
Philipp HALLER, STANFORD UNIVERSITY AND EPFL

Scala
MULTICORE

PART 2: Parallel Collections and Parallel DSLs

for

1

Tuesday, June 21, 2011



Philipp HALLER, STANFORD UNIVERSITY AND EPFL

Scala
MULTICORE

PART 2: Parallel Collections and Parallel DSLs

for

1

RESOURCES ONLINE AT:http://lamp.epfl.ch/~phaller/upmarc

Tuesday, June 21, 2011

http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc


2

BUT FIRST,
Let’s pick up from where 

we left off yesterday... 
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Goal of Scala Actors

Programming system for Erlang-style actors that:
offers high scalability on mainstream platforms;

integrates with thread-based code;

provides safe and efficient message passing.

✗✗

✗✗

✗✗
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Goal of Scala Actors

Programming system for Erlang-style actors that:
offers high scalability on mainstream platforms;

integrates with thread-based code;

provides safe and efficient message passing.✗✗

✔
✔
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| UPMARC Multicore Computing Summer School. June 20-23, 2011. 

Safe and Efficient Message 
Passing.

It’s possible to produce data races with actors:

4
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Passing.

It’s possible to produce data races with actors:
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Pass a reference to a mutable object in a message
Two actors accessing the same mutable object 
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Safe and Efficient Message 
Passing.

It’s possible to produce data races with actors:

4

Pass a reference to a mutable object in a message
Two actors accessing the same mutable object 
can lead to data races

Make sure mutable objects are unusable after 
they have been sent
Use a compiler plugin to check whether a variable is 
unusable

How do we prevent that?
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The Compiler Plugin.

5

The compiler plugin checks at which point a 
variable is transferred and becomes unusable.
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The Compiler Plugin.

5

1. MARK variables that we want to send 
in messages.

The compiler plugin checks at which point a 
variable is transferred and becomes unusable.

This check is done in two steps:

Add @unique annotation to their type.
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The Compiler Plugin.

5

1.
2.

MARK variables that we want to send 
in messages.

Go through program and track which 
variables are USABLE/UNUSABLE.

The compiler plugin checks at which point a 
variable is transferred and becomes unusable.

This check is done in two steps:

Add @unique annotation to their type.

Run additional type checking phase 
on program
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Extending Type Checking.

An annotated variable

has a type guarded with a capability:

6

val buf: ArrayBuffer[Int] @unique

buf: ρ⊳ArrayBuffer[Int]
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Extending Type Checking.

An annotated variable

has a type guarded with a capability:

6

val buf: ArrayBuffer[Int] @unique

buf: ρ⊳ArrayBuffer[Int]

A variable with guarded type is only usable when its 
capability is available

Key idea:
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Tracking Capabilities.

7

actor {
  var sum = 2 + 3
  val buf: Buffer[Int]@unique =
    new ArrayBuffer[Int]
  buf += sum
  someActor ! buf
  buf.remove(0)
}
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actor {
  var sum = 2 + 3
  val buf: Buffer[Int]@unique =
    new ArrayBuffer[Int]
  buf += sum
  someActor ! buf
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}

LOCAL VARIABLES: CAPABILITIES:
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Tracking Capabilities.

7

actor {
  var sum = 2 + 3
  val buf: Buffer[Int]@unique =
    new ArrayBuffer[Int]
  buf += sum
  someActor ! buf
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}

LOCAL VARIABLES: CAPABILITIES:
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Tracking Capabilities.

7

actor {
  var sum = 2 + 3
  val buf: Buffer[Int]@unique =
    new ArrayBuffer[Int]
  buf += sum
  someActor ! buf
  buf.remove(0)
}

LOCAL VARIABLES: CAPABILITIES:

∅
∅
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Tracking Capabilities.

7

actor {
  var sum = 2 + 3
  val buf: Buffer[Int]@unique =
    new ArrayBuffer[Int]
  buf += sum
  someActor ! buf
  buf.remove(0)
}

LOCAL VARIABLES: CAPABILITIES:

sum: Int

∅
∅
∅
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Tracking Capabilities.

7

actor {
  var sum = 2 + 3
  val buf: Buffer[Int]@unique =
    new ArrayBuffer[Int]
  buf += sum
  someActor ! buf
  buf.remove(0)
}

LOCAL VARIABLES: CAPABILITIES:

buf: ρ⊳Buffer[Int]
sum: Int
sum: Int

∅
∅
∅
ρ
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Tracking Capabilities.

7

actor {
  var sum = 2 + 3
  val buf: Buffer[Int]@unique =
    new ArrayBuffer[Int]
  buf += sum
  someActor ! buf
  buf.remove(0)
}

LOCAL VARIABLES: CAPABILITIES:

buf: ρ⊳Buffer[Int]
sum: Int
sum: Int

buf: ρ⊳Buffer[Int]sum: Int

∅
∅
∅
ρ
ρ
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Tracking Capabilities.

7

actor {
  var sum = 2 + 3
  val buf: Buffer[Int]@unique =
    new ArrayBuffer[Int]
  buf += sum
  someActor ! buf
  buf.remove(0)
}

LOCAL VARIABLES: CAPABILITIES:

buf: ρ⊳Buffer[Int]
sum: Int
sum: Int

buf: ρ⊳Buffer[Int]sum: Int

∅
∅
∅
ρ
ρ

buf: ρ⊳Buffer[Int]sum: Int ρ
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7

actor {
  var sum = 2 + 3
  val buf: Buffer[Int]@unique =
    new ArrayBuffer[Int]
  buf += sum
  someActor ! buf
  buf.remove(0)
}

LOCAL VARIABLES: CAPABILITIES:

buf: ρ⊳Buffer[Int]
sum: Int
sum: Int

buf: ρ⊳Buffer[Int]sum: Int

∅
∅
∅
ρ
ρ

buf: ρ⊳Buffer[Int]sum: Int ρ
buf: ρ⊳Buffer[Int]sum: Int ∅
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Tracking Capabilities.

7

actor {
  var sum = 2 + 3
  val buf: Buffer[Int]@unique =
    new ArrayBuffer[Int]
  buf += sum
  someActor ! buf
  buf.remove(0)
}

LOCAL VARIABLES: CAPABILITIES:

buf: ρ⊳Buffer[Int]
sum: Int
sum: Int

buf: ρ⊳Buffer[Int]sum: Int

∅
∅
∅
ρ
ρ

buf: ρ⊳Buffer[Int]sum: Int ρ
buf: ρ⊳Buffer[Int]sum: Int ∅

Error: buf has type ρ⊳Buffer[Int] but 
capability ρ is not available
    buf.remove(0)
    ^
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7

actor {
  var sum = 2 + 3
  val buf: Buffer[Int]@unique =
    new ArrayBuffer[Int]
  buf += sum
  someActor ! buf
  buf.remove(0)
}

LOCAL VARIABLES: CAPABILITIES:

buf: ρ⊳Buffer[Int]
sum: Int
sum: Int
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∅
∅
∅
ρ
ρ

buf: ρ⊳Buffer[Int]sum: Int ρ
buf: ρ⊳Buffer[Int]sum: Int ∅

Error: buf has type ρ⊳Buffer[Int] but 
capability ρ is not available
    buf.remove(0)
    ^

The extended type checker ensures mutable objects 

are no longer accessed after they have been consumed.
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Tracking Capabilities.

7

actor {
  var sum = 2 + 3
  val buf: Buffer[Int]@unique =
    new ArrayBuffer[Int]
  buf += sum
  someActor ! buf
  buf.remove(0)
}

LOCAL VARIABLES: CAPABILITIES:

buf: ρ⊳Buffer[Int]
sum: Int
sum: Int

buf: ρ⊳Buffer[Int]sum: Int

∅
∅
∅
ρ
ρ

buf: ρ⊳Buffer[Int]sum: Int ρ
buf: ρ⊳Buffer[Int]sum: Int ∅

Error: buf has type ρ⊳Buffer[Int] but 
capability ρ is not available
    buf.remove(0)
    ^

The extended type checker ensures mutable objects 

are no longer accessed after they have been consumed.

THUS,
Uniqueness types can be used to ensure actors are isolated.
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Implementation and 
Experience.

Plug in for Scala compiler
Erases capabilities and capturedBy for code generation

Practical experience:

8

size [LOC] changes [LOC] property checked

mutable 
collections

2046 60 collections self-contained

partest 4182 61 actor isolation
ray tracer 414 18 actor isolation
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External vs. Separate 
Uniqueness

9

SEPARATE UNIQUENESSEXTERNAL UNIQUENESS

[Clarke, Wrigstad 2003; Müller, 
Rudich 2007; Clarke et al. 2008]

No external aliases

No unique 
method receivers

Deep/full 
encapsulation

Unique method 
receivers (self transfer)

Full 
encapsulation

Local external 
aliases

THIS TALK.
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Goal of Scala Actors?
REVISITED.

Programming system for Erlang-style actors that:
offers high scalability on mainstream platforms;

integrates with thread-based code;

provides safe and efficient message passing.✗✗

(AGAIN)

10

✔
✔
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Goal of Scala Actors?

Haller and Odersky. Capabilities for uniqueness and borrowing, 
Proc. ECOOP, 2010

REVISITED.
Programming system for Erlang-style actors that:

offers high scalability on mainstream platforms;

integrates with thread-based code;

provides safe and efficient message passing.

[ ]

CAPABILITIES FOR UNIQUENESS
Lightweight pluggable type system.

(AGAIN)

Race-freedom through actor isolation.

10
[ ]Haller. Isolated Actors for Race-Free Concurrent Programming, 

PhD Thesis, 2010

✔
✔
✔
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Summary: Actors

Scalable Erlang-style actors

Integration of thread-based and event-based 
programming

Used in large-scale production systems

Lightweight uniqueness types for actor isolation

11

✗✗

✗✗

✗✗

✗✗
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Parallel
Collections

12
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Collections?

13

Collections are literally collections of data elements, 
which you can perform operations on.

THE COLLECTIONS MENTALITY:
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Collections?

13

el(0) el(3)

el(0) el(1)

el(2)

el(3)

el(1) el(2) el(3)

Collections are literally collections of data elements, 
which you can perform operations on.

A collection can be represented by 
any data structure, like:

amongst others... 

HASH MAPS, RED-BLACK TREES, ETC.

LINKED LISTS

TREES

THE COLLECTIONS MENTALITY:
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Collections?

13

el(0) el(3)

el(0) el(1)

el(2)

el(3)

el(1) el(2) el(3)

Collections are literally collections of data elements, 
which you can perform operations on.

A collection can be represented by 
any data structure, like:

LINKED LISTS

TREES

THE COLLECTIONS MENTALITY:

Menu
operations of the day:

map
foreach
forall
groupBy
reduce
count

indexOf
sorted

Each of which has a set of operations 
you can perform on it:
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Collections?

myCollectionval

Say you have some collection:

: List[Int] = List(1,2,3,4,5)
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Collections?

myCollectionval

Say you have some collection:

: List[Int] = List(1,2,3,4,5)

We can perform an operation on that collection:

myCollection.foldLeft(0)((a,b) => a+b) 

1 2 3 4 5
res

0
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1 2 3 4 5
res

15
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Collections Hierarchy.

15

Collections are organized in two packages.
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scala.collection.immutable

Collections are organized in two packages.

Can change, add, or remove 
elements in place as a side 
effect
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Collections Hierarchy.

scala.collection.mutable

15

scala.collection.immutable

Collections are organized in two packages.

Methods that transform an 
immutable collection return a 
new collection and leave the old 
collection unchanged

Can change, add, or remove 
elements in place as a side 
effect
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Collections Hierarchy.

scala.collection.mutable

15

scala.collection.immutable

Collections are organized in two packages.

Abstract classes in scala.collection
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Parallel Collections
Scala 2.9 introduces Parallel Collections, based on the idea 
that many operations can safely be performed in parallel.
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Parallel Collections
Scala 2.9 introduces Parallel Collections, based on the idea 
that many operations can safely be performed in parallel.

Just add .par

And the same operation is performed in parallel:

myCollection.par.foldLeft(0)((a,b) => a+b) 

1 2 3 4 50 0

Tuesday, June 21, 2011



Parallel Collections
Scala 2.9 introduces Parallel Collections, based on the idea 
that many operations can safely be performed in parallel.

Just add .par

And the same operation is performed in parallel:

myCollection.par.foldLeft(0)((a,b) => a+b) 

1 2 3 4 5

96 = 15
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.par
New method added to regular collections

Returns a parallel version of the collection 
pointing to the same underlying data

Use .seq to go back to the sequential collection

Parallel sequences, maps, and sets defined in 
separate hierarchy

17

✗✗

✗✗

✗✗

✗✗
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Parallel Collections 
Hierarchy

18

GenTraversable

GenIterable

GenSeq
Traversable

Iterable

Seq

ParIterable

ParSeq

Tuesday, June 21, 2011
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Parallel Collections 
Hierarchy

18

GenTraversable

GenIterable

GenSeq
Traversable

Iterable

Seq

ParIterable

ParSeq

Immutable parallel collections:
ParRange
ParVector
ParHashMap
ParHashSet
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Parallel Collections 
Hierarchy

18

GenTraversable

GenIterable

GenSeq
Traversable

Iterable

Seq

ParIterable

ParSeq

Immutable parallel collections:
ParRange
ParVector
ParHashMap
ParHashSet

Based on hash tries
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Parallel Collections 
Hierarchy

18

GenTraversable

GenIterable

GenSeq
Traversable

Iterable

Seq

ParIterable

ParSeq
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Parallel Collections 
Hierarchy

18

GenTraversable

GenIterable

GenSeq
Traversable

Iterable

Seq

ParIterable

ParSeq

Mutable parallel collections:
ParArray
ParHashMap
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Parallel Collections 
Hierarchy

18

GenTraversable

GenIterable

GenSeq
Traversable

Iterable

Seq

ParIterable

ParSeq
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Parallel Collections 
Hierarchy

18

GenTraversable

GenIterable

GenSeq
Traversable

Iterable

Seq

ParIterable

ParSeq

Why isn’t a ParSeq a Seq?
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Seq vs. ParSeq

19

def nonEmpty(sq: Seq[String]) = {
  val res = new mutable.ArrayBuffer[String]()
! for (s <- sq) {
    if (s.nonEmpty) res += s
  }
  res
}
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}
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21

def nonEmpty(sq: ParSeq[String]) = {
  val res = new mutable.ArrayBuffer[String]()
! for (s <- sq) {
    if (s.nonEmpty) res += s
  }
  res
}
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Seq vs. ParSeq

21

def nonEmpty(sq: ParSeq[String]) = {
  val res = new mutable.ArrayBuffer[String]()
! for (s <- sq) {
    if (s.nonEmpty) res += s
  }
  res
}

Side effect!
ArrayBuffer’s += is not atomic!

Tuesday, June 21, 2011
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Seq vs. ParSeq

21

ParSeq

Seq

def nonEmpty(sq: ParSeq[String]) = {
  val res = new mutable.ArrayBuffer[String]()
! for (s <- sq) {
    if (s.nonEmpty) res += s
  }
  res
}

Side effect!
ArrayBuffer’s += is not atomic!
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| UPMARC Multicore Computing Summer School. June 20-23, 2011. 

Implementing Parallel 
Collections.

22
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Implementing Parallel 
Collections.

22

GOAL: define operations in terms of a few common 
abstractions

Typically, in terms of a foreach method or iterators
However, their sequential nature makes these 
approaches ill-suited for parallel execution!
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Implementing Parallel 
Collections.

INSTEAD: abstractions for splitting and combining
Split collection into non-trivial partition
Iterate over disjunct subsets in parallel
Combine partial results computed in parallel

22

GOAL: define operations in terms of a few common 
abstractions

Typically, in terms of a foreach method or iterators
However, their sequential nature makes these 
approaches ill-suited for parallel execution!
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Splitters and Combiners.

Tuesday, June 21, 2011



| UPMARC Multicore Computing Summer School. June 20-23, 2011. 

Splitters and Combiners.

A splitter is an iterator that can be recursively split 
into disjoint iterators:

trait Splitter[T] extends Iterator[T] {
  def split: Seq[Splitter[T]]
}

✗✗
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Splitters and Combiners.

A splitter is an iterator that can be recursively split 
into disjoint iterators:

trait Splitter[T] extends Iterator[T] {
  def split: Seq[Splitter[T]]
}

trait Combiner[T, Coll] extends Builder[T, Coll] {
  def combine(other: Combiner[T, Coll]): Combiner[T, Coll]
}

A combiner combines partial results
The combine method returns a combiner containing 
the union of its argument elements
Results from different tasks are combined in a tree-
like manner

✗✗

✗✗
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Implementing ParArray.

24

Hold a reference to the array and iteration bounds

Divide the iteration range into two equal parts

✗✗

✗✗

SPLITTERS
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| UPMARC Multicore Computing Summer School. June 20-23, 2011. 

Implementing ParArray.

24

Hold a reference to the array and iteration bounds

Divide the iteration range into two equal parts

class ArraySplitter[T](a: Array[T], start: Int, end: Int)
  extends Splitter[T] {

  def split = Seq(
    new ArraySplitter(a, start, (start + end) / 2),
    new ArraySplitter(a, (start + end) / 2, end))
}

✗✗

✗✗

SPLITTERS
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Implementing ParArray.

COMBINERS
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Implementing ParArray.

COMBINERS

✗✗ The final array size is not known in advance
The result array must be constructed lazily

Tuesday, June 21, 2011



| UPMARC Multicore Computing Summer School. June 20-23, 2011. 25

Implementing ParArray.

COMBINERS

✗✗

✗✗

The final array size is not known in advance
The result array must be constructed lazily

Maintain elements in linked list of buffers
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Implementing ParArray.

COMBINERS

✗✗

✗✗

✗✗

The final array size is not known in advance
The result array must be constructed lazily

Maintain elements in linked list of buffers

The result method allocates the array, and 
copies the chunks into the array in parallel
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class ArrayCombiner[T] extends Combiner[T, ParArray[T]] {
  val chunks = LinkedList[Buffer[T]]() += Buffer[T]()
  def +=(elem: T) = chunks.last += elem
  def combine(that: ArrayCombiner[T]) = chunks append that.chunks
  def result = exec(new Copy(chunks,
                    new Array[T](chunks.fold(0)(_+_.size))))
}

Implementing ParArray.

COMBINERS

✗✗

✗✗

✗✗

The final array size is not known in advance
The result array must be constructed lazily

Maintain elements in linked list of buffers

The result method allocates the array, and 
copies the chunks into the array in parallel

Tuesday, June 21, 2011
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Summary.

26

Tuesday, June 21, 2011



| UPMARC Multicore Computing Summer School. June 20-23, 2011. 

Summary.

26

Simple transition from regular collections to 
parallel collections (“just add .par!”)

If access patterns aren’t inherently sequential

✗✗
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Simple transition from regular collections to 
parallel collections (“just add .par!”)

If access patterns aren’t inherently sequential

Parallel collection types do not extend 
sequential collection types

To avoid breaking existing code with side effects

✗✗
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Summary.

26

Simple transition from regular collections to 
parallel collections (“just add .par!”)

If access patterns aren’t inherently sequential

Parallel collection types do not extend 
sequential collection types

To avoid breaking existing code with side effects

Parallel collections are implemented in terms 
of splitters and combiners

Parallel collections must provide efficient 
implementations of those

✗✗

✗✗

✗✗
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Programming

Cray
Jaguar

Sun  
T2

Nvidia 
Fermi
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Programming
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Sun  
T2

Nvidia 
Fermi
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Pthreads
OpenMP

CUDA 
OpenCL 

Verilog 
VHDL 
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Cray
Jaguar

Sun  
T2

Nvidia 
Fermi

MPI

Pthreads
OpenMP

CUDA 
OpenCL 

Verilog 
VHDL 

Too many different programming models

Virtual 
Worlds

Personal Robotics

Data
informatics

Scientific
Engineering

Applications

29

Heterogeneous Parallel 
Programming
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Hypothesis and New 
Problem

Q: Is it possible to write one program and 
      run it on all these targets?
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Hypothesis and New 
Problem

Q: Is it possible to write one program and 
      run it on all these targets?

THOUGH, IT’S QUITE DIFFICULT TO CREATE 
DSLS USING CURRENT METHODS.

HYPOTHESIS: Yes, but need domain-specific languages
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Current DSL Development 
Approaches

Can include extensive optimizations

Enormous effort to develop to a sufficient degree 
of maturity

Compiler, optimizations
Tooling (IDEs, debuggers, ...)

Interoperation between multiple DSLs very 
difficult

Examples: MATLAB, SQL

31

✗✗

✗✗

✗✗

✗✗

Stand-alone DSLs
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Current DSL Development 
Approaches

Purely embedded DSLs (“just a library”)
Easy to develop (can reuse full host language)

Easier to learn DSL

Can combine multiple DSLs in one program

Can share DSL infrastructure among several DSLs

Hard to optimize using domain knowledge

32
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We need to do better.
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Develop embedded DSLs that perform 
as well as stand-alone ones.

GOAL: 
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We need to do better.

33

Develop embedded DSLs that perform 
as well as stand-alone ones.

General-purpose languages 
should be designed with DSL 
embedding in mind.

GOAL: 

INTUITION:
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Lightweight Modular 
Staging.

                 Typical Compiler 

Lexer Parser Type 
checker Analysis Optimization Code gen

34
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Lightweight Modular 
Staging.

                 Typical Compiler 

Embedded DSL gets it all for free,
but can’t change any of it

Lexer Parser Type 
checker Analysis Optimization Code gen

34
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Lightweight Modular 
Staging.

                 Typical Compiler 

Lexer Parser Type 
checker Analysis Optimization Code gen

Stand-alone DSL 
implements everything

34
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Lightweight Modular 
Staging.

                 Typical Compiler 

Lexer Parser Type 
checker Analysis Optimization Code gen

Modular Staging provides a hybrid approach

34
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                 Typical Compiler 

Lexer Parser Type 
checker Analysis Optimization Code gen

DSLs adopt front-end from highly 
expressive embedding language

but can customize IR and 
participate in backend phases

Modular Staging provides a hybrid approach
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Lightweight Modular 
Staging.

                 Typical Compiler 

Lexer Parser Type 
checker Analysis Optimization Code gen

DSLs adopt front-end from highly 
expressive embedding language

but can customize IR and 
participate in backend phases

Modular Staging provides a hybrid approach

GPCE’10: Lightweight modular staging: a pragmatic approach
            to runtime code generation and compiled DSLs

34
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Linear Algebra Example.

object TestMatrix {

  def example(a: Matrix, b: Matrix, c: Matrix, d: Matrix) = {
    val x = a*b + a*c
    val y = a*c + a*d
    println(x+y)
  }
}

Targeting heterogeneous HW requires changing

how data is represented
how operations are implemented

35

Tuesday, June 21, 2011



| UPMARC Multicore Computing Summer School. June 20-23, 2011. 

Abstracting Matrices

Use abstract type constructor
Do not fix a specific implementation, yet
Operations work on abstract matrices

  type Rep[T]

  def infix_+(x: Rep[Matrix], y: Rep[Matrix]): Rep[Matrix]

  def example(a: Rep[Matrix], b: Rep[Matrix], c: Rep[Matrix], 
d: Rep[Matrix]) = {
    val x = a*b + a*c
    val y = a*c + a*d
    println(x+y)
  } IMPLEMENTATION DOESN’T CHANGE!

36
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Lifting Scala Constants

Want to reuse Scala constants when operating on 
abstract data types:

Possible approach: v * intConst(2)

where def intConst(x: Int): Rep[Int]
adds noise
would be required also for more complex constants

val v: Rep[Vector[Double]]
v * 2

37
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Want to reuse Scala constants when operating on 
abstract data types:

Possible approach: v * intConst(2)

where def intConst(x: Int): Rep[Int]
adds noise
would be required also for more complex constants

val v: Rep[Vector[Double]]
v * 2

37

Demands parameters of type Rep
[Vector[Int]] and Rep[Int]!
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Lifting Scala Constants.

OUR APPROACH: introduce:
implicit def intToRep(x: Int): Rep[Int]

Implicitly applied by compiler if Rep[Int] required, 
but Int found, and intToRep in scope

No syntactic noise added to user programs

Works not only for primitives

38

✗✗

✗✗

✗✗

✗✗
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Staging.

abstract class Exp[T]
case class Const[T](x: T) extends Exp[T]
case class Symbol[T](id: Int) extends Exp[T]
abstract class Op[T]

type Rep[T] = Exp[T]

def infix_+(x: Exp[Matrix], y: Exp[Matrix]) = 
    new PlusOp(x, y)

class PlusOp(x: Exp[Matrix], y: Exp[Matrix])
      extends DeliteOpZip[Matrix]

EXAMPLE: expression trees

Matrix implementation:

Programming using only Rep[Matrix], Rep[Vector] 
etc. allows different implementations for Rep

39
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The Delite DSL Framework

Provides IR with parallel execution patterns
EXAMPLE: DeliteOpZip[T]

Parallel optimization of IR graph

Compiler framework with support for 
heterogeneous hardware platforms

DSL extends parallel operations
EXAMPLE: class Plus extends DeliteOpZip[Matrix]

Domain-specific analysis and optimization

40

✗✗

✗✗

✗✗

✗✗

✗✗
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The Delite IR Hierarchy

41

s = sum(M)V1 = exp(V2)M1 = M2 + M3
Domain User 

Interface
DSL
User

Application

DS IR

Delite Op IR

Base IR

C2 = sort(C1)

Matrix
Plus

Vector
Exp

Matrix
Sum

Domain Analysis & 
Opt.

DSL
AuthorCollectionQuick

sort

ReduceMapZipWith

Parallelism Analysis 
& Opt.

Code Generation

Delite

Divide & 
Conquer

OpGeneric Analysis & 
Opt.

Delite
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Delite Ops

Encode parallel execution patterns
EXAMPLE: data-parallel: map, reduce, zip, ...

Delite provides implementations of these 
patterns for multiple hardware targets

EXAMPLE: multicore, GPU

DSL developer maps each domain operation 
to the appropriate pattern

42

✗✗

✗✗

✗✗
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Optimization: Loop Fusion
Reduces loop overhead and improves locality

Elimination of temporary data structures
Communication through registers

Fuse both dependent and side-by-side operations
Fused operations can have multiple outputs

ALGORITHM: Fuse two loops if,
size(loop1) == size(loop2)
No dependencies exist that would require an impossible 
schedule when fused (e.g., C depends on B depends on A => 
cannot fuse C and A)

43
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Delite DSL Compilers.

44

Intermediate Representation (IR)

        Scala Embedding 
              Framework

Delite Parallelism 
Framework

Base IR

Generic Analysis & Opt.

Liszt
program

OptiML
program

DS IR

Domain Analysis & 
Opt.

Delite IR

Parallelism Analysis, Opt. & 
Mapping

⇒⇒
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Delite: Conclusions.

Need to simplify the process of developing 
DSLs for parallelism.

Need programming languages to be designed 
for flexible embedding.

Lightweight modular staging allows for 
powerful embedded DSLs.

Delite provides a framework for adding 
parallelism.

45

✗✗

✗✗

✗✗

✗✗
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Questions?
THANK YOU.
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PhD Tips: Writing Papers

• Best help to earn you a PhD

• But can earn PhD without a conference paper if 
practical contribution is worthwhile (in Europe)

• Follow Simon Peyton-Jones’ advice on how to write 
a paper (it’s motivating, too: write paper about any 
idea, no matter how small)

47
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Submitting to a Conference

• Paper(s) accepted at conferences (as opposed to 
workshops) are best way to ensure you graduate 
soon

• Acceptance at big conference (PLDI, POPL, 
OOPSLA, ECOOP) will earn PhD without any doubt 
(if you and advisor are authors)

• But, second tier conference fine places to publish 
papers, too: actors paper with most impact appeared 
at a second class conference

• Use deadlines to drive work (to some extent)

48
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Doing Research

• Worst mistake: Not spending 1 hour per day thinking 
really hard about your most important problem

• Without any distractions

• While working on an implementation, hard to make 
room for 1 hour not at the computer

• Important to have deep thinking time that is not 
required to produce immediate result

• Balance between reading papers and thinking/
programming yourself

• Reading the right papers carefully most important

49
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