
Philipp HALLER, STANFORD UNIVERSITY AND EPFL

Scala
MULTICORE

PART 1: Foundations and Message-Passing Concurrency

for

1

Monday, June 20, 2011

Philipp HALLER, STANFORD UNIVERSITY AND EPFL

Scala
MULTICORE

PART 1: Foundations and Message-Passing Concurrency

for

1

RESOURCES ONLINE AT:http://lamp.epfl.ch/~phaller/upmarc

Monday, June 20, 2011

http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc
http://lamp.epfl.ch/~phaller/upmarc

What is Scala?

2

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

What is Scala?

3

Scala is a statically-typed language that integrates
object-oriented and functional programming

Resources at http://lamp.epfl.ch/~phaller/upmarc

Monday, June 20, 2011

http://lamp.epfl.ch
http://lamp.epfl.ch

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

What is Scala?

3

Scala is a statically-typed language that integrates
object-oriented and functional programming

Uniform object model

Resources at http://lamp.epfl.ch/~phaller/upmarc

Monday, June 20, 2011

http://lamp.epfl.ch
http://lamp.epfl.ch

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

What is Scala?

3

Scala is a statically-typed language that integrates
object-oriented and functional programming

Uniform object model
Higher-order functions and pattern matching

Resources at http://lamp.epfl.ch/~phaller/upmarc

Monday, June 20, 2011

http://lamp.epfl.ch
http://lamp.epfl.ch

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

What is Scala?

3

Scala is a statically-typed language that integrates
object-oriented and functional programming

Uniform object model
Higher-order functions and pattern matching
Novel ways to compose and abstract expressions

Resources at http://lamp.epfl.ch/~phaller/upmarc

Monday, June 20, 2011

http://lamp.epfl.ch
http://lamp.epfl.ch

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

What is Scala?

Compiler preview for Microsoft .NET

3

Scala is a statically-typed language that integrates
object-oriented and functional programming

Uniform object model
Higher-order functions and pattern matching
Novel ways to compose and abstract expressions

Scala runs on the Java Virtual Machine and is
completely interoperable with Java

Resources at http://lamp.epfl.ch/~phaller/upmarc

Monday, June 20, 2011

http://lamp.epfl.ch
http://lamp.epfl.ch

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

It’s a promising language.

4

Resources at http://lamp.epfl.ch/~phaller/upmarc

Monday, June 20, 2011

http://lamp.epfl.ch
http://lamp.epfl.ch

Why are people adopting Scala?

5

Monday, June 20, 2011

6

Monday, June 20, 2011

6

Replaced their Ruby-based back-end services with Scala.

Using actors, they could scale their concurrent message
queue system to a larger number of users.

Monday, June 20, 2011

7

"[...] used Scala to meet the demanding real-time content searching, indexing or
updating. Using actors for example, he explains how they were able to reduce the
search index build time from 20 hours to just one. Request patterns, he says, are
hard to predict so THE ABILITY TO EASILY SCALE THE SERVICES WAS ESSENTIAL.

guardian.co.uk:

Monday, June 20, 2011

7

"[...] used Scala to meet the demanding real-time content searching, indexing or
updating. Using actors for example, he explains how they were able to reduce the
search index build time from 20 hours to just one. Request patterns, he says, are
hard to predict so THE ABILITY TO EASILY SCALE THE SERVICES WAS ESSENTIAL.

guardian.co.uk:

guardian.co.uk has the second highest readership of
any on-line news site after the New York Times *

* ACCORDING TO ITS EDITOR

[]

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Scala and Parallelism.

8

People are adopting Scala because it is a
good basis for parallel programming.

Resources at http://lamp.epfl.ch/~phaller/upmarc

Monday, June 20, 2011

http://lamp.epfl.ch
http://lamp.epfl.ch

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Scala and Parallelism.

8

People are adopting Scala because it is a
good basis for parallel programming.

Why?

Resources at http://lamp.epfl.ch/~phaller/upmarc

Monday, June 20, 2011

http://lamp.epfl.ch
http://lamp.epfl.ch

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Scala and Parallelism.

8

People are adopting Scala because it is a
good basis for parallel programming.

Strong support for functional programming.

Why?

✗✗

Resources at http://lamp.epfl.ch/~phaller/upmarc

Monday, June 20, 2011

http://lamp.epfl.ch
http://lamp.epfl.ch

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Scala and Parallelism.

8

People are adopting Scala because it is a
good basis for parallel programming.

Strong support for functional programming.

Enables embedded DSLs for concurrency
and parallelism.

Why?

✗✗

✗✗

Resources at http://lamp.epfl.ch/~phaller/upmarc

Monday, June 20, 2011

http://lamp.epfl.ch
http://lamp.epfl.ch

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Scala and Parallelism.

8

People are adopting Scala because it is a
good basis for parallel programming.

Enables embedded DSLs for concurrency
and parallelism.

Why?

✗✗

✗✗

Strong support for functional programming.

Resources at http://lamp.epfl.ch/~phaller/upmarc

Monday, June 20, 2011

http://lamp.epfl.ch
http://lamp.epfl.ch

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Resources at http://lamp.epfl.ch/~phaller/upmarc
9

Why is FP Crucial for
Parallel Programming?

Monday, June 20, 2011

http://lamp.epfl.ch
http://lamp.epfl.ch

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Resources at http://lamp.epfl.ch/~phaller/upmarc
9

Why is FP Crucial for
Parallel Programming?

Data races, deadlocks, memory effects, ...
Parallel programming is very hard.

Monday, June 20, 2011

http://lamp.epfl.ch
http://lamp.epfl.ch

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Resources at http://lamp.epfl.ch/~phaller/upmarc
9

Why is FP Crucial for
Parallel Programming?

Data races, deadlocks, memory effects, ...
Parallel programming is very hard.

REASON: non-deterministic thread interleavings.
Interleavings observable because of shared state.

Monday, June 20, 2011

http://lamp.epfl.ch
http://lamp.epfl.ch

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Resources at http://lamp.epfl.ch/~phaller/upmarc
9

Why is FP Crucial for
Parallel Programming?

Data races, deadlocks, memory effects, ...
Parallel programming is very hard.

REASON: non-deterministic thread interleavings.
Interleavings observable because of shared state.

Therefore, by eliminating mutable state we can
exclude concurrency hazards!

Monday, June 20, 2011

http://lamp.epfl.ch
http://lamp.epfl.ch

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Resources at http://lamp.epfl.ch/~phaller/upmarc
9

Why is FP Crucial for
Parallel Programming?

Data races, deadlocks, memory effects, ...
Parallel programming is very hard.

REASON: non-deterministic thread interleavings.
Interleavings observable because of shared state.

Therefore, by eliminating mutable state we can
exclude concurrency hazards!

FUNCTIONAL PROGRAMMING is the only productive way

to work with immutable data structures

Monday, June 20, 2011

http://lamp.epfl.ch
http://lamp.epfl.ch
http://lamp.epfl.ch
http://lamp.epfl.ch

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Scala and Parallelism.

10

People are adopting Scala because it is a
good basis for parallel programming.

Why?

✗✗ Strong support for functional programming.

Enables embedded DSLs for concurrency
and parallelism.

✗✗

Resources at http://lamp.epfl.ch/~phaller/upmarc

Monday, June 20, 2011

http://lamp.epfl.ch
http://lamp.epfl.ch

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Scala and Parallelism.

10

People are adopting Scala because it is a
good basis for parallel programming.

Strong support for functional programming.

Why?

✗✗

✗✗ Enables embedded DSLs for concurrency
and parallelism.

Resources at http://lamp.epfl.ch/~phaller/upmarc

Monday, June 20, 2011

http://lamp.epfl.ch
http://lamp.epfl.ch

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Domain-Specific Languages

 // asynchronous message send
actor ! message

// message receive
receive {
 case msgpat1 => action1
 …
 case msgpatn => actionn
}

11

EXAMPLES:
Erlang-style actors,
X10-style async/finish

Scala’s flexible syntax
makes it easy to define
embedded DSLs

Resources at http://lamp.epfl.ch/~phaller/upmarc

Monday, June 20, 2011

http://lamp.epfl.ch
http://lamp.epfl.ch

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Domain-Specific Languages

 // asynchronous message send
actor ! message

// message receive
receive {
 case msgpat1 => action1
 …
 case msgpatn => actionn
}

11

Compiler plug-ins enable safety checking

EXAMPLES:
Erlang-style actors,
X10-style async/finish

Scala’s flexible syntax
makes it easy to define
embedded DSLs

✗✗

Resources at http://lamp.epfl.ch/~phaller/upmarc

Monday, June 20, 2011

http://lamp.epfl.ch
http://lamp.epfl.ch

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Domain-Specific Languages

 // asynchronous message send
actor ! message

// message receive
receive {
 case msgpat1 => action1
 …
 case msgpatn => actionn
}

11

Compiler plug-ins enable safety checking

Embedding enables interoperability

EXAMPLES:
Erlang-style actors,
X10-style async/finish

Scala’s flexible syntax
makes it easy to define
embedded DSLs

✗✗

✗✗
Resources at http://lamp.epfl.ch/~phaller/upmarc

Monday, June 20, 2011

http://lamp.epfl.ch
http://lamp.epfl.ch

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Scala and Parallelism.

12

People are adopting Scala because it is a
good basis for parallel programming.

Strong support for functional programming.

Why?

✗✗

✗✗ Enables embedded DSLs for concurrency
and parallelism.

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Scala and Parallelism.

12

People are adopting Scala because it is a
good basis for parallel programming.

Strong support for functional programming.

Why?

✗✗

These things are a step in the right direction
towards Popular Parallel Programming.

Enables embedded DSLs for concurrency
and parallelism.

✗✗

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Scala and Parallelism.

12

People are adopting Scala because it is a
good basis for parallel programming.

Strong support for functional programming.

Why?

✗✗

These things are a step in the right direction
towards Popular Parallel Programming.

OUR GOAL:
Make “Popular Parallel Programming” possible.

Enables embedded DSLs for concurrency
and parallelism.

✗✗

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Scala’s Toolbox for Parallel
Programming

ACTORS

STM

FUTURES

PARALLEL GRAPH
PROCESSING

COLLECTIONS

PARALLEL DSLS

PARALLEL

DISTRIBUTED

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Scala’s Toolbox for Parallel
Programming

ACTORS

STM

FUTURES

PARALLEL GRAPH
PROCESSING

COLLECTIONS

PARALLEL DSLS

PARALLEL

DISTRIBUTED

Monday, June 20, 2011

The Lectures.

14

TODAY

Intro to Scala

Scala Actors

Parallel Graph
Processing

Parallel Collections

Parallel DSLs

PhD Tips

TOMORROW

Monday, June 20, 2011

Scala:
THE BASICS

15

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

An Example Class.

public class Person {
 public final String name;
 public final int age;
 Person(String name, int age) {
 this.name = name;
 this.age = age;
 }
}

16

In Java:

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

An Example Class.

public class Person {
 public final String name;
 public final int age;
 Person(String name, int age) {
 this.name = name;
 this.age = age;
 }
}

class Person(val name: String,
 val age: Int) {}

16

In Java:

In Scala:

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

... and its use
import java.util.ArrayList;
...
Person[] people;
Person[] minors;
Person[] adults;
{ ArrayList<Person> minorsList = new ArrayList<Person>();
 ArrayList<Person> adultsList = new ArrayList<Person>();
 for (int i = 0; i < people.length; i++)
 (people[i].age < 18 ? minorsList : adultsList)
! ! .add(people[i]);
 minors = minorsList.toArray(people);
 adults = adultsList.toArray(people);
}

17

In Java:

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

... and its use
import java.util.ArrayList;
...
Person[] people;
Person[] minors;
Person[] adults;
{ ArrayList<Person> minorsList = new ArrayList<Person>();
 ArrayList<Person> adultsList = new ArrayList<Person>();
 for (int i = 0; i < people.length; i++)
 (people[i].age < 18 ? minorsList : adultsList)
! ! .add(people[i]);
 minors = minorsList.toArray(people);
 adults = adultsList.toArray(people);
}

val people: Array[Person]
val (minors, adults) = people partition (_.age < 18)

17

In Java:

In Scala:

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

... and its use
import java.util.ArrayList;
...
Person[] people;
Person[] minors;
Person[] adults;
{ ArrayList<Person> minorsList = new ArrayList<Person>();
 ArrayList<Person> adultsList = new ArrayList<Person>();
 for (int i = 0; i < people.length; i++)
 (people[i].age < 18 ? minorsList : adultsList)
! ! .add(people[i]);
 minors = minorsList.toArray(people);
 adults = adultsList.toArray(people);
}

val people: Array[Person]
val (minors, adults) = people partition (_.age < 18)

17

In Java:

In Scala:

an infix method call

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

... and its use
import java.util.ArrayList;
...
Person[] people;
Person[] minors;
Person[] adults;
{ ArrayList<Person> minorsList = new ArrayList<Person>();
 ArrayList<Person> adultsList = new ArrayList<Person>();
 for (int i = 0; i < people.length; i++)
 (people[i].age < 18 ? minorsList : adultsList)
! ! .add(people[i]);
 minors = minorsList.toArray(people);
 adults = adultsList.toArray(people);
}

val people: Array[Person]
val (minors, adults) = people partition (_.age < 18)

17

In Java:

In Scala:

a function value

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

... and its use
import java.util.ArrayList;
...
Person[] people;
Person[] minors;
Person[] adults;
{ ArrayList<Person> minorsList = new ArrayList<Person>();
 ArrayList<Person> adultsList = new ArrayList<Person>();
 for (int i = 0; i < people.length; i++)
 (people[i].age < 18 ? minorsList : adultsList)
! ! .add(people[i]);
 minors = minorsList.toArray(people);
 adults = adultsList.toArray(people);
}

val people: Array[Person]
val (minors, adults) = people partition (_.age < 18)

17

In Java:

In Scala:

a simple pattern match

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Class Hierarchies and ADTs.

18

Scala unifies class hierarchies and
abstract data types (ADTs)

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Class Hierarchies and ADTs.

18

Introducing pattern matching
for objects.

✗✗

Scala unifies class hierarchies and
abstract data types (ADTs)

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Class Hierarchies and ADTs.

18

Introducing pattern matching
for objects.

Concise manipulation of
immutable data structures.

✗✗

✗✗

Scala unifies class hierarchies and
abstract data types (ADTs)

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Pattern Matching.

19

Class hierarchy for binary trees:
abstract class Tree[T]
case object Empty extends Tree[Nothing]
case class Binary[T](elem: T, left: Tree[T], right: Tree[T])
 extends Tree[T]

In-order traversal:
def inOrder[T](t: Tree[T]): List[T] = t match {
 case Empty ! =>
 List()
 case Binary(e, l, r) =>
 inOrder(l) ::: List(e) ::: inOrder(r)
}

• Extensibility
• Encapsulation: only constructor params exposed
• Representation independence [ECOOP’07]

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Functions and Collections.

20

people.filter(_.age >= 18)
.groupBy(_.surname): Map[String, List[Person]]
.values : Iterable[List[Person]]
.count(_.length >= 2)

First-class functions make collections
more powerful

Especially immutable ones

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Functions and Collections.

20

people.filter(_.age >= 18)
.groupBy(_.surname): Map[String, List[Person]]
.values : Iterable[List[Person]]
.count(_.length >= 2)

First-class functions make collections
more powerful

Especially immutable ones

✗✗

✗✗

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Functions are Objects.

21

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Functions are Objects.

21

Values are objects => functions are objects

Every function is a value✗✗

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Functions are Objects.

21

trait Function1[-S, +T] {
 def apply(x: S): T
}

Values are objects => functions are objects

Every function is a value

The function type S => T is equivalent to
the class type scala.Function1[S, T]:

✗✗

✗✗

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Functions are Objects.

21

trait Function1[-S, +T] {
 def apply(x: S): T
}

new Function1[Int, Int] {
 def apply(x: Int): Int = x + 1
}

Values are objects => functions are objects

Every function is a value

The function type S => T is equivalent to
the class type scala.Function1[S, T]:

For example, the anonymous successor function
(x: Int) => x + 1 (short _ + 1) is expanded to:

✗✗

✗✗

✗✗

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Arrays are Objects.

22

a(i) = a(i) + 2 for a.update(i, a.apply(i) + 2)

final class Array[T](_length: Int) extends
java.io.Serializable

 with java.lang.Cloneable {

 def length: Int = ...
 def apply(i: Int): T = ...
 def update(i: Int, x: T): Unit = ...
 override def clone: Array[T] = ...
}

Arrays = mutable functions over integer ranges

Syntactic sugar:

✗✗

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Partial Functions.

23

trait PartialFunction[-A, +B] extends (A => B) {
 def isDefinedAt(x: A): Boolean
 def orElse[A1 <: A, B1 >: B]
 (that: PartialFunction[A1, B1]): PartialFunction[A1, B1]
}

Functions that are defined only for some objects

Test using isDefinedAt

Blocks of pattern-matching cases are instances of
partial functions

This lets one write control structures that are not
easily expressible otherwise

✗✗

✗✗

✗✗

✗✗

Monday, June 20, 2011

Scala
ACTORS

24

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Actors in Scala.

25

 // asynchronous message send
actor ! message

// message receive
receive {
 case msgpat1 => action1
 …
 case msgpatn => actionn
}

Send/receive constructs
adopted from Erlang

Send is asynchronous:
messages are buffered in
actor’s mailbox

Receive picks the first
message in the mailbox
that matches one of the
patterns msgpati

If no pattern matches the
actor suspends

✗✗

✗✗

✗✗

✗✗ Partial function of the type,
PartialFunction[Msg, Action]

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Actors in Scala.

25

 // asynchronous message send
actor ! message

// message receive
receive {
 case msgpat1 => action1
 …
 case msgpatn => actionn
}

Send/receive constructs
adopted from Erlang

Send is asynchronous:
messages are buffered in
actor’s mailbox

Receive picks the first
message in the mailbox
that matches one of the
patterns msgpati

If no pattern matches the
actor suspends

✗✗

✗✗

✗✗

✗✗ Partial function of the type,
PartialFunction[Msg, Action]

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Actors in Scala.

25

 // asynchronous message send
actor ! message

// message receive
receive {
 case msgpat1 => action1
 …
 case msgpatn => actionn
}

Send/receive constructs
adopted from Erlang

Send is asynchronous:
messages are buffered in
actor’s mailbox

Receive picks the first
message in the mailbox
that matches one of the
patterns msgpati

If no pattern matches the
actor suspends

✗✗

✗✗

✗✗

✗✗ Partial function of the type,
PartialFunction[Msg, Action]

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

A Simple Actor.

26

val summer = actor {
 var sum = 0
 loop {
 receive {
 case ints: Array[Int] =>
 sum += ints.reduceLeft((a, b) => (a+b)%7)
 case from: Actor =>
 from ! sum
 }
 }
}

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Erlang-style Actors.

27

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Erlang-style Actors.

27

No inversion of control
Message reception is explicit and blocking

✗✗

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Erlang-style Actors.

27

No inversion of control
Message reception is explicit and blocking

Fine-grained message filtering
Messages are filtered upon reception

✗✗

✗✗

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Erlang-style Actors.

27

No inversion of control
Message reception is explicit and blocking

Fine-grained message filtering
Messages are filtered upon reception

NOT Erlang-style actors: E, Kilim, ActorFoundry

✗✗

✗✗

✗✗

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Erlang-style Actors.

27

No inversion of control
Message reception is explicit and blocking

Fine-grained message filtering
Messages are filtered upon reception

NOT Erlang-style actors: E, Kilim, ActorFoundry

Incentive: programmer productivity

✗✗

✗✗

✗✗

✗✗

Monday, June 20, 2011

Goal of Scala Actors?

28

Programming system for Erlang-
style actors that:

Monday, June 20, 2011

Goal of Scala Actors?

28

offers high scalability on mainstream
platforms;

✗✗

Programming system for Erlang-
style actors that:

Monday, June 20, 2011

Goal of Scala Actors?

28

offers high scalability on mainstream
platforms;

integrates with thread-based code;

✗✗

✗✗

Programming system for Erlang-
style actors that:

Monday, June 20, 2011

Goal of Scala Actors?

28

offers high scalability on mainstream
platforms;

integrates with thread-based code;

provides safe and efficient message
passing.

✗✗

✗✗

✗✗

Programming system for Erlang-
style actors that:

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Implementing Actors.

29

Thread-based implementation:

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Implementing Actors.

29

Thread-based implementation:
One thread per actor✗✗

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Implementing Actors.

29

Thread-based implementation:
One thread per actor

JVM maps threads to OS processes

✗✗

✗✗

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Implementing Actors.

29

Thread-based implementation:
One thread per actor

JVM maps threads to OS processes

Receive blocks thread while waiting for message

✗✗

✗✗

✗✗

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Implementing Actors.

29

Thread-based implementation:
One thread per actor

JVM maps threads to OS processes

Receive blocks thread while waiting for message

✗✗

✗✗

✗✗

PROS CONS
No inversion of control.

Interoperability with threads.

High memory consumption.

Context switching overhead.

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Event-Based Actors.

30

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Event-Based Actors.

30

Actors consume a lot of resources while
waiting for messages.

MAIN PROBLEM of thread-per-actor model:

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Event-Based Actors.

30

Actors consume a lot of resources while
waiting for messages.

Suspend actor by saving continuation
closure and releasing current thread

Transparent thread pooling

MAIN PROBLEM of thread-per-actor model:

IDEA:

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Event-Based Actors.

30

def act() {
 react { case Put(x) =>
 react { case Get(from) =>
 from ! x
 act()
 }
 }
}

Actors consume a lot of resources while
waiting for messages.

Suspend actor by saving continuation
closure and releasing current thread

Transparent thread pooling

MAIN PROBLEM of thread-per-actor model:

IDEA:

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Programming with react

31

Invocations of react do not return
Must provide continuation in body of react

Does this mean we have to write code
in continuation-passing style?

No, control-flow combinators enable modular
composition

a andThen b //runs a followed by b

def loop(body: => Unit) = body andThen loop(body)

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Programming with react

31

Invocations of react do not return
Must provide continuation in body of react

Does this mean we have to write code
in continuation-passing style?

No, control-flow combinators enable modular
composition

a andThen b //runs a followed by b

def loop(body: => Unit) = body andThen loop(body)

✗✗

✗✗

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Thread-based Programming

32

val tasks: List[Task]
tasks foreach { task => worker ! task }
val results = tasks map { task =>
 receive {
 case Done(result) => result
 }
}

Blocks current thread if actor
has to wait for a message

Actors should be able to block their thread temporarily:
When interacting with thread-based code
When it is difficult to provide the continuation

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Thread Pool

task queue

task queue

task queue

task queue

worker threads (few)

Actors (many)

Managing Blocking.

33

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Thread Pool

task queue

task queue

task queue

task queue

worker threads (few)

Actors (many)

Managing Blocking.

33

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Thread Pool

task queue

task queue

task queue

task queue

worker threads (few)

Actors (many)

 Start 3 actors
 Then:
receive {
 case Next =>
}

Actor A:

Managing Blocking.

33

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Thread Pool

task queue

task queue

task queue

task queue

worker threads (few)

Actors (many)

 Start 3 actors
 Then:
receive {
 case Next =>
}

Actor A:

Managing Blocking.

33

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Thread Pool

task queue

task queue

task queue

task queue

worker threads (few)

Actors (many)

 Start 3 actors
 Then:
receive {
 case Next =>
}

Actor A:

Managing Blocking.

33

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Thread Pool

task queue

task queue

task queue

task queue

worker threads (few)

Actors (many)

 Start 3 actors
 Then:
receive {
 case Next =>
}

receive {
 case Put(x) =>
}

Actor A:

Managing Blocking.

33

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Thread Pool

task queue

task queue

task queue

task queue

worker threads (few)

Actors (many)

 Start 3 actors
 Then:
receive {
 case Next =>
}

receive {
 case Put(x) =>
}

Actor A:

Managing Blocking.

33

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Thread Pool

task queue

task queue

task queue

task queue

worker threads (few)

Actors (many)

 Start 3 actors
 Then:
receive {
 case Next =>
}

receive {
 case Put(x) =>
}

Actor A:

Managing Blocking.

33

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Thread Pool

task queue

task queue

task queue

task queue

worker threads (few)

Actors (many)

 Start 3 actors
 Then:
receive {
 case Next =>
}

receive {
 case Put(x) =>
}

receive {
 case Put(x) =>
}

Actor A:

Managing Blocking.

33

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Thread Pool

task queue

task queue

task queue

task queue

worker threads (few)

Actors (many)

 Start 3 actors
 Then:
receive {
 case Next =>
}

receive {
 case Put(x) =>
}

receive {
 case Put(x) =>
}

Actor A:

Managing Blocking.

33

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Thread Pool

task queue

task queue

task queue

task queue

worker threads (few)

Actors (many)

 Start 3 actors
 Then:
receive {
 case Next =>
}

receive {
 case Put(x) =>
}

receive {
 case Put(x) =>
}

actor {
 A ! Next
}
receive {
 case Put(x) =>
}

Actor A:

Managing Blocking.

33

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Thread Pool

task queue

task queue

task queue

task queue

worker threads (few)

Actors (many)

 Start 3 actors
 Then:
receive {
 case Next =>
}

receive {
 case Put(x) =>
}

receive {
 case Put(x) =>
}

actor {
 A ! Next
}
receive {
 case Put(x) =>
}

Actor A:

Managing Blocking.

33

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Thread Pool

task queue

task queue

task queue

task queue

worker threads (few)

Actors (many)

 Start 3 actors
 Then:
receive {
 case Next =>
}

receive {
 case Put(x) =>
}

receive {
 case Put(x) =>
}

actor {
 A ! Next
}
receive {
 case Put(x) =>
}

Actor A:

Managing Blocking.

33

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Thread Pool

task queue

task queue

task queue

task queue

worker threads (few)

Actors (many)

 Start 3 actors
 Then:
receive {
 case Next =>
}

receive {
 case Put(x) =>
}

receive {
 case Put(x) =>
}

actor {
 A ! Next
}
receive {
 case Put(x) =>
}

Actor A:

Managing Blocking.

33

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Thread Pool

task queue

task queue

task queue

task queue

worker threads (few)

Actors (many)

 Start 3 actors
 Then:
receive {
 case Next =>
}

receive {
 case Put(x) =>
}

receive {
 case Put(x) =>
}

actor {
 A ! Next
}
receive {
 case Put(x) =>
}

Actor A:

Managing Blocking.

33

Thread pool locked up!

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Thread Pool

task queue

task queue

task queue

task queue

worker threads (few)

Actors (many)

 Start 3 actors
 Then:
receive {
 case Next =>
}

receive {
 case Put(x) =>
}

receive {
 case Put(x) =>
}

actor {
 A ! Next
}
receive {
 case Put(x) =>
}

Actor A:

Managing Blocking.

33

Thread pool locked up!

MUST AVOID situation where:
all worker threads blocked.
there is a task in some task queue.

Monday, June 20, 2011

Under the Hood.

34

def receive[R](f: PartialFunction[Any, R]): R = {
 ...
 val elem = mailbox.extractFirst(msg => f.isDefinedAt(msg))
 if (elem == null) {
 synchronized {
 waitingFor = f
 isSuspended = true
 scheduler.managedBlock(blocker)
 }
 }
 else {
 // process message...
 }
 ...
}

Monday, June 20, 2011

Under the Hood.

34

def receive[R](f: PartialFunction[Any, R]): R = {
 ...
 val elem = mailbox.extractFirst(msg => f.isDefinedAt(msg))
 if (elem == null) {
 synchronized {
 waitingFor = f
 isSuspended = true
 scheduler.managedBlock(blocker)
 }
 }
 else {
 // process message...
 }
 ...
}

object blocker extends ManagedBlocker {
 def block() = {
 Actor.this.suspendActor()
 true
 }
 def isReleasable =
 !Actor.this.isSuspended
}

Monday, June 20, 2011

Inauguration 2.0

35“ ”
“We saw 5x normal tweets-per-second and about 4x tweets-per-
minute as this chart illustrates. Overall, Twitter sailed smoothly
through the inauguration [...]”

Monday, June 20, 2011

Goal of Scala Actors?

36

REVISITED.
Programming system for Erlang-style actors that:

offers high scalability on mainstream platforms;

integrates with thread-based code;

provides safe and efficient message passing.

✗✗

✗✗

✗✗

UNIFIED actors

Monday, June 20, 2011

Goal of Scala Actors?

36

Haller and Odersky. Event-based programming without inversion of
control, Proc. JMLC, 2006

* citation counts according to Google scholar

REVISITED.
Programming system for Erlang-style actors that:

offers high scalability on mainstream platforms;

integrates with thread-based code;

provides safe and efficient message passing.

✗✗

✗✗

✗✗

[]

EVENT-BASED actors
no inversion of control
no changes to the JVM
no CPS transform

Monday, June 20, 2011

Goal of Scala Actors?

36

Haller and Odersky. Scala Actors: Unifying thread-based and event
based programming, Theor. Comput. Sci, 2009

Haller and Odersky. Event-based programming without inversion of
control, Proc. JMLC, 2006

* citation counts according to Google scholar

REVISITED.
Programming system for Erlang-style actors that:

offers high scalability on mainstream platforms;

integrates with thread-based code;

provides safe and efficient message passing.

✗✗

✗✗

✗✗

[]
[]

Temporarily & safely monopolize thread

Interact with thread-based code

Monday, June 20, 2011

Safe and Efficient Message
Passing.

37

Monday, June 20, 2011

Safe and Efficient Message
Passing.

37

Sending mutable objects by reference may
lead to data races.!

Monday, June 20, 2011

Safe and Efficient Message
Passing.

37

Sending mutable objects by reference may
lead to data races.

(Deep) copying messages upon sending is safe
but inefficient

!
!

Monday, June 20, 2011

Safe and Efficient Message
Passing.

37

Sending mutable objects by reference may
lead to data races.

(Deep) copying messages upon sending is safe
but inefficient

Use unique references to enable efficient by-
reference message passing without races

!
!
✔

Monday, June 20, 2011

Safe and Efficient Message
Passing.

37

Sending mutable objects by reference may
lead to data races.

(Deep) copying messages upon sending is safe
but inefficient

Use unique references to enable efficient by-
reference message passing without races

Lightweight type-based approach to enforce
uniqueness

!
!
✔

✔

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Internal vs. External Aliases

38

x A B

y

local variable

Region of x
External alias

of x

Internal alias
of x

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Separate Uniqueness.

39

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Separate Uniqueness.

39

A reference is unique if it is the only reference
pointing into some region

✗✗

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Separate Uniqueness.

39

A reference is unique if it is the only reference
pointing into some region

Unique references may only have temporary
external aliases

✗✗

✗✗

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Separate Uniqueness.

39

A reference is unique if it is the only reference
pointing into some region

Unique references may only have temporary
external aliases

A region may be transferred between actors using a
unique reference; transferring invalidates the
unique reference

✗✗

✗✗

✗✗

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Annotation System

40

@unique

@transient

@peer(x)

x capturedBy y

swap(x.f, y)

Unique variable/parameter/result

Non-consumable (borrowed) unique parameter

Parameter/result in the same region as x

Return unique x.f and replace with unique y

Alias of x in region of y; consumes x

No explicit regions/owners
No static alias analysis
Supports closures and nested classes

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Unique Variables and
Regions

41

val logList: LogList @unique = new
LogList
for (test <- tests) {
 val logFile: LogFile @unique =
 createLogFile(test, kind)
 // run test...
 logList.add(logFile)
}
report(logList)

def report(logList: LogList @unique) {
 master ! new Results(logList)
}

logFile in disjoint
region of logList

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Mutating Unique Objects.

42

class LogList {
 var elem: LogFile = null
 var next: LogList = this
 @transient def add(file: LogFile @peer(this)) =
 if (isEmpty) {
 elem = file; next = new LogList
 } else next.add(file)
}

Receiver must remain unique after adding file

@transient is equivalent to @unique except it
does not consume the receiver

file must point into the same region as the
receiver, expressed using @peer(this)

✗✗

✗✗

✗✗

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Transferring Unique Objects.

How can we transfer a separately-unique object
from one region to another?

43

val logList: LogList @unique = new LogList
for (test <- tests) {
 val logFile: LogFile @unique =
 createLogFile(test)
 // run test...
 logList.add(logFile capturedBy logList)
}

Returns alias of logFile in region of logList
Consumes logFile

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Transferring Unique Objects.

How can we transfer a separately-unique object
from one region to another?

43

val logList: LogList @unique = new LogList
for (test <- tests) {
 val logFile: LogFile @unique =
 createLogFile(test)
 // run test...
 logList.add(logFile capturedBy logList)
}

Returns alias of logFile in region of logList
Consumes logFile

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Alias Invariant

44

Two variables x, y are separate (in heap H) iff
there is no object reachable from both x and y.

Unique parameters are separately-unique

Definition (Separate Uniqueness):

A variable x is separately-unique in heap H iff for
all y != x. y is live => separate (H, x, y)

Definition (Alias Invariant):

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Formal Type System

45

Let x: ρ⊳C and x’: ρ’⊳C’ be local variables (ρ != ρ’).
If there is a heap H at program point P such that
both x and y are live at P, then separate(H, x, y)

Definition (Capability Type Invariant):

Capability ρ = access permission to a region
in heap

A unique variable has type ρ⊳C

Class-based object calculus with capabilities
and capturedBy/swap

✗✗

✗✗

✗✗

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Type Checking

46

Typing judgment: Γ ; Δ # t : T ; Δ'

Type rules consume capability set Δ and
produce capability set Δ’

Capabilities in Δ grant access to variables in t
A variable of type ρ⊳C can only be accessed if ρ
is contained in Δ

Capabilities in Δ' available after type checking t

✗✗

✗✗

✗✗

✗✗

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Type Checking

46

Typing judgment: Γ ; Δ # t : T ; Δ'

Type rules consume capability set Δ and
produce capability set Δ’

Capabilities in Δ grant access to variables in t
A variable of type ρ⊳C can only be accessed if ρ
is contained in Δ

Capabilities in Δ' available after type checking t

✗✗

✗✗

✗✗

✗✗

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Capability Creation/
Consumption

Instance creation:

47

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Separation and Internal
Aliasing

Field assignment:

48

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Separate Uniqueness

49

Assume x has type ρ⊳C

Capability type invariant: if there is a heap H
where ¬separate(H, x, y), then y has type ρ⊳D

Consuming ρ makes all variables of type ρ⊳D
unusable

Consuming ρ makes all external aliases of x
unusable

Invoking a method consumes capabilities of
unique arguments

✗✗

✗✗

✗✗

✗✗

✗✗

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Soundness

Small-step operational semantics

Soundness established using syntactic Wright-
Felleisen Technique

Preservation: Reduction preserves uniqueness and
separation invariants

Progress: Well-typed programs do not get stuck
because of missing capabilities

50

✗✗

✗✗

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Immutable Types

Instances of immutable classes are deeply immutable

Allow immutable objects to be reachable from two
different regions

Capabilities guarding immutable instances are not
consumed

51

✗✗

✗✗

✗✗

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Immutable Types

Instances of immutable classes are deeply immutable

Allow immutable objects to be reachable from two
different regions

Capabilities guarding immutable instances are not
consumed

51

✗✗

✗✗

✗✗

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Actors and Concurrency
Add !, receive, and actor creation expressions

REDUCTION

Actor = sequential execution state + mailbox
Rules for reducing a set of actors in the context of a
shared heap

TYPING
Actors are instances of Actor subclasses
Send consumes non-immutable arguments
Receive returns unique references

52

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Actor Isolation

53

 Corollary (with progress):

Isolation theorem:

Variables accessible by different actors are
separate up to immutable objects

only immutable objects are accessed concurrently

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Implementation and
Experience

Plug in for Scala compiler
Erases capabilities and capturedBy for code generation

Practical experience:

54

size [LOC] changes [LOC] property checked

mutable
collections

2046 60 collections self-contained

partest 4182 61 actor isolation
ray tracer 414 18 actor isolation

Monday, June 20, 2011

| UPMARC Multicore Computing Summer School. June 20-23, 2011.

Implementation and
Experience

Plug in for Scala compiler
Erases capabilities and capturedBy for code generation

Practical experience:

54

size [LOC] changes [LOC] property checked

mutable
collections

2046 60 collections self-contained

partest 4182 61 actor isolation
ray tracer 414 18 actor isolationTYPES: DoubleLinkedList, ListBuffer, and HashMapIncluding all transitively extended traits

Monday, June 20, 2011

External vs. Separate
Uniqueness

55

SEPARATE UNIQUENESSEXTERNAL UNIQUENESS

[Clarke, Wrigstad 2003; Müller,
Rudich 2007; Clarke et al. 2008]

No external aliases

No unique
method receivers

Deep/full
encapsulation

Unique method
receivers (self transfer)

Full
encapsulation

Local external
aliases

THIS TALK.

Monday, June 20, 2011

Goal of Scala Actors?
REVISITED.

Programming system for Erlang-style actors that:
offers high scalability on mainstream platforms;

integrates with thread-based code;

provides safe and efficient message passing.

✗✗

✗✗

✗✗

(AGAIN)

Monday, June 20, 2011

Goal of Scala Actors?

Haller and Odersky. Capabilities for uniqueness and borrowing,
Proc. ECOOP, 2010

REVISITED.
Programming system for Erlang-style actors that:

offers high scalability on mainstream platforms;

integrates with thread-based code;

provides safe and efficient message passing.

✗✗

✗✗

✗✗

[]

CAPABILITIES FOR UNIQUENESS
Lightweight pluggable type system.

(AGAIN)

Race-freedom through actor isolation.

Monday, June 20, 2011

Summary: Actors

Scalable Erlang-style actors

Integration of thread-based and event-based
programming

Used in large-scale production systems

Lightweight uniqueness types for actor isolation
No explicit regions/owners
Soundness and actor isolation proofs

57

✗✗

✗✗

✗✗

✗✗

Monday, June 20, 2011

Parallel
Graph Processing

Monday, June 20, 2011

Data is growing.
At the same time,

do with that data.
there is a growing desire

to
MORE

59

Monday, June 20, 2011

As an example,
MACHINE LEARNING (ML)

has provided elegant and sophisticated solutions to
many complex problems on a small scale,

✗✗

60

Monday, June 20, 2011

As an example,
MACHINE LEARNING (ML)

has provided elegant and sophisticated solutions to
many complex problems on a small scale,

✗✗

could open up NEW APPLICATIONS + NEW

AVENUES OF RESEARCH if ported to a larger scale

60

Monday, June 20, 2011

As an example,
MACHINE LEARNING (ML)

has provided elegant and sophisticated solutions to
many complex problems on a small scale,

✗✗

but efforts are routinely limited by complexity and
running time of algorithms.

✗✗
SEQUENTIAL

60

Monday, June 20, 2011

As an example,
MACHINE LEARNING (ML)

has provided elegant and sophisticated solutions to
many complex problems on a small scale,

✗✗

but efforts are routinely limited by complexity and
running time of algorithms.

✗✗
SEQUENTIAL

described as,
a community full of “ENTRENCHED PROCEDURAL PROGRAMMERS”

typically focus on optimizing sequential algorithms when faced
with scaling problems.

60

Monday, June 20, 2011

As an example,
MACHINE LEARNING (ML)

has provided elegant and sophisticated solutions to
many complex problems on a small scale,

✗✗

but efforts are routinely limited by complexity and
running time of algorithms.

✗✗
SEQUENTIAL

described as,
a community full of “ENTRENCHED PROCEDURAL PROGRAMMERS”

typically focus on optimizing sequential algorithms when faced
with scaling problems.

need to make it easier to experiment with parallelism
60

Monday, June 20, 2011

What about MapReduce?

61

Monday, June 20, 2011

What about MapReduce?

MapReduce instances must be chained together
in order to achieve iteration.

Not always straightforward.

Overhead is significant.

✗✗

✗✗

Poor support for iteration.

Even building non-cyclic pipelines is hard (e.g.,
FlumeJava, PLDI’10).

Communication, serialization (e.g., Phoenix,
IISWC’09).

62

Monday, June 20, 2011

Menthor...

63

Monday, June 20, 2011

Menthor...

is a framework for parallel graph processing.✗✗
(But it is not limited to graphs.)

63

Monday, June 20, 2011

Menthor...

is a framework for parallel graph processing.

is inspired by BSP.

✗✗

✗✗

(But it is not limited to graphs.)

With functional reduction/aggregation mechanisms.

63

Monday, June 20, 2011

Menthor...

is a framework for parallel graph processing.

is inspired by BSP.

✗✗

✗✗

(But it is not limited to graphs.)

With functional reduction/aggregation mechanisms.

avoids an inversion of control✗✗
of other BSP-inspired graph-processing frameworks.

63

Monday, June 20, 2011

Menthor...

is a framework for parallel graph processing.

is inspired by BSP.

✗✗

✗✗

(But it is not limited to graphs.)

With functional reduction/aggregation mechanisms.

avoids an inversion of control✗✗
of other BSP-inspired graph-processing frameworks.

is implemented in Scala,✗✗
and there is a preliminary experimental evaluation.

63

Monday, June 20, 2011

Model of Computation.
Menthor’s

64

Monday, June 20, 2011

Data.

65

Monday, June 20, 2011

Data.
Split into data items managed by vertices.
and sizes range from primitives to large matrices

65

Monday, June 20, 2011

Data.
Split into data items managed by vertices.

Relationships expressed using edges between vertices.

65

Monday, June 20, 2011

Algorithms.

66

Monday, June 20, 2011

Algorithms.
Data items stored inside of vertices iteratively updated.✗✗

66

Monday, June 20, 2011

Algorithms.
Data items stored inside of vertices iteratively updated.
Iterations happen as SYNCHRONIZED SUPERSTEPS.

✗✗

✗✗
(inspired by the BSP model)

66

Monday, June 20, 2011

Algorithms.
Data items stored inside of vertices iteratively updated.
Iterations happen as SYNCHRONIZED SUPERSTEPS.

✗✗

✗✗

time 66

Monday, June 20, 2011

Algorithms.
Data items stored inside of vertices iteratively updated.
Iterations happen as SYNCHRONIZED SUPERSTEPS.

✗✗

✗✗

1.

def update

update each vertex in
parallel.

def update

def update

def update

def update

def update

def update

def update

def update

time
superstep #1

66

Monday, June 20, 2011

Algorithms.
Data items stored inside of vertices iteratively updated.
Iterations happen as SYNCHRONIZED SUPERSTEPS.

✗✗

✗✗

1.
2.

update each vertex in
parallel.

update produces
outgoing messages to
other vertices

time
superstep #1

66

Monday, June 20, 2011

Algorithms.
Data items stored inside of vertices iteratively updated.
Iterations happen as SYNCHRONIZED SUPERSTEPS.

✗✗

✗✗

1.
2.
3.

update each vertex in
parallel.

update produces
outgoing messages to
other vertices
incoming messages
available at the
beginning of the next
SUPERSTEP.

time
superstep #2

66

Monday, June 20, 2011

Substeps. (and Messages)
SUBSTEPS are computations that,

67

Monday, June 20, 2011

Substeps. (and Messages)
SUBSTEPS are computations that,

1. update the value of this Vertex

67

Monday, June 20, 2011

Substeps. (and Messages)
SUBSTEPS are computations that,

1. update the value of this Vertex

2. return a list of messages:
case class Message[Data](source: Vertex[Data],
 dest: Vertex[Data], value: Data)

67

Monday, June 20, 2011

Substeps. (and Messages)
SUBSTEPS are computations that,

1. update the value of this Vertex

2. return a list of messages:
case class Message[Data](source: Vertex[Data],
 dest: Vertex[Data], value: Data)

EXAMPLES...
{
 value = ...
 List()
}

67

Monday, June 20, 2011

Substeps. (and Messages)
SUBSTEPS are computations that,

1. update the value of this Vertex

2. return a list of messages:
case class Message[Data](source: Vertex[Data],
 dest: Vertex[Data], value: Data)

EXAMPLES...
{
 value = ...
 List()
}

{
 ...
 for (nb <- neighbors)
 yield Message(this, nb, value)
}

67

Monday, June 20, 2011

Substeps. (and Messages)
SUBSTEPS are computations that,

1. update the value of this Vertex

2. return a list of messages:
case class Message[Data](source: Vertex[Data],
 dest: Vertex[Data], value: Data)

EXAMPLES...
{
 value = ...
 List()
}

{
 ...
 for (nb <- neighbors)
 yield Message(this, nb, value)
}

Each is implicitly converted to a Substep[Data]

67

Monday, June 20, 2011

Some Examples...

68

Monday, June 20, 2011

PageRank.

class PageRankVertex extends Vertex[Double](0.0d) {
 def update() = {
 var sum = incoming.foldLeft(0)(_ + _.value)
 value = (0.15 / numVertices) + 0.85 * sum

 if (superstep < 30) {
 for (nb <- neighbors) yield
 Message(this, nb, value / neighbors.size)
 } else
 List()
 }
}

69

Monday, June 20, 2011

Another Example.

class PhasedVertex extends Vertex[MyData] {
 var phase = 1

 def update() = {
 if (phase == 1) {
 ...
 if (condition)
 phase = 2
 } else if (phase == 2) {
 ...
 }
 }
}

70

Monday, June 20, 2011

Another Example.

class PhasedVertex extends Vertex[MyData] {
 var phase = 1

 def update() = {
 if (phase == 1) {
 ...
 if (condition)
 phase = 2
 } else if (phase == 2) {
 ...
 }
 }
}

INVERSION OF CONTROL!!Thus, manual stack management...

70

Monday, June 20, 2011

Inverting the Inversion.

class PhasedVertex extends Vertex[MyData] {

 def update() = {
 thenUntil(condition) {
 ...
 } then {
 ...
 }
 }
}

Use high-level combinators to build
expressions of type Substep[Data]

✗✗

71

Monday, June 20, 2011

Inverting the Inversion.

class PhasedVertex extends Vertex[MyData] {

 def update() = {
 thenUntil(condition) {
 ...
 } then {
 ...
 }
 }
}

Use high-level combinators to build
expressions of type Substep[Data]

✗✗

71

Monday, June 20, 2011

Inverting the Inversion.

class PhasedVertex extends Vertex[MyData] {

 def update() = {
 thenUntil(condition) {
 ...
 } then {
 ...
 }
 }
}

Use high-level combinators to build
expressions of type Substep[Data]

Thus avoiding manual stack management.

✗✗

✗✗

71

Monday, June 20, 2011

Reduction Combinators:
crunch steps.

72

Monday, June 20, 2011

Reduction Combinators:
crunch steps.

Reduction operations important.✗✗
Replacement for shared data.
Global decisions.

72

Monday, June 20, 2011

Reduction Combinators:
crunch steps.

Reduction operations important.✗✗
Replacement for shared data.
Global decisions.

Provided as just another kind of Substep[Data]✗✗

72

Monday, June 20, 2011

Reduction Combinators:
crunch steps.

Reduction operations important.✗✗
Replacement for shared data.
Global decisions.

Provided as just another kind of Substep[Data]✗✗

def update() = {
 then {
 value = ...
 } crunch ((v1: Double, v2: Double) => v1 + v2) then {
 incoming match { case List(reduced) =>
 ...
 }
 }
 ...
}

72

Monday, June 20, 2011

Implementation
Menthor’s

73

Monday, June 20, 2011

Actors.
Implementation based upon Actors.

} } } }

GRAPH

WORKERS

FOREMEN Central GRAPH instance is an
actor, which manages a set of
WORKER actors

74

Monday, June 20, 2011

Actors.
Implementation based upon Actors.

} } } }

GRAPH

WORKERS

FOREMEN Central GRAPH instance is an
actor, which manages a set of
WORKER actors

74

Monday, June 20, 2011

Actors.
Implementation based upon Actors.

} } } }

GRAPH

WORKERS

FOREMEN Central GRAPH instance is an
actor, which manages a set of
WORKER actors

GRAPH synchronizes workers
using supersteps.

74

Monday, June 20, 2011

Actors.
Implementation based upon Actors.

} } } }

GRAPH

WORKERS

FOREMEN

Each WORKER manages a
partition of the graph’s vertices,

Deliver incoming messages that were
sent in the previous superstep;

Select and execute update step on
each vertex in its partition;

Forward outgoing messages
generated by its vertices in the
current superstep.

75

Monday, June 20, 2011

Implementing Reduction.
} } } }

GRAPH

WORKERS

FOREMEN

76

Monday, June 20, 2011

Implementing Reduction.

1. WORKER reduces the values of all
vertices in its partition.

} } } }

GRAPH

WORKERS

FOREMEN

reduced✔ reduced✔ reduced✔ reduced✔
76

Monday, June 20, 2011

Implementing Reduction.

1.
2.

WORKER reduces the values of all
vertices in its partition.

The result and the closure that was
used to compute it is sent to the
GRAPH actor, which computes the
final reduced value.

} } } }

GRAPH

WORKERS

FOREMEN

76

Monday, June 20, 2011

Implementing Reduction.

1.
2.

3.

WORKER reduces the values of all
vertices in its partition.

The result and the closure that was
used to compute it is sent to the
GRAPH actor, which computes the
final reduced value.

The final result is passed to all
WORKERS which make it available to
their vertices as incoming messages
(at the beginning of the next
superstep)

} } } }

GRAPH

WORKERS

FOREMEN

76

Monday, June 20, 2011

Implementation Principles.

77

Monday, June 20, 2011

Implementation Principles.
A pure Scala library✗✗

No staging and code generation.
No dependency on language virtualization.

77

Monday, June 20, 2011

Implementation Principles.
A pure Scala library✗✗

No staging and code generation.
No dependency on language virtualization.

Benefits✗✗
Compatible with mainline Scala compiler.
Fast compilation.
Simple debugging and troubleshooting.
Framework developer-friendly.

77

Monday, June 20, 2011

Implementation Principles.
A pure Scala library✗✗

No staging and code generation.
No dependency on language virtualization.

Benefits✗✗
Compatible with mainline Scala compiler.
Fast compilation.
Simple debugging and troubleshooting.
Framework developer-friendly.

Drawbacks✗✗
No aggressive optimizations.
No support for heterogeneous hardware platforms.

77

Monday, June 20, 2011

GOOGLE’S PREGEL

CONTROL
Inverted

REQUIRES STAGING

OPTIMIZATIONS
Aggressive

Related Work.

GRAPHLAB
SPARK

No graph support
Non-determinism

SIGNAL/COLLECT OPTIML
MAIN INSPIRATION

Graphs/BSP

ASYNC EXECUTION
Non-determinism

DEBUGGING
Not optimal, yet

Designed for Iteration
Cluster support

78

Monday, June 20, 2011

GOOGLE’S PREGEL

CONTROL
Inverted

REQUIRES STAGING

OPTIMIZATIONS
Aggressive

Related Work.

GRAPHLAB
SPARK

No graph support
Non-determinism

(Many more discussed in a workshop paper.)

SIGNAL/COLLECT OPTIML
MAIN INSPIRATION

Graphs/BSP

ASYNC EXECUTION
Non-determinism

DEBUGGING
Not optimal, yet

Designed for Iteration
Cluster support

78

Monday, June 20, 2011

Conclusions

79

Monday, June 20, 2011

Can avoid inversion of control in vertex-based
BSP using closures.

✗✗

Conclusions

79

Monday, June 20, 2011

Can avoid inversion of control in vertex-based
BSP using closures.

✗✗

Conclusions

Higher-order functions useful for reductions, in
an imperative model.

✗✗

79

Monday, June 20, 2011

Can avoid inversion of control in vertex-based
BSP using closures.

✗✗

Conclusions

Higher-order functions useful for reductions, in
an imperative model.

Explicit parallelism feasible if computational
model simple (cf. MapReduce)

✗✗

✗✗

79

Monday, June 20, 2011

Can avoid inversion of control in vertex-based
BSP using closures.

✗✗

Conclusions

Higher-order functions useful for reductions, in
an imperative model.

Explicit parallelism feasible if computational
model simple (cf. MapReduce)

The puzzle pieces are there to make analyzing
bigger data easier.

✗✗

✗✗

✗✗

http://lamp.epfl.ch/~phaller/menthor/
79

Monday, June 20, 2011

http://lamp.epfl.ch/~phaller/menthor/
http://lamp.epfl.ch/~phaller/menthor/
http://lamp.epfl.ch/~phaller/menthor/
http://lamp.epfl.ch/~phaller/menthor/
http://lamp.epfl.ch/~phaller/menthor/
http://lamp.epfl.ch/~phaller/menthor/
http://lamp.epfl.ch/~phaller/menthor/

