a file belongs is trivial, as is the removal of an installed
package.

The fhs layout The fhs layout maps locations according to the File Hierarchy Stan-
dard (FHS, see http:/ /www.pathname.com/ths/), as follows:

Location Directory (relative to prefix)

base share/scsh-<version>/modules/<pkg_fname>

active share/scsh-<version>/modules

scheme share/scsh-<version>/modules/<pkg_fname>/scheme
lib lib/scsh-<version>/modules/<pkg_fname>

doc share/doc/scsh-<version>/<pkg_fname>

misc-shared share/scsh-<version>/modules/<pkg_fname>

The main advantage of this layout is that it adheres to the FHS standard, and is
therefore compatible with several packaging policies, like Debian’s, Fink's and others.
Its main drawback is that files belonging to a given package are scattered, and there-
fore hard to find when removing or upgrading a package. Its use should therefore be
considered only if third-party tools are available to track files belonging to a package.

5

http://www.pathname.com/fhs/
http://www.debian.org/
http://fink.sourceforge.net/

3.2 Installation procedure

Packages are installed using the scsh-install-pkg script, which is part of the in-
stallation library. This script must be given the name of the prefix using the --prefix
option. It also accepts the following options:

--layout name Specifies the layout to use (see §[3.1.1).

--verbose Print messages about what is being done.

--dry-run Print what actions would be performed to install the
package, but do not perform them.

--inactive Do not activate package after installing it.

--non-shared-only Only install platform-dependent files, if any.

--force Overwrite existing files during installation.

--no-user-defaults Don’t read user defaults in
.scsh-pkg-defaults.scm (see §[3.2.1).

A few, more advanced options exist and are documented in section [|

3.2.1 User preferences

Users can store default values for the options passed to the installation script by storing
them in a file called .scsh-pkg-defaults.scm residing in their home directory. This
tile must contain exactly one Scheme expression whose value is an association list. The
keys of this list, which must be symbols, identify options and the values specify the
default value for these options. The contents of this file is implicitly quasi-quoted.

The values stored in this file override the default values of the options, but they are
in turn overridden by the values specified on the command line of the installation script.
Furthermore, it is possible to ask for this file to be completely ignored by passing the
--no-user-defaults option to the installation script.

Example A .scsh-pkg-defaults.scm tile containing the following:

;; Default values for scsh packages installation
((layout . "fhs")

(prefix . "/usr/local/share/scsh/modules™)
(verbose . #t))

specifies default values for the --layout , --prefix and --verbose op-
tions.

4 Using packages

To use a package, its loading script must be loaded in Scheme 48’s exec package. The
loading script for a package is a file written in the Scheme 48 exec language, whose
name is load.scm and which resides in the base location.

To load this file, one typically uses scsh’s -lel option along with a properly defined
SCSHLIB _DIRS environment variable.

Scsh has a list of directories, called the library directories, in which it looks for files to
load when the options -l or -lel are used. This list can be given a default value dur-
ing scsh’s configuration, and this value can be overridden by setting the environment
variable SCSHLIB _DIRS before running scsh.

In order for scsh to find the package loading scripts, one must make sure that scsh’s
library search path contains the names of all active locations which containing pack-
ages.

The names of these directories should not end with a slash ‘/ ’, as this forces scsh
to search them recursively. This could drastically slow down scsh when looking for

packages.

Example Let’s imagine a machine on which the system administrator installs
scsh packages according to the fhs layout in prefix directory /usr/local
The active location for these packages corresponds to the directory /usr/
local/share/scsh-0.6/modules , according to section

Let’s also imagine that there is a user called john on this machine, who
installs additional scsh packages for himself in his home directory, using
/home/john/scsh as a prefix. To ease their management, he uses the scsh
layout. The active location for these packages corresponds to the directory
/homel/john/scsh/0.6 , according to section

In order to be able to use scsh packages installed both by the adminis-
trator and by himself, user john needs to put both active directories in his
SCSHLIB _DIRS environment variable. The value of this variable will there-
fore be:

"lusr/local/share/scsh-0.6/modules” "/home/john/scsh/0.6"

Now, in order to use packages foo and bar in one of his script, user john
just needs to load their loading script using the -lel option when invoking
scsh, as follows:

-lel foo/load.scm -lel bar/load.scm

5 Authoring packages

Once the Scheme and/or C code for a package has been written, the last step in turning
it into a standard package as defined by this proposal is to write the installation script.
This script could be written fully by the package author, but in order to simplify this
task a small scsh installation framework is provided. This framework must be present
on the host system before a scsh package can be installed.
As explained above, when the scsh-install-pkg script is invoked, it launches
scsh on the main function of the installation library, which does the following:

7

1. parse the command line arguments (e.g the --prefix option),

2. load the package definition file, a (Scheme) file called pkg-def.scm , which is
supplied by the package author and which contains one or several package defi-
nition statements, and

3. install the packages which were defined in the previous step.

Most package definition files should contain a single package definition, but the ability
to define several packages in one file can sometimes be useful.

The main job of the package author is therefore to write the package definition file,
pkg-def.scm . This file is mostly composed of a package definition statement, which
specifies the name, version and installation code for the package. The package defini-
tion statement is expressed using the define-package form, documented in the next
section.

5.1 Installation library
5.1.1 Package definition

(define-package name version extension body ...) (syntax)

Define a package to be installed. Name (a string) is the package name, version (a list of
integers) is its version, extensions is a list of extensions (see below), and body is the list of
statements to be evaluated in order to install the package.

The installation statements typically use functions of the installation library in order
to install files in their target location. The available functions are presented below.

Extensions consists in a list of lists, each one starting with a symbol identifying the
extension, possibly followed by extension-specific parameters. It is used to specify var-
ious parameters, which are usually optional. Currently, the following extensions are
defined:

install-lib-version specifies the version of the installation library that this package def-
inition requires. The version is specified as a list composed of exactly two integers,
giving the major and minor version number of the library. Before installing a pack-
age, this version requirement is checked and installation aborts if the installation
library does not satisfy it[Tt is strongly recommended that package authors pro-
vide this information, as it makes it possible to provide helpful error messages to
users.

options enables the script to define additional command-line options. It accepts nine
parameters in total, with the last three being optional. The description of these
parameters follows, in the order in which they should appear:

1Version (i i2) of the installation library satisfies a requirement (r; r2) if and only if both major num-
bers are equal, and the minor number of the installation library is greater or equal to the minor require-
ment. In other words, iff i; = r; and i3 > rs.

name (a symbol) is the name of the option, without the initial double hyphen (--),
help-text (a string) describes the option for the user,

arg-help-text (a string) describes the option’s argument (if any) for the user,
required-arg? (a boolean) says whether this option requires an argument or not,

optional-arg? (a boolean) says whether this option’s argument can be omitted or
not,

default (anything) is the default value for the option,

parser (a function from string to anything) parses the option, i.e. turns its string
representation into its internal value,

unparser (a function from anything to string) turns the internal representation of
the option into a string,

transformer is a function taking the current value of the option, the value given
by the user and returning its new value.

By default, parser and unparser are the identity function, and transformer is a func-
tion which takes two arguments and returns the second (i.e. the current value of
the option is simply replaced by the one given).

5.1.2 Content installation

(install-file file location [target-dir]) (procedure)

Install the given file in the sub-directory target-dir (which must be a relative directory)
of the given location. Target-dir is . by default.

If the directory in which the file is about to be installed does not exist, it is created
along with all its parents, as needed. If file is a string, then the installed file will have the
same name as the original one. If file is a pair, then its first element specifies the name of
the source file, and its second element the name it will have once installed. The second
element must be a simple file name, without any directory part.

(install-files file-list location [target-dir]) (procedure)
Like install-file but for several files, which are specified as a list. Each element in
the list can be either a simple string or a pair, as explained above.

(install-directory directory location [target-dir]) (procedure)

Install the given directory and all its contents, including sub-directories, in sub-directory

target-dir of location. This is similar to what install-file does, but for complete hierarchies.
Notice that directory will be installed as a sub-directory of target-dir.

(install-directories dir-list location [target-dir]) (procedure)

Install several directories in one go.

(install-directory-contents directory location [target-dir]) (procedure)

Install the contents of the given directory in sub-directory target of location.

(install-string string location [target-dir]) (procedure)

Install the contents of string in sub-directory target-dir of location.

5.1.3 Queries

(get-directory location install?) (procedure)

Get the absolute name of the directory to which the current layout maps the abstract
location. If install? is true, the directory is the one valid during installation; If it is false,
the directory is the one valid after installation, that is when the package is later used.
The distinction between installation-time and usage-time directories is necessary to
support staged installation, as performed by package managers like Debian’s APT.
(get-option-value option) (procedure)
Return the value of the given command-line option (a symbol). This can be used to get
the value of predefined options (like --dry-run) or package-specific options.
(phase-active? phase) (procedure)

Return true iff the given phase is active, that is if the steps associated with it should be
performed. Phase should be one of the following symbols: build , build-clean or
install , designating the corresponding phase (see section [6).

5.1.4 Load script generation

(with-output-to-load-script* thunk) (procedure)

Evaluate thunk with the current output opened on the loading script of the current pack-
age. If this script was already existing, its previous contents is deleted.

(with-output-to-load-script body ...) (syntax)
Syntactic sugar for with-output-to-load-script*

(write-to-load-script s-expression) (procedure)

Pretty-print the s-expression to the loading script of the current package. If this script
was already existing, its previous contents is deleted.

Example A typical package definition file for a simple package called pkg
whose version is 1.2 could look like this:

(define-package "pkg" (1 2) ()

10

(install-file "load.scm" ’base)
(install-directory-contents "scheme" ’scheme)
(install-file ("LICENSE" . "COPYING") 'doc)
(install-directory-contents "doc" ’'doc))

With such a definition, invoking the installation script with /usr/local/
as prefix and fhs as layout has the following effects:

1. The base directory /usr/local/share/scsh/modules/pkg-1.2 is
created and file load.scm is copied to it.

2. All the contents of the directory called scheme is copied to directory
/usr/local/share/scsh/modules/pkg-1.2/scheme which is cre-
ated before, if needed.

3. File LICENSE is copied to directory /usr/local/share/doc/pkg- 1.
2/ with name COPYING

4. All the contents of the directory called doc is copied to directory /usr/
local/share/doc/pkg-1.2/

5. The package is activated by creating a symbolic link with name /usr/
local/share/scsh/modules/pkg pointing to ./pkg-1.2

5.1.5 Miscellaneous

A few functions which are not specifically related to installation are provided, as they
can sometimes be useful when writing installation scripts. They are documented below.
(parent-directory dir) (procedure)

Returns the parent directory of dir. Notice that a trailing slash is always ignored by this
function, so that the parent directory of both /tmp/dir and /tmp/dir/ is tmp/ .

(create-directory&parents dir) (procedure)

Similar to scsh’s create-directory , but also create all parent directories which do
not exist yet.

(relative-file-name fname [dir]) (procedure)

Return the name of file fname relative to dir, which defaults to the current directory.

(paths->file-name path ...) (procedure)
Similar to scsh’s path-list->file-name except that all arguments are taken to form
the final path. This function has no equivalent for path-list->file-name ’s optional
argument.

11

5.2 Packages containing C code (for shared libraries)

Packages containing C code are more challenging to write, since all the problems re-
lated to C’s portability and incompatibilities between the APIs of the various platforms
have to be accounted for. Fortunately, the GNU Autoconf system simplifies the manage-
ment of these problems, and authors of scsh packages containing C code are strongly
encouraged to use it.

6 Packaging packages

Most important Unix systems today have one (or several) package management sys-
tems which ease the installation of packages on a system. In order to avoid confusion
between these packages and the scsh packages discussed above, they will be called sys-
tem packages in what follows.

It makes perfect sense to provide system packages for scsh packages. System pack-
ages should as much as possible try to use the standard installation script described
above to install scsh packages. In order to make this as easy as possible, the installation
script recognizes the following additional options:

--dest-dir dir Specity a prefix for all installed files
--phases phases Only perform some phases of installation.

The --dest-dir option plays the same role as the DESTDIR variable which is
typically given to make install . Its value, which is the empty string by default, is
prepended to all installation paths. This is used to perform staged installations, during
which the package is first installed into a temporary directory and then moved to its
final location by some external tool.

The --phases option is used to perform only some steps of the whole installation
process. Currently, three phases are defined: build , build-clean and install

The build phase is the one during which the operations required to build the pack-
age are performed. For scsh packages containing only Scheme code, this phase usually
does nothing. For scsh packages containing some C code, this phase is the one during
which the C code is compiled.

The build-clean phase is the one during which all the files created during the
build phase are removed.

The install ~ phase is the one during which the files are copied to their final loca-
tion.

Using the --phases option, each phase can happen during a separate run of the
installation script. This makes it possible, for example, to perform the build phase as
one user, and the install phase as another one (e.g. root). In order for this to work, the
installation script must be invoked as follows:

1. first with the --phases build option and maybe other options,

12

2. then with the exact same options as in the first step, except that install ~ has to be
given to --phases instead of build

The behaviour of the installation script is not defined if these conditions are violated.

7 Acknowledgments

Discussions with Andreas Bernauer, Anthony Carrico, David Frese, Friedrich Delgado
Friedrichs, Martin Gasbichler, Eric Knauel, Daniel Kobras, Lionel Elie Mamane, and
Jorgen Schifer greatly helped the design of this proposal. Mark Sapa started everything
by asking for a Fink package for sunet and sunterlib.

13

	Introduction
	Package identification and naming

	Distributing packages
	Stand-alone packages
	Split packages

	Downloading and installing packages
	Layouts
	Predefined layouts

	Installation procedure
	User preferences

	Using packages
	Authoring packages
	Installation library
	Package definition
	Content installation
	Queries
	Load script generation
	Miscellaneous

	Packages containing C code (for shared libraries)

	Packaging packages
	Acknowledgments

