
Philipp HALLER, STANFORD UNIVERSITY AND EPFL

Scala
MULTICORE

PART 2: Parallel Collections and Parallel DSLs

for

1

Tuesday, June 21, 2011

Philipp HALLER, STANFORD UNIVERSITY AND EPFL

Scala
MULTICORE

PART 2: Parallel Collections and Parallel DSLs

for

1

RESOURCES ONLINE AT:http://lamp.epfl.ch/~phaller/upmarc

Tuesday, June 21, 2011

http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc

2

BUT FIRST,
Let’s pick up from where

we left off yesterday...

Tuesday, June 21, 2011

Goal of Scala Actors

Programming system for Erlang-style actors that:
offers high scalability on mainstream platforms;

integrates with thread-based code;

provides safe and efficient message passing.

✗✗

✗✗

✗✗

Tuesday, June 21, 2011

Goal of Scala Actors

Programming system for Erlang-style actors that:
offers high scalability on mainstream platforms;

integrates with thread-based code;

provides safe and efficient message passing.✗✗

✔
✔

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Safe and Efficient Message
Passing.

It’s possible to produce data races with actors:

4

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Safe and Efficient Message
Passing.

It’s possible to produce data races with actors:

4

Pass a reference to a mutable object in a message

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Safe and Efficient Message
Passing.

It’s possible to produce data races with actors:

4

Pass a reference to a mutable object in a message
Two actors accessing the same mutable object
can lead to data races

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Safe and Efficient Message
Passing.

It’s possible to produce data races with actors:

4

Pass a reference to a mutable object in a message
Two actors accessing the same mutable object
can lead to data races

How do we prevent that?

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Safe and Efficient Message
Passing.

It’s possible to produce data races with actors:

4

Pass a reference to a mutable object in a message
Two actors accessing the same mutable object
can lead to data races

Make sure mutable objects are unusable after
they have been sent

How do we prevent that?

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Safe and Efficient Message
Passing.

It’s possible to produce data races with actors:

4

Pass a reference to a mutable object in a message
Two actors accessing the same mutable object
can lead to data races

Make sure mutable objects are unusable after
they have been sent
Use a compiler plugin to check whether a variable is
unusable

How do we prevent that?

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

The Compiler Plugin.

5

The compiler plugin checks at which point a
variable is transferred and becomes unusable.

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

The Compiler Plugin.

5

1. MARK variables that we want to send
in messages.

The compiler plugin checks at which point a
variable is transferred and becomes unusable.

This check is done in two steps:

Add @unique annotation to their type.

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

The Compiler Plugin.

5

1.
2.

MARK variables that we want to send
in messages.

Go through program and track which
variables are USABLE/UNUSABLE.

The compiler plugin checks at which point a
variable is transferred and becomes unusable.

This check is done in two steps:

Add @unique annotation to their type.

Run additional type checking phase
on program

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Extending Type Checking.

An annotated variable

has a type guarded with a capability:

6

val buf: ArrayBuffer[Int] @unique

buf: ρ⊳ArrayBuffer[Int]

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Extending Type Checking.

An annotated variable

has a type guarded with a capability:

6

val buf: ArrayBuffer[Int] @unique

buf: ρ⊳ArrayBuffer[Int]

A variable with guarded type is only usable when its
capability is available

Key idea:

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Tracking Capabilities.

7

actor {
 var sum = 2 + 3
 val buf: Buffer[Int]@unique =
 new ArrayBuffer[Int]
 buf += sum
 someActor ! buf
 buf.remove(0)
}

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Tracking Capabilities.

7

actor {
 var sum = 2 + 3
 val buf: Buffer[Int]@unique =
 new ArrayBuffer[Int]
 buf += sum
 someActor ! buf
 buf.remove(0)
}

LOCAL VARIABLES: CAPABILITIES:

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Tracking Capabilities.

7

actor {
 var sum = 2 + 3
 val buf: Buffer[Int]@unique =
 new ArrayBuffer[Int]
 buf += sum
 someActor ! buf
 buf.remove(0)
}

LOCAL VARIABLES: CAPABILITIES:

∅

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Tracking Capabilities.

7

actor {
 var sum = 2 + 3
 val buf: Buffer[Int]@unique =
 new ArrayBuffer[Int]
 buf += sum
 someActor ! buf
 buf.remove(0)
}

LOCAL VARIABLES: CAPABILITIES:

∅
∅

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Tracking Capabilities.

7

actor {
 var sum = 2 + 3
 val buf: Buffer[Int]@unique =
 new ArrayBuffer[Int]
 buf += sum
 someActor ! buf
 buf.remove(0)
}

LOCAL VARIABLES: CAPABILITIES:

sum: Int

∅
∅
∅

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Tracking Capabilities.

7

actor {
 var sum = 2 + 3
 val buf: Buffer[Int]@unique =
 new ArrayBuffer[Int]
 buf += sum
 someActor ! buf
 buf.remove(0)
}

LOCAL VARIABLES: CAPABILITIES:

buf: ρ⊳Buffer[Int]
sum: Int
sum: Int

∅
∅
∅
ρ

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Tracking Capabilities.

7

actor {
 var sum = 2 + 3
 val buf: Buffer[Int]@unique =
 new ArrayBuffer[Int]
 buf += sum
 someActor ! buf
 buf.remove(0)
}

LOCAL VARIABLES: CAPABILITIES:

buf: ρ⊳Buffer[Int]
sum: Int
sum: Int

buf: ρ⊳Buffer[Int]sum: Int

∅
∅
∅
ρ
ρ

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Tracking Capabilities.

7

actor {
 var sum = 2 + 3
 val buf: Buffer[Int]@unique =
 new ArrayBuffer[Int]
 buf += sum
 someActor ! buf
 buf.remove(0)
}

LOCAL VARIABLES: CAPABILITIES:

buf: ρ⊳Buffer[Int]
sum: Int
sum: Int

buf: ρ⊳Buffer[Int]sum: Int

∅
∅
∅
ρ
ρ

buf: ρ⊳Buffer[Int]sum: Int ρ

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Tracking Capabilities.

7

actor {
 var sum = 2 + 3
 val buf: Buffer[Int]@unique =
 new ArrayBuffer[Int]
 buf += sum
 someActor ! buf
 buf.remove(0)
}

LOCAL VARIABLES: CAPABILITIES:

buf: ρ⊳Buffer[Int]
sum: Int
sum: Int

buf: ρ⊳Buffer[Int]sum: Int

∅
∅
∅
ρ
ρ

buf: ρ⊳Buffer[Int]sum: Int ρ
buf: ρ⊳Buffer[Int]sum: Int ∅

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Tracking Capabilities.

7

actor {
 var sum = 2 + 3
 val buf: Buffer[Int]@unique =
 new ArrayBuffer[Int]
 buf += sum
 someActor ! buf
 buf.remove(0)
}

LOCAL VARIABLES: CAPABILITIES:

buf: ρ⊳Buffer[Int]
sum: Int
sum: Int

buf: ρ⊳Buffer[Int]sum: Int

∅
∅
∅
ρ
ρ

buf: ρ⊳Buffer[Int]sum: Int ρ
buf: ρ⊳Buffer[Int]sum: Int ∅

Error: buf has type ρ⊳Buffer[Int] but
capability ρ is not available
 buf.remove(0)
 ^

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Tracking Capabilities.

7

actor {
 var sum = 2 + 3
 val buf: Buffer[Int]@unique =
 new ArrayBuffer[Int]
 buf += sum
 someActor ! buf
 buf.remove(0)
}

LOCAL VARIABLES: CAPABILITIES:

buf: ρ⊳Buffer[Int]
sum: Int
sum: Int

buf: ρ⊳Buffer[Int]sum: Int

∅
∅
∅
ρ
ρ

buf: ρ⊳Buffer[Int]sum: Int ρ
buf: ρ⊳Buffer[Int]sum: Int ∅

Error: buf has type ρ⊳Buffer[Int] but
capability ρ is not available
 buf.remove(0)
 ^

The extended type checker ensures mutable objects

are no longer accessed after they have been consumed.

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Tracking Capabilities.

7

actor {
 var sum = 2 + 3
 val buf: Buffer[Int]@unique =
 new ArrayBuffer[Int]
 buf += sum
 someActor ! buf
 buf.remove(0)
}

LOCAL VARIABLES: CAPABILITIES:

buf: ρ⊳Buffer[Int]
sum: Int
sum: Int

buf: ρ⊳Buffer[Int]sum: Int

∅
∅
∅
ρ
ρ

buf: ρ⊳Buffer[Int]sum: Int ρ
buf: ρ⊳Buffer[Int]sum: Int ∅

Error: buf has type ρ⊳Buffer[Int] but
capability ρ is not available
 buf.remove(0)
 ^

The extended type checker ensures mutable objects

are no longer accessed after they have been consumed.

THUS,
Uniqueness types can be used to ensure actors are isolated.

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Implementation and
Experience.

Plug in for Scala compiler
Erases capabilities and capturedBy for code generation

Practical experience:

8

size [LOC] changes [LOC] property checked

mutable
collections

2046 60 collections self-contained

partest 4182 61 actor isolation
ray tracer 414 18 actor isolation

Tuesday, June 21, 2011

External vs. Separate
Uniqueness

9

SEPARATE UNIQUENESSEXTERNAL UNIQUENESS

[Clarke, Wrigstad 2003; Müller,
Rudich 2007; Clarke et al. 2008]

No external aliases

No unique
method receivers

Deep/full
encapsulation

Unique method
receivers (self transfer)

Full
encapsulation

Local external
aliases

THIS TALK.

Tuesday, June 21, 2011

Goal of Scala Actors?
REVISITED.

Programming system for Erlang-style actors that:
offers high scalability on mainstream platforms;

integrates with thread-based code;

provides safe and efficient message passing.✗✗

(AGAIN)

10

✔
✔

Tuesday, June 21, 2011

Goal of Scala Actors?

Haller and Odersky. Capabilities for uniqueness and borrowing,
Proc. ECOOP, 2010

REVISITED.
Programming system for Erlang-style actors that:

offers high scalability on mainstream platforms;

integrates with thread-based code;

provides safe and efficient message passing.

[]

CAPABILITIES FOR UNIQUENESS
Lightweight pluggable type system.

(AGAIN)

Race-freedom through actor isolation.

10
[]Haller. Isolated Actors for Race-Free Concurrent Programming,

PhD Thesis, 2010

✔
✔
✔

Tuesday, June 21, 2011

Summary: Actors

Scalable Erlang-style actors

Integration of thread-based and event-based
programming

Used in large-scale production systems

Lightweight uniqueness types for actor isolation

11

✗✗

✗✗

✗✗

✗✗

Tuesday, June 21, 2011

Parallel
Collections

12

Tuesday, June 21, 2011

Collections?

13

Collections are literally collections of data elements,
which you can perform operations on.

THE COLLECTIONS MENTALITY:

Tuesday, June 21, 2011

Collections?

13

el(0) el(3)

el(0) el(1)

el(2)

el(3)

el(1) el(2) el(3)

Collections are literally collections of data elements,
which you can perform operations on.

A collection can be represented by
any data structure, like:

amongst others...

HASH MAPS, RED-BLACK TREES, ETC.

LINKED LISTS

TREES

THE COLLECTIONS MENTALITY:

Tuesday, June 21, 2011

Collections?

13

el(0) el(3)

el(0) el(1)

el(2)

el(3)

el(1) el(2) el(3)

Collections are literally collections of data elements,
which you can perform operations on.

A collection can be represented by
any data structure, like:

LINKED LISTS

TREES

THE COLLECTIONS MENTALITY:

Menu
operations of the day:

map
foreach
forall
groupBy
reduce
count

indexOf
sorted

Each of which has a set of operations
you can perform on it:

Tuesday, June 21, 2011

Collections?

myCollectionval

Say you have some collection:

: List[Int] = List(1,2,3,4,5)

Tuesday, June 21, 2011

Collections?

myCollectionval

Say you have some collection:

: List[Int] = List(1,2,3,4,5)

We can perform an operation on that collection:

myCollection.foldLeft(0)((a,b) => a+b)

1 2 3 4 5
res

0

Tuesday, June 21, 2011

Collections?

myCollectionval

Say you have some collection:

: List[Int] = List(1,2,3,4,5)

We can perform an operation on that collection:

myCollection.foldLeft(0)((a,b) => a+b)

1 2 3 4 5
res

15

Tuesday, June 21, 2011

Collections Hierarchy.

15

Collections are organized in two packages.

Tuesday, June 21, 2011

Collections Hierarchy.

scala.collection.mutable

15

scala.collection.immutable

Collections are organized in two packages.

Tuesday, June 21, 2011

Collections Hierarchy.

scala.collection.mutable

15

scala.collection.immutable

Collections are organized in two packages.

Can change, add, or remove
elements in place as a side
effect

Tuesday, June 21, 2011

Collections Hierarchy.

scala.collection.mutable

15

scala.collection.immutable

Collections are organized in two packages.

Methods that transform an
immutable collection return a
new collection and leave the old
collection unchanged

Can change, add, or remove
elements in place as a side
effect

Tuesday, June 21, 2011

Collections Hierarchy.

scala.collection.mutable

15

scala.collection.immutable

Collections are organized in two packages.

Abstract classes in scala.collection

Tuesday, June 21, 2011

Parallel Collections
Scala 2.9 introduces Parallel Collections, based on the idea
that many operations can safely be performed in parallel.

Tuesday, June 21, 2011

Parallel Collections
Scala 2.9 introduces Parallel Collections, based on the idea
that many operations can safely be performed in parallel.

Just add .par

And the same operation is performed in parallel:

myCollection.par.foldLeft(0)((a,b) => a+b)

1 2 3 4 50 0

Tuesday, June 21, 2011

Parallel Collections
Scala 2.9 introduces Parallel Collections, based on the idea
that many operations can safely be performed in parallel.

Just add .par

And the same operation is performed in parallel:

myCollection.par.foldLeft(0)((a,b) => a+b)

1 2 3 4 5

96 = 15

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

.par
New method added to regular collections

Returns a parallel version of the collection
pointing to the same underlying data

Use .seq to go back to the sequential collection

Parallel sequences, maps, and sets defined in
separate hierarchy

17

✗✗

✗✗

✗✗

✗✗

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Parallel Collections
Hierarchy

18

GenTraversable

GenIterable

GenSeq
Traversable

Iterable

Seq

ParIterable

ParSeq

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Parallel Collections
Hierarchy

18

GenTraversable

GenIterable

GenSeq
Traversable

Iterable

Seq

ParIterable

ParSeq

Immutable parallel collections:
ParRange
ParVector
ParHashMap
ParHashSet

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Parallel Collections
Hierarchy

18

GenTraversable

GenIterable

GenSeq
Traversable

Iterable

Seq

ParIterable

ParSeq

Immutable parallel collections:
ParRange
ParVector
ParHashMap
ParHashSet

Based on hash tries

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Parallel Collections
Hierarchy

18

GenTraversable

GenIterable

GenSeq
Traversable

Iterable

Seq

ParIterable

ParSeq

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Parallel Collections
Hierarchy

18

GenTraversable

GenIterable

GenSeq
Traversable

Iterable

Seq

ParIterable

ParSeq

Mutable parallel collections:
ParArray
ParHashMap

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Parallel Collections
Hierarchy

18

GenTraversable

GenIterable

GenSeq
Traversable

Iterable

Seq

ParIterable

ParSeq

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Parallel Collections
Hierarchy

18

GenTraversable

GenIterable

GenSeq
Traversable

Iterable

Seq

ParIterable

ParSeq

Why isn’t a ParSeq a Seq?

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Seq vs. ParSeq

19

def nonEmpty(sq: Seq[String]) = {
 val res = new mutable.ArrayBuffer[String]()
! for (s <- sq) {
 if (s.nonEmpty) res += s
 }
 res
}

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Seq vs. ParSeq

20

def nonEmpty(sq: ParSeq[String]) = {
 val res = new mutable.ArrayBuffer[String]()
! for (s <- sq) {
 if (s.nonEmpty) res += s
 }
 res
}

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Seq vs. ParSeq

21

def nonEmpty(sq: ParSeq[String]) = {
 val res = new mutable.ArrayBuffer[String]()
! for (s <- sq) {
 if (s.nonEmpty) res += s
 }
 res
}

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Seq vs. ParSeq

21

def nonEmpty(sq: ParSeq[String]) = {
 val res = new mutable.ArrayBuffer[String]()
! for (s <- sq) {
 if (s.nonEmpty) res += s
 }
 res
}

Side effect!
ArrayBuffer’s += is not atomic!

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Seq vs. ParSeq

21

ParSeq

Seq

def nonEmpty(sq: ParSeq[String]) = {
 val res = new mutable.ArrayBuffer[String]()
! for (s <- sq) {
 if (s.nonEmpty) res += s
 }
 res
}

Side effect!
ArrayBuffer’s += is not atomic!

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Implementing Parallel
Collections.

22

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Implementing Parallel
Collections.

22

GOAL: define operations in terms of a few common
abstractions

Typically, in terms of a foreach method or iterators
However, their sequential nature makes these
approaches ill-suited for parallel execution!

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Implementing Parallel
Collections.

INSTEAD: abstractions for splitting and combining
Split collection into non-trivial partition
Iterate over disjunct subsets in parallel
Combine partial results computed in parallel

22

GOAL: define operations in terms of a few common
abstractions

Typically, in terms of a foreach method or iterators
However, their sequential nature makes these
approaches ill-suited for parallel execution!

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Splitters and Combiners.

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Splitters and Combiners.

A splitter is an iterator that can be recursively split
into disjoint iterators:

trait Splitter[T] extends Iterator[T] {
 def split: Seq[Splitter[T]]
}

✗✗

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Splitters and Combiners.

A splitter is an iterator that can be recursively split
into disjoint iterators:

trait Splitter[T] extends Iterator[T] {
 def split: Seq[Splitter[T]]
}

trait Combiner[T, Coll] extends Builder[T, Coll] {
 def combine(other: Combiner[T, Coll]): Combiner[T, Coll]
}

A combiner combines partial results
The combine method returns a combiner containing
the union of its argument elements
Results from different tasks are combined in a tree-
like manner

✗✗

✗✗

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Implementing ParArray.

24

Hold a reference to the array and iteration bounds

Divide the iteration range into two equal parts

✗✗

✗✗

SPLITTERS

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Implementing ParArray.

24

Hold a reference to the array and iteration bounds

Divide the iteration range into two equal parts

class ArraySplitter[T](a: Array[T], start: Int, end: Int)
 extends Splitter[T] {

 def split = Seq(
 new ArraySplitter(a, start, (start + end) / 2),
 new ArraySplitter(a, (start + end) / 2, end))
}

✗✗

✗✗

SPLITTERS

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011. 25

Implementing ParArray.

COMBINERS

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011. 25

Implementing ParArray.

COMBINERS

✗✗ The final array size is not known in advance
The result array must be constructed lazily

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011. 25

Implementing ParArray.

COMBINERS

✗✗

✗✗

The final array size is not known in advance
The result array must be constructed lazily

Maintain elements in linked list of buffers

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011. 25

Implementing ParArray.

COMBINERS

✗✗

✗✗

✗✗

The final array size is not known in advance
The result array must be constructed lazily

Maintain elements in linked list of buffers

The result method allocates the array, and
copies the chunks into the array in parallel

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011. 25

class ArrayCombiner[T] extends Combiner[T, ParArray[T]] {
 val chunks = LinkedList[Buffer[T]]() += Buffer[T]()
 def +=(elem: T) = chunks.last += elem
 def combine(that: ArrayCombiner[T]) = chunks append that.chunks
 def result = exec(new Copy(chunks,
 new Array[T](chunks.fold(0)(_+_.size))))
}

Implementing ParArray.

COMBINERS

✗✗

✗✗

✗✗

The final array size is not known in advance
The result array must be constructed lazily

Maintain elements in linked list of buffers

The result method allocates the array, and
copies the chunks into the array in parallel

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Summary.

26

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Summary.

26

Simple transition from regular collections to
parallel collections (“just add .par!”)

If access patterns aren’t inherently sequential

✗✗

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Summary.

26

Simple transition from regular collections to
parallel collections (“just add .par!”)

If access patterns aren’t inherently sequential

Parallel collection types do not extend
sequential collection types

To avoid breaking existing code with side effects

✗✗

✗✗

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Summary.

26

Simple transition from regular collections to
parallel collections (“just add .par!”)

If access patterns aren’t inherently sequential

Parallel collection types do not extend
sequential collection types

To avoid breaking existing code with side effects

Parallel collections are implemented in terms
of splitters and combiners

Parallel collections must provide efficient
implementations of those

✗✗

✗✗

✗✗

Tuesday, June 21, 2011

Heterogeneous
Parallel DSLs

27

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Heterogeneous Parallel
Programming

Cray
Jaguar

Sun
T2

Nvidia
Fermi

28

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Heterogeneous Parallel
Programming

Cray
Jaguar

Sun
T2

Nvidia
Fermi

Pthreads
OpenMP

28

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Heterogeneous Parallel
Programming

Cray
Jaguar

Sun
T2

Nvidia
Fermi

Pthreads
OpenMP

CUDA
OpenCL

28

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Heterogeneous Parallel
Programming

Cray
Jaguar

Sun
T2

Nvidia
Fermi

Pthreads
OpenMP

CUDA
OpenCL

Verilog
VHDL

28

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Heterogeneous Parallel
Programming

Cray
Jaguar

Sun
T2

Nvidia
Fermi

MPI

Pthreads
OpenMP

CUDA
OpenCL

Verilog
VHDL

28

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Cray
Jaguar

Sun
T2

Nvidia
Fermi

MPI

Pthreads
OpenMP

CUDA
OpenCL

Verilog
VHDL

Too many different programming models

Virtual
Worlds

Personal Robotics

Data
informatics

Scientific
Engineering

Applications

29

Heterogeneous Parallel
Programming

Tuesday, June 21, 2011

Hypothesis and New
Problem

Q: Is it possible to write one program and
 run it on all these targets?

Tuesday, June 21, 2011

Hypothesis and New
Problem

Q: Is it possible to write one program and
 run it on all these targets?

THOUGH, IT’S QUITE DIFFICULT TO CREATE
DSLS USING CURRENT METHODS.

HYPOTHESIS: Yes, but need domain-specific languages

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Current DSL Development
Approaches

Can include extensive optimizations

Enormous effort to develop to a sufficient degree
of maturity

Compiler, optimizations
Tooling (IDEs, debuggers, ...)

Interoperation between multiple DSLs very
difficult

Examples: MATLAB, SQL

31

✗✗

✗✗

✗✗

✗✗

Stand-alone DSLs

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Current DSL Development
Approaches

Purely embedded DSLs (“just a library”)
Easy to develop (can reuse full host language)

Easier to learn DSL

Can combine multiple DSLs in one program

Can share DSL infrastructure among several DSLs

Hard to optimize using domain knowledge

32

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

We need to do better.

33

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

We need to do better.

33

Develop embedded DSLs that perform
as well as stand-alone ones.

GOAL:

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

We need to do better.

33

Develop embedded DSLs that perform
as well as stand-alone ones.

General-purpose languages
should be designed with DSL
embedding in mind.

GOAL:

INTUITION:

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Lightweight Modular
Staging.

 Typical Compiler

Lexer Parser Type
checker Analysis Optimization Code gen

34

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Lightweight Modular
Staging.

 Typical Compiler

Embedded DSL gets it all for free,
but can’t change any of it

Lexer Parser Type
checker Analysis Optimization Code gen

34

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Lightweight Modular
Staging.

 Typical Compiler

Lexer Parser Type
checker Analysis Optimization Code gen

Stand-alone DSL
implements everything

34

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Lightweight Modular
Staging.

 Typical Compiler

Lexer Parser Type
checker Analysis Optimization Code gen

Modular Staging provides a hybrid approach

34

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Lightweight Modular
Staging.

 Typical Compiler

Lexer Parser Type
checker Analysis Optimization Code gen

DSLs adopt front-end from highly
expressive embedding language

but can customize IR and
participate in backend phases

Modular Staging provides a hybrid approach

34

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Lightweight Modular
Staging.

 Typical Compiler

Lexer Parser Type
checker Analysis Optimization Code gen

DSLs adopt front-end from highly
expressive embedding language

but can customize IR and
participate in backend phases

Modular Staging provides a hybrid approach

GPCE’10: Lightweight modular staging: a pragmatic approach
 to runtime code generation and compiled DSLs

34

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Linear Algebra Example.

object TestMatrix {

 def example(a: Matrix, b: Matrix, c: Matrix, d: Matrix) = {
 val x = a*b + a*c
 val y = a*c + a*d
 println(x+y)
 }
}

Targeting heterogeneous HW requires changing

how data is represented
how operations are implemented

35

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Abstracting Matrices

Use abstract type constructor
Do not fix a specific implementation, yet
Operations work on abstract matrices

 type Rep[T]

 def infix_+(x: Rep[Matrix], y: Rep[Matrix]): Rep[Matrix]

 def example(a: Rep[Matrix], b: Rep[Matrix], c: Rep[Matrix],
d: Rep[Matrix]) = {
 val x = a*b + a*c
 val y = a*c + a*d
 println(x+y)
 } IMPLEMENTATION DOESN’T CHANGE!

36

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Lifting Scala Constants

Want to reuse Scala constants when operating on
abstract data types:

Possible approach: v * intConst(2)

where def intConst(x: Int): Rep[Int]
adds noise
would be required also for more complex constants

val v: Rep[Vector[Double]]
v * 2

37

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Lifting Scala Constants

Want to reuse Scala constants when operating on
abstract data types:

Possible approach: v * intConst(2)

where def intConst(x: Int): Rep[Int]
adds noise
would be required also for more complex constants

val v: Rep[Vector[Double]]
v * 2

37

Demands parameters of type Rep
[Vector[Int]] and Rep[Int]!

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Lifting Scala Constants.

OUR APPROACH: introduce:
implicit def intToRep(x: Int): Rep[Int]

Implicitly applied by compiler if Rep[Int] required,
but Int found, and intToRep in scope

No syntactic noise added to user programs

Works not only for primitives

38

✗✗

✗✗

✗✗

✗✗

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Staging.

abstract class Exp[T]
case class Const[T](x: T) extends Exp[T]
case class Symbol[T](id: Int) extends Exp[T]
abstract class Op[T]

type Rep[T] = Exp[T]

def infix_+(x: Exp[Matrix], y: Exp[Matrix]) =
 new PlusOp(x, y)

class PlusOp(x: Exp[Matrix], y: Exp[Matrix])
 extends DeliteOpZip[Matrix]

EXAMPLE: expression trees

Matrix implementation:

Programming using only Rep[Matrix], Rep[Vector]
etc. allows different implementations for Rep

39

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Staging.

abstract class Exp[T]
case class Const[T](x: T) extends Exp[T]
case class Symbol[T](id: Int) extends Exp[T]
abstract class Op[T]

type Rep[T] = Exp[T]

def infix_+(x: Exp[Matrix], y: Exp[Matrix]) =
 new PlusOp(x, y)

class PlusOp(x: Exp[Matrix], y: Exp[Matrix])
 extends DeliteOpZip[Matrix]

EXAMPLE: expression trees

Matrix implementation:

Programming using only Rep[Matrix], Rep[Vector]
etc. allows different implementations for Rep

39

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

The Delite DSL Framework

Provides IR with parallel execution patterns
EXAMPLE: DeliteOpZip[T]

Parallel optimization of IR graph

Compiler framework with support for
heterogeneous hardware platforms

DSL extends parallel operations
EXAMPLE: class Plus extends DeliteOpZip[Matrix]

Domain-specific analysis and optimization

40

✗✗

✗✗

✗✗

✗✗

✗✗

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

The Delite IR Hierarchy

41

s = sum(M)V1 = exp(V2)M1 = M2 + M3
Domain User

Interface
DSL
User

Application

DS IR

Delite Op IR

Base IR

C2 = sort(C1)

Matrix
Plus

Vector
Exp

Matrix
Sum

Domain Analysis &
Opt.

DSL
AuthorCollectionQuick

sort

ReduceMapZipWith

Parallelism Analysis
& Opt.

Code Generation

Delite

Divide &
Conquer

OpGeneric Analysis &
Opt.

Delite

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Delite Ops

Encode parallel execution patterns
EXAMPLE: data-parallel: map, reduce, zip, ...

Delite provides implementations of these
patterns for multiple hardware targets

EXAMPLE: multicore, GPU

DSL developer maps each domain operation
to the appropriate pattern

42

✗✗

✗✗

✗✗

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Optimization: Loop Fusion
Reduces loop overhead and improves locality

Elimination of temporary data structures
Communication through registers

Fuse both dependent and side-by-side operations
Fused operations can have multiple outputs

ALGORITHM: Fuse two loops if,
size(loop1) == size(loop2)
No dependencies exist that would require an impossible
schedule when fused (e.g., C depends on B depends on A =>
cannot fuse C and A)

43

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Delite DSL Compilers.

44

Intermediate Representation (IR)

 Scala Embedding
 Framework

Delite Parallelism
Framework

Base IR

Generic Analysis & Opt.

Liszt
program

OptiML
program

DS IR

Domain Analysis &
Opt.

Delite IR

Parallelism Analysis, Opt. &
Mapping

⇒⇒

Tuesday, June 21, 2011

Delite: Conclusions.

Need to simplify the process of developing
DSLs for parallelism.

Need programming languages to be designed
for flexible embedding.

Lightweight modular staging allows for
powerful embedded DSLs.

Delite provides a framework for adding
parallelism.

45

✗✗

✗✗

✗✗

✗✗

Tuesday, June 21, 2011

Questions?
THANK YOU.

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

PhD Tips: Writing Papers

• Best help to earn you a PhD

• But can earn PhD without a conference paper if
practical contribution is worthwhile (in Europe)

• Follow Simon Peyton-Jones’ advice on how to write
a paper (it’s motivating, too: write paper about any
idea, no matter how small)

47

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Submitting to a Conference

• Paper(s) accepted at conferences (as opposed to
workshops) are best way to ensure you graduate
soon

• Acceptance at big conference (PLDI, POPL,
OOPSLA, ECOOP) will earn PhD without any doubt
(if you and advisor are authors)

• But, second tier conference fine places to publish
papers, too: actors paper with most impact appeared
at a second class conference

• Use deadlines to drive work (to some extent)

48

Tuesday, June 21, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Doing Research

• Worst mistake: Not spending 1 hour per day thinking
really hard about your most important problem

• Without any distractions

• While working on an implementation, hard to make
room for 1 hour not at the computer

• Important to have deep thinking time that is not
required to produce immediate result

• Balance between reading papers and thinking/
programming yourself

• Reading the right papers carefully most important

49

Tuesday, June 21, 2011

