
Capabilities for External Uniqueness

Philipp Haller and Martin Odersky

EPFL, Switzerland

LAMP-REPORT-2009-001

Abstract. Unique object references have many important applications
in object-oriented programming. For instance, with su�cient encapsula-
tion properties they enable safe and e�cient transfer of message objects
between concurrent processes. However, it is a long-standing challenge to
integrate unique references into practical object-oriented programming
languages.
This paper introduces a new approach to external uniqueness. The idea is
to use capabilities for enforcing both aliasing constraints that guarantee
external uniqueness, and linear consumption of unique references. We
formalize our approach as a type system, and prove a type preservation
theorem. Type safety rests on an alias invariant that builds on a novel
formalization of external uniqueness.
We show how a capability-based type system can be used to integrate
external uniqueness into widely available object-oriented programming
languages. Practical experience suggests that our system allows adding
uniqueness information to common collection classes in a simple and
concise way.

1 Introduction

Message-based concurrency provides robust programming models that scale from
multi-core processors to distributed systems, web applications and cloud comput-
ing. Seamless scalability requires that local and remote message send operations
should behave the same. A good candidate for such a uniform semantics is that a
sent message gets moved from the memory region of the sender to the (possibly
disjoint) memory region of the receiver. Thus, a message is no longer accessible
to its sender after it has been sent. This semantics also avoids data races if con-
current processes running on the same computer communicate only by passing
messages.

However, moving messages physically requires expensive marshalling (i.e.,
copying). This would prohibit the use of message-passing altogether in performance-
critical code that deals with large messages, such as image processing pipelines or
network protocol stacks [17, 18]. To achieve the necessary performance in these
applications, the underlying implementation must pass messages between pro-
cesses running on the same shared-memory computer by reference. But reference
passing makes it challenging to enforce race freedom, especially in the context of
imperative, object-oriented languages, where aliasing is common. The two main
approaches to address this problem are:



� Immutable messages. Only allow passing objects of immutable type. Exam-
ples are Java-style primitive types (e.g., int, boolean), immutable strings,
and tree-shaped data, such as XML.

� Alias-free messages. Only a single, unique reference may point to each mes-
sage; upon transfer, the unique reference becomes unusable [18, 35, 36].

Immutable messages are used, for instance, in Erlang [3], a programming lan-
guage created by Ericsson that was used at �rst in telecommunication systems,
but is now also �nding applications in Internet commerce (e.g., Amazon's Sim-
pleDB [34]).

The second approach usually imposes constraints on the shape of messages
(e.g., trees [36]). Even though messages are passed by reference, message shape
constraints may lead indirectly to copying overheads; data stored in an object
graph that does not satisfy the shape constraints must �rst be serialized into a
permitted form before it can be sent within a message.

Scala [33] provides Erlang-style concurrent processes as part of its standard
library in the actors package [21]. Scala's actors run on the standard Java plat-
form [27]; they are gaining rapidly support in industry, with applications in
the lift web application framework [20], the Kestrel message queue system [24]
powering the popular Twitter micro-blogging service, and others.

In Scala actors, messages can be any kind of data, mutable as well as im-
mutable. When sending messages between actors operating on the same com-
puter, the message state is not copied; instead, messages are transferred by
reference only. This makes the system �exible and guarantees high performance.
However, race safety has previously neither been enforced by the language, nor
by the run-time library.

This paper proposes a new type-based approach to statically enforce race
safety in Scala's actors. Our main goal is to ensure race safety with a type
system that's simple and expressive enough to be deployed in production sys-
tems by normal users. Our system removes important limitations of existing
approaches concerning permitted message shapes. At the same time it allows
interesting programming idioms to be expressed with fewer annotations than
previous work, while providing equally strong safety guarantees. Our approach
combines capabilities [19, 7] and external uniqueness [10, 42]. Capabilities express
access permissions for objects. In the simplest case, a capability is binary, that
is, either the capability is available, in which case the associated object may be
accessed, or the object is not accessible. External uniqueness is used to control
aliasing of transferred objects.

The contributions of this paper are as follows:

� As our main technical contribution we introduce Object Capability Types
(OCT), a type system that uses capabilities for enforcing both external
uniqueness, and linear consumption of unique references, making the sys-
tem uniform and simple. We present a formalization of OCT and provide a
complete proof of a type preservation theorem.



� We formally state an alias invariant of OCT that implies safe ownership
transfer. The invariant builds on a novel formalization of external uniqueness
that is not based on ownership.

� We show how OCT can be applied to message-based concurrency by provid-
ing tracked references in the style of Singularity [18]. Our approach improves
on the state of the art in message-based concurrency by (1) integrating ex-
ternal uniqueness and adoption [19], which enables aliased objects to point
to unique objects in a statically safe way, while (2) avoiding the problems of
destructive reads [7].

� We have implemented OCT as an extension of the EPFL Scala compiler. In
Section 8.1 we show that virtually all methods of common collection classes
in Scala's standard library can be annotated with uniqueness information in
a simple way without any changes to their implementation.

The rest of the paper is organized as follows. In Section 2 we motivate why
unique object references are useful in the context of message-based concurrency.
Section 3 introduces a system of annotations that allows expressing and enforcing
uniqueness properties in object-oriented programs. In Section 4 we formalize our
approach in the form of type rules for an imperative object calculus. In Section 5
we introduce an operational semantics for our core language, and use it to prove
a type preservation theorem. Section 6 formalizes aliasing guarantees of our type
system. In Section 7 we extend our system to advanced constructs such as nested
classes. We report on an implementation for Scala and practical experience in
Section 8. Section 9 reviews related work, and Section 10 concludes.

2 Example

Consider the following example of an actor that receives a reference to a linked
list.

actor {

receive {

case rlist: LinkedList => ...

}

}

At �rst, rlist is the only active reference to the received list; therefore, it would
be safe to pass it on to another actor, as long as the reference is not accessed
after it has been sent. Assume, however, that another list should be appended
to the received list before it is passed on.

case rlist: LinkedList =>

val other: LinkedList = ...

rlist.append(other)

next.send(rlist)

The other list may have been built locally or may have been received from
elsewhere. Using the append method of the LinkedList class, we append other



class Node {

var el: Object

var prev, next: Node

}

class LinkedList {

var head: Node

def append(other: LinkedList) {

if (head == null)

head = other.head

else if (other.head != null) {

var h = head

while (h.next != null) h = h.next

h.next = other.head

h.next.prev = h

}

}

}

Fig. 1. Example: Doubly-linked list with append method.

to rlist. Then, the extended rlist is sent to the next actor. Ideally, it should
be safe to use the append method as it is shown in Figure 1, which involves
no copying. For this, we have to check that the method does not change the
(external) aliasing of its receiver. In other words, a unique reference to a list,
such as rlist, should remain unique after invoking append on it. The challenge
in verifying the safety of the append method is that it creates aliases of existing
objects.

Such a scenario is typical in message-based concurrency, where it is important
to avoid copying when constructing a new message from a received message.
An actor should be able to mutate a received message, and then pass along a
reference to the mutated message as in the above example. However, this requires
checking that the mutation did not introduce any aliasing that could violate race
safety.

In the next section we introduce a type system that can verify that the append
method maintains the uniqueness of its receiver. This is done by showing that
the aliases that the method creates are strictly internal to the data structure.

3 Object Capability Types

In this section we introduce a set of annotations and expressions that ensure
external uniqueness in the presence of mutation and aliasing. The type safety of
our system is based on an alias invariant that we discuss subsequently. Section 4
presents a formalization of the type rules that guarantee this alias invariant.

Figure 2 shows the example that we introduced in Section 2 with additional
annotations that allow our type system to verify the safety of the appendmethod.



class Node {

var el: Object

var prev, next: Node

}

class LinkedList {

var head: Node

@transient

def append(other: LinkedList @unique) {

expose (this) { xl =>

val ol = localize(other, xl)

if (xl.head == null)

xl.head = ol.head

else if (ol.head != null) {

var h = xl.head

while (h.next != null) h = h.next

h.next = ol.head

h.next.prev = h

}

}

}

}

Fig. 2. Example: Safe append using expose and localize.

In Section 3.4, we show how some of the additional annotations can be inferred
by our system. We now explain each of the annotations and operations in turn.

3.1 Annotations

Our system uses three annotations, @unique, @transient, and @exposed. Only
local variables, method parameters (including the receiver), and method re-
sults can carry these annotations. This means that class declarations remain
unchanged. In the following we explain the @unique and @transient annota-
tions. We defer a discussion of @exposed until Section 3.5.

The @transient annotation at the de�nition of the append method in Fig-
ure 2 actually applies to the receiver, i.e., this. It requires this to be unique;
moreover, calling the method will not consume this reference, that is, after the
call the reference is still available (and unique). This corresponds to our require-
ment that ownership transfer should be safe after calling append. The @unique
annotation at the argument type requires the argument to be unique. Moreover,
it grants the method the right to consume the argument, which means that it is
invalid to access the argument after the call returns.

3.2 Expose and Localize

To prevent aliases that could destroy its uniqueness, a unique object must be
exposed before its �elds can be accessed. In the example, the expression



expose (this) { xl => ... }

exposes the receiver and provides access to its �elds via xl. Inside the new scope,
xl has a type of the form ρ . LinkedList (guarded type) where ρ is a capability
(or guard) that is freshly generated.

Guarded types serve as a protection from unwanted aliases. A guarded type
σ . C is only compatible with guarded type σ′ . C if σ and σ′ are known to be
equal. In the example, this means that it is impossible to store xl in the �eld
of some object that is reachable from outside the scope of expose, since the
capability ρ in its type was freshly generated by the expose.

Note that it is safe for an object reachable from xl to refer to a unique
object. That way, no external alias to xl, or an object reachable from xl is
created. Thus, the external uniqueness of xl is preserved. For this reason, our
system provides a localize operation that makes a unique object available to
be referred to from an object with the same guard as its second argument. Note
that localize consumes the unique object, otherwise objects with other guards
could refer to it as well. In the example, the expression localize(other, xl)

has type ρ . LinkedList, since xl is guarded by ρ; this enables �elds of xl to
refer to the localized object.

Field selections propagate guards: xl.head has the same guard as xl; since
ol is localized to xl, ol.head has the same guard. Thus, the assignments that
follow are permitted.

Intuitively, the external uniqueness of xl is preserved, because we create only
references between objects reachable from either this or other; since other was
unique, no external aliases are created. In the following section, we introduce an
alias invariant that precisely expresses what property our type system provides.

3.3 Alias Invariant

One of the goals of our system is to allow transferring a unique object to the
context of another unique object without copying. Typically, the objects that we
want to transfer contain sub-objects that represent the containing object. For
instance, the representation of the doubly-linked list shown in Figure 1 consists
of a group of linked Node objects. This example shows that the (internal) sub-
objects are often aliased in possibly complex ways. In our system, the fact that it
is safe to transfer an object depends on the objects reachable from it. An object
o1 is reachable from another object o2 if and only if a �eld of o2 refers to o1 or
an object reachable from o2 refers to o1. Our system guarantees safe transfer for
object graphs characterized as clusters.

De�nition 1 (Cluster) Let o be an object and R be the set of objects reachable
from o. De�ne Cl(o) = R ∪ {o}. Then, Cl(o) is a cluster if and only if every
object in R is only reachable from objects in Cl(o).

For each object o that we want to transfer, Cl(o) must be a cluster. This means
that the objects reachable from o must be self-contained in the sense that they



are not reachable from outside the cluster Cl(o). There are no restrictions wrt.
references between objects in Cl(o) in our system.

Note that clusters are not declared explicitly in programs. Instead, our type
system checks the cluster property according to the way an object is constructed
and operated on subsequently.

De�nition 2 (External Uniqueness) A reference r to an object o is externally-
unique if Cl(o) is a cluster and r is the only accessible external reference into
Cl(o).

A reference is external to a cluster Cl(o) if it is not stored in a �eld of an object
in Cl(o). A reference is accessible if it may be accessed in the current program
execution. We often call a reference just unique if it is externally-unique.

Instantiating a new object creates a unique reference, provided that all con-
structor arguments are unique (or immutable, such as primitive values), and the
constructor satis�es certain sanity constraints, such as not leaking this or any
of its arguments to static class members. We use a backwards �ow analysis to
enforce uniqueness of constructed objects like in other systems [35]. In existing
(Java) programs, constructors return unique objects in most cases [9, 28].

For example, assume we want to create an instance of the doubly-linked list
shown in Figure 1. The default constructors of the LinkedList and Node classes
(not shown) initialize all �elds to null and return unique references to the newly
created instances.

Like method parameters, also local variables and method returns can carry
the @unique annotation to indicate that the corresponding reference should be
unique.

De�nition 3 (Tracked Variable) Tracked variables are local variables and
method parameters that carry the @unique annotation.

Note that a tracked variable does not always hold a unique reference. For
instance, when a tracked variable is exposed, there may be multiple external
references into the exposed cluster. However, transferring a unique object to
another context is only safe when the tracked variable that holds a reference to
it is not exposed. This is expressed by the following alias invariant.

De�nition 4 (Alias Invariant) A tracked variable is
externally-unique when it is consumed.

Our type system guarantees statically that a cluster of objects is externally-
unique when it is transferred, which implies type safety.

3.4 Generalizing Uniqueness and Borrowing

The SingleLinkedList class in Scala's standard collections library contains the
following recursive append method:



def append(that: SingleLinkedList) {

if (next eq null)

next = that

else

next.append(that)

}

Again, we would like to express that the method maintains the uniqueness of
the receiver, provided the parameter that is unique. Therefore, we annotate the
method as @transient, which actually means that the receiver is required to be
unique; moreover, calling the method will not destroy its uniqueness. We mark
the that parameter as @unique, because it is required to be unique and the
method consumes it. Since append accesses the receiver's next �eld, we must
expose the receiver to gain temporary access to its �elds:

@transient

def append(that: SingleLinkedList @unique) {

expose (this) { xt =>

if (xt.next eq null)

xt.next = that // consume `that`

else

// `xt.next` is exposed

xt.next.append(that)

}

}

As before, xt has type ρ.SingleLinkedList for some guard ρ that was generated
fresh for type checking the scope that expose opens. Note that in the �rst branch
of the if-expression, that is localized implicitly to the cluster of xt; in many cases,
such as the above, localize expressions can be inferred.

Since �eld selections propagate guards, the receiver xt.next of the method
invocation in the else-branch of the if-expression has type ρ.SingleLinkedList.
However, append expects the receiver to be transient. Informally, it is clear that
the recursive call is harmless; it does not destroy the uniqueness of the original
receiver. Indeed, our type system accepts the method invocation. In the following
we explain why it is safe to do so.

A method that takes a transient parameter, say, x, is type-checked under the
assumption that x is a unique reference into some cluster. The type system makes
sure that at the end of the method body, the target of x is still a cluster, and no
additional external reference into the same cluster was created. Exposed objects
are generally not unique, since at any program point, there may exist arbitrary
aliases from stack locations (local variables, method parameters, etc.). However,
an exposed reference always points into a cluster. This property is maintained
when passing an exposed reference as a transient parameter in a method call.
Furthermore, the method is prevented from creating additional external refer-
ences into the cluster. Therefore, the corresponding expose expression (still)
guarantees the external uniqueness of the exposed object.



In summary, an exposed object is compatible with a transient formal method
parameter as long as the underlying class types conform. This means that the
transient quali�er is strictly more general than both the exposed and unique
quali�ers, in the sense that both exposed and unique objects can be passed as
transient parameters. This relationship between exposed and transient objects
means that it is safe to implicitly expose all transient parameters (including the
receiver) for the entire method body.

For example, in the body of the append method in Figure 2, it is not necessary
to write the expose expression explicitly. Since the receiver is transient, the type
checker infers an expose expression for this that spans the entire method body.

3.5 Exposed Parameters

In addition to the append method we discussed above, the SingleLinkedList

class also contains the following insert method:

def insert(that: SingleLinkedList) {

if (that ne null) {

that.append(next)

next = that

}

}

It uses append to insert another list that at the current position (the receiver
is the current node in the linked list). For this, it passes the receiver's next

reference to append.
Assume that we want to make the receiver of insert transient or unique.

Then, we have to expose it to make its next �eld accessible under some guarded
type ρ . SingleLinkedList. In the previous section we have seen that it is safe
to pass a reference of guarded type to a method expecting a transient parameter.
However, the parameter of append is marked as @unique, which is incompatible
with references of guarded type, since the parameter is potentially consumed.
This restriction is arti�cial, though. When considering only the (transitive) alias-
ing e�ect of insert, it should be valid to annotate the receiver with @transient

and the parameter with @unique.
To allow reusing the append method, we generalize it by annotating its re-

ceiver and parameter as @exposed:

@exposed

def append(that: SingleLinkedList @exposed) {

if (next eq null)

next = that

else

next.append(that)

}

Note that we can now use the unmodi�ed body of the original, non-annotated
append method. The @exposed annotations indicate that both the receiver and



the that parameter have guarded type ρ.SingleLinkedList for some common
guard ρ.

In general, the guard in the type of an exposed parameter (including the
receiver) is shared by all other exposed parameters. This means that exposed
parameters are required to be part of the same cluster. As a result, references
between those objects are unrestricted, enabling �exible imperative implemen-
tations.

We can use the modi�ed version of append in the implementation of insert
as follows:

@transient

def insert(that: SingleLinkedList @unique) {

val locThat = localize(that, this)

if (locThat ne null) {

locThat.append(next)

next = locThat

}

}

Note that the receiver is exposed implicitly; as discussed in the previous section,
transient references can safely be treated as exposed. The parameter is localized
to this. Therefore, the invocation of append and the following assignment type
checks.

In summary, exposed parameters allow a �exible reuse of methods. Transient
references are compatible with exposed parameters, requiring no changes at the
call site. Unique references must be exposed or localized by the caller. Methods
with exposed parameters enable a great deal of �exibility in their implemen-
tation. In Section 8.1 we show that virtually all methods of common collection
classes in Scala's standard library can be annotated using @exposed without any
changes to their implementation.

4 The Type System

This section presents a formal description of our type system. To simplify the
presentation of key ideas, we present our type system in the context of a core
subset of Java [4] inspired by FJ [23]. We add the expose and localize expres-
sions, and augment the type system with capabilities to enforce uniqueness and
aliasing constraints. Our approach, however, extends to the whole of Java and
other languages like Scala. We discuss important extensions in Section 7.

The core language syntax is shown in Figure 3. The syntax of programs,
classes and expressions is standard; method de�nitions are extended with ad-
ditional typing constraints on the receiver and the arguments that we discuss
below. In the examples of the previous section, types could be annotated with
@unique, @transient, and @exposed. In our formalization, these annotated
types are represented as class types with associated capabilities; however, these
capabilities are implicit and never appear in actual programs. In the following we



P ::= cdef t

cdef ::= class C extends D {l : C; meth}
meth ::= def m[ρ ? ∆](x : T ) : (∆′, T ) = t
t ::=

x | r | t.l | t1.l = t2 | t0.m(t)
new C(t) | localize(t1, t2)
expose x = t1 in t2

T ::= ρ I C | ρ . C
C,D ∈ Classes
x ∈ V ars
l ∈ Fields
r ∈ RefLocs
ρ ∈ Guards

Fig. 3. Core language syntax

discuss the representation of types annotated with @unique. The @transient

and @exposed annotations are only used in method de�nitions. We discuss them
in Section 4.1.

The type @unique C translates to a tracked type of the form ρ I C for some
guard ρ. Guards are used together with a system of capabilities to make sure
that objects of tracked type are consumed at most once. The type system ensures
that whenever an object of type ρ I C is accessed, the capabilities available at
the current program point include the singleton capability {ρ}. This is done by
tracking the set of available capabilities during type checking. When an object
of type ρ I C is consumed, the capability {ρ} is removed from the available
capabilities. Since capabilities may not be duplicated, a unique reference becomes
unusable once its capability is consumed.

Capabilities are formed by joining together singleton capabilities using the ⊗
operator. The empty capability is written ∅. The capability that includes only
the singleton capabilities {ρ} and {σ} is expressed as ρ⊗σ. Note that we omit the
braces from singleton capabilities when joining them with other capabilities. We
use the terms capability and guard interchangeably when talking about singleton
capabilities. We use ρ ∈ ∆ as an alternative notation for expressing ∆ = ρ⊗∆′
for some ∆′. The capability ∆−∆′ contains all guards ρ with ρ ∈ ∆ ∧ ρ /∈ ∆′.

Note that capabilities are a purely static concept; after type checking, capa-
bilities and the expose and localize expressions, which only operate on capa-
bilities, are erased from the program. Consequently, capability checking incurs
no runtime overhead.

A tracked object that has been exposed is given a guarded type of the form
ρ.C. In contrast to tracked types, objects of guarded type may have an unknown
number of aliases. Roughly speaking, objects of guarded type can be mutated
as long as their �elds point to objects that have types guarded by the same
capability. Standard class types are expressed as guarded types ε . C where the
guard ε corresponds to the empty capability ∅.



4.1 Method De�nitions

Method de�nitions are extended with two capabilities ∆ and ∆′ that specify
required and provided capabilities, respectively. Guards in ∆ may occur in the
argument types T . The provided capabilities ∆′ contain the required capabili-
ties that are (still) available after an invocation of the method. If the method
returns a unique object, the result type is tracked, and ∆′ contains an additional
capability corresponding to the guard of the result type. Optionally, the type of
the receiver can be quali�ed using ρ? where ρ ∈ ∆ and ? ∈ {.,I}. It allows ex-
pressing whether the receiver is required to be tracked or guarded, and whether
it is potentially consumed (ρ /∈ ∆′) or not (ρ ∈ ∆′).

The required and provided capabilities ∆ and ∆′, respectively, correspond to
source-level annotations on parameter types (including the receiver) and result
types. For example, the method de�nition

@transient

def append(other: LinkedList @unique)

corresponds to the following method type:

[ρ I](ρ⊗ σ, σ I LinkedList)→ ({ρ}, Unit) (1)

Both the @transient and @unique annotations translate to tracked types, indi-
cated by the ρ I and σ I pre�xes. Moreover, the required capabilities include
both ρ and σ, meaning both the receiver and the parameter must be accessible.
The provided capabilities contain only ρ, since σ may be consumed. Parameter
types annotated with @exposed correspond to guarded types. For example, the
method de�nition

@exposed

def append(other: LinkedList @exposed)

corresponds to the following method type:

[ρ .]({ρ}, ρ . LinkedList)→ ({ρ}, Unit) (2)

Note that the receiver and parameter types are guarded by the same capability
ρ, as motivated in Section 3.5.

4.2 Well-Formedness

For type checking programs we assume a �xed, well-formed class table that de-
�nes the sub-typing relation <:. Furthermore, the class table provides a standard
function fields(C) = l : D where l : D are all �elds in C and super-classes of
C. We also use the standard auxiliary functions mtype(C,m) = [ρ ?](∆,T ) →
(∆′, T ) and mbody(C,m) = (x, t) where def m[ρ ? ∆](x : T ) : (∆′, T ) = t is
de�ned in the most direct superclass of C that de�nes m.

A method m is well-formed in a class C if its body is well-typed in an envi-
ronment Γ that maps m's formal parameters to their declared types, and this



Γ = x : T , this : ρ ? C override(C,m)
Γ ; ∆ ` t : T0 ; ∆′ T0 <: T

∆′ ⊆ ∆ ∨ (∆′ = ∆̂⊗ ρ ∧ ∆̂ ⊆ ∆ ∧ T0 = ρ I C0)

C ` def m[ρ ? ∆](x : T ) : (∆′, T ) = t
(WF-Method)

(∀D. C <: D ⇒
mtype(D,m) is unde�ned ∨

mtype(C,m) = σ(mtype(D,m)))

override(C,m)
(WF-Override)

C ` meth
` class C extends D {l : C; meth}

(WF-Class)

Fig. 4. Well-Formedness

to ρ ? C where ρ? is the guard that the method requires for the receiver (WF-

Method). Moreover, the capability ∆′, which is available after type-checking
the method body, must contain a subset of the guards in the initial capability ∆,
except if the return type T0 is tracked, in which case ∆′ must also contain the
capability of T0. A method m respects the overriding rule if it does not override
or if the signatures of all overridden methods can be uni�ed using appropri-
ate substitutions (WF-Override). A class C is well-formed if all its method
de�nitions are well-formed (WF-Class).

4.3 Type Rules

Figure 5 shows the typing rules. The typing judgement has the form Γ ; ∆ `
t : C ; ∆′. Γ maps (free) variables to types. Γ is an immutable map and the
facts that it implies can be used arbitrarily often in typing derivations. ∆ and ∆′

are capabilities, which may not be duplicated. As part of the typing derivation,
capabilities may be consumed or generated. ∆′ denotes the capabilities that are
available after deriving the type of the term t.

The rule for typing variables (T-Var) is standard; the capability set is un-
changed.

Selecting a �eld from a term t of guarded type yields a type guarded by the
same capability (T-Sel). While deriving the type for t the set of available capa-
bilities may change resulting in a new set ∆′; this set describes the capabilities
available after typing the �eld selection.

Assigning to a �eld of some guarded type requires the right-hand side to be
guarded by the same capability ρ (T-Assign). After deriving types for t1 and
t2, ρ must be available. Furthermore, ρ is not consumed by the assignment.

The rule for instance creation (T-New) requires all constructor arguments
to be tracked, and their corresponding capabilities to be available. In this case,
there is no reference that could point into the object graph rooted at the new
instance; thus, we can assign a tracked type with a fresh capability to the new
instance. The capabilities ρi of the arguments are consumed.



Type Assignment Γ ; ∆ ` t : T ; ∆′

x : T ∈ Γ
Γ ; ∆ ` x : T ; ∆

(T-Var)

Γ ; ∆ ` t : ρ . C ; ∆′

fields(C) = l : D

Γ ; ∆ ` t.li : ρ . Di ; ∆′
(T-Sel)

Γ ; ∆ ` t1 : ρ . C ; ∆′

l : D ∈ fields(C) E <: D
Γ ; ∆′ ` t2 : ρ . E ; ∆′′ ⊗ ρ

Γ ; ∆ ` t1.l = t2 : ρ . C ; ∆′′ ⊗ ρ
(T-Assign)

∀i ∈ {1..n} Γ ; ∆i ` ti : ρi I Ci ; ∆i+1 ⊗ ρi

fields(C) = l : D C <: D ρ fresh

Γ ; ∆1 ` new C(t) : ρ I C ; ∆n+1 ⊗ ρ
(T-New)

Γ ; ∆ ` t1 : ρ1 I C ; ∆′ ⊗ ρ1

Γ ; ∆′ ` t2 : ρ2 . D ; ∆′′

Γ ; ∆ ` localize(t1, t2) : ρ2 . C ; ∆′′
(T-Loc)

Γ ; ∆ ` t1 : ρ I C ; ∆′ ⊗ ρ
ρ′fresh ρ′ /∈ T

Γ, x : ρ′ . C ; ∆′ ⊗ ρ′ ` t2 : T ; ∆′′ ⊗ ρ′

Γ ; ∆ ` expose x = t1 in t2 : T ; ∆′′ ⊗ ρ
(T-Exp)

∀i ∈ {0..n} Γ ; ∆i ` ti : Ui ; ∆′i+1

∆′i+1 :=


∆i+1 ⊗ ρi if Ui = ρi I Ci

∆i+1 otherwise
mtype(m,C0) = [ρ ?](∆′, F )→ (∆′′, C)

σ = unify(U,F ) U <: σF σ(ρ) = ρ0

∆t = {ρi|Ui = ρi I Ci} U0 = ρ0 ? C0

∆n+1 ⊗∆t = σ∆′ ⊗∆r ∆′′′ = σ∆′′ ⊗∆r

Γ ; ∆0 ` t0.m(t) : σC ; ∆′′′ − (∆t −∆0)
(T-Invk)

Fig. 5. Type Assignment



The rule for localization (T-Loc) allows a term t1 of tracked type to be
treated as a term guarded by the same capability as a term t2. For example, this
allows t1 to refer to t2 (and vice versa). Since from that point on, aliases of t1
are no longer tracked, its capability ρ1 is consumed.

The expose operation allows a term t1 of tracked type to be bound to a
variable of guarded type in a given term t2 (T-Exp). Note that the capability ρ
to access t1 is temporarily revoked during the evaluation of t2. This is done to
prevent consuming t1 in the scope of expose. The guard ρ′ in the type of x may
not occur in the type of t2.

The rule for method invocation (T-Invk) is the most complex rule because
it deals with guard polymorphism. Since guards are never written explicitly in
a program, methods that operate on tracked or guarded types have to be poly-
morphic in the respective guards. For example, consider a method m de�ned in
class C of the following type:

[σ1 .](σ1 ⊗ σ2, σ2 I D)→ ({σ1}, σ1 . E) (3)

Clearly, an invocation o.m(x) of that method should be valid in an environment
Γ ; ∆ ⊗ ρ1 ⊗ ρ2 where Γ = Γ ′, o : ρ1 . C, x : ρ2 I D. We should be able to
replace σi with ρi (i = 1, 2) in the method type, so that o.m(x) can be assigned
a type.

We make this intuition precise by universally quantifying over the capabili-
ties required by the method. Type checking then proceeds as follows. First, the
argument types are uni�ed yielding a substitution that maps guard variables to
concrete guards. The substitution is then applied to the argument types F that
occur in the method type for checking the usual sub-typing constraints. The set
of capabilities ∆n+1 ⊗∆t that is available after assigning types to the receiver
and all arguments must be composed of the capabilities required by the method
after applying the substitution and additional capabilities ∆r. The resulting set
of capabilities is composed of the capabilities provided by the method after ap-
plying the substitution and ∆r. Capabilities in ∆t −∆0 are removed from the
resulting capabilities, since they correspond to newly created objects that are
no longer accessible in the context of the method invocation.

4.4 Typing Instance Creation

Using the type rules presented so far, creating a new instance that should be-
come part of some exposed cluster involves several steps. Firstly, we have to
create a unique object, which, according to rule (T-New), requires all construc-
tor parameters to be unique. This means that we cannot pass any references to
objects of the target cluster, since they are exposed with guarded types. There-
fore, all �elds that are supposed to refer to such objects must be initialized to
unique dummy objects. In the second step, the new instance must be localized
to the target cluster. Finally, all �elds pointing to dummy objects have to be
reassigned. This pattern can be simpli�ed by using the following additional type
rule for creating new instances.



∀i ∈ {1..n} Γ ; ∆i ` ti : ρ . Ci ; ∆i+1 ⊗ ρ
fields(C) = l : D C <: D

Γ ; ∆1 ` new C(t) : ρ . C ; ∆n+1 ⊗ ρ
(T-New2)

In this rule, we require that all constructor arguments have types guarded
by the same capability ρ. Intuitively, all of those objects are part of the same
cluster, which is currently exposed under ρ. Assigning a type guarded by ρ to
the new instance allows that instance to become part of the same object graph
(by subsequent �eld assignment). Note that the common capability ρ is not
consumed in this case.

It is worth noting that any program using this additional type rule can be
rewritten to a program that can be type-checked without this rule. For this, we
need a way to obtain unique (or immutable) default objects for a given class type.
In practical languages like Java, we could use the null literal for this purpose.
In our simpli�ed core language we assume there is a function default(D) that
returns a unique instance of classD by initializing its �elds with default instances
for their respective types (for simplicity we ignore recursive class types). Then,
we can rewrite an instance creation expression (new C(t) : ρ . C) type-checked
with rule (T-New2) as follows (let fields(C) = l : D).

(. . .
(localize(new C(default(D)), t1).l1 = t1).

. . .).ln = tn

4.5 Unique Fields

If unique references can only be stored on the stack, they have to be explic-
itly threaded through computations to the point where they are used. Explicit
threading of unique references can be avoided by storing them in �elds. This
way, a single object can provide access to multiple unique references that may
be consumed separately. In the annotation system of Section 3, �elds that may
hold unique references are marked as @unique. Any object in a cluster may
have �elds holding unique references. Since objects in a cluster may be arbitrary
aliased, this means that we cannot assume that the unique �elds are contained
in unique objects. Moreover, when consuming (the target of) a unique �eld, we
have to make sure that the �eld is re-assigned before it may be accessed again
to avoid illegal aliases.

Rather than destructively reading the �eld, we record the �eld accessibility in
the capability of the containing object. For this, we re-organize the tracked types
and their capabilities as follows. Firstly, we omit the class type from tracked
types, which are now simply written tr(ρ). Secondly, we extend the capabili-
ties, so that they include the class type plus information about unique �elds.
A singleton capability is now written {ρ 7→ C[k : tr(τ)]}, instead of just {ρ}.
Following the class type C, we provide a sequence of �eld names together with
their (tracked) types. Each element kj : tr(τj) of the sequence corresponds to a
unique �eld of class C. The capability of a class without unique �elds is written



{ρ 7→ C}. Note that a simple tracked type ρ I C with capability {ρ} is equiva-
lent to a type tr(ρ) with capability {ρ 7→ C}. Each unique �eld kj has a tracked
type tr(τj). This allows us to control access to it using a capability {τj 7→ Dj},
where Dj is the class type of the �eld. Access to unique �elds is provided using
an additional rule for expose:

Γ ; ∆ ` t1 : ρ . C ; ∆′ ⊗ ρ
uniqueF ields(C) = k : E ρ′fresh

∆F := {ρ′ 7→ C[k : tr(τ)]}⊗{τ 7→ E}
Γ, x : tr(ρ′) ; ∆′ ⊗∆F ` t2 : D ; ∆′′′ ⊗ σ∆F

Γ ; ∆ ` expose x = t1 in t2 : D ; ∆′′′ ⊗ ρ
(T-Exp2)

The �rst di�erence to the previous rule (T-Exp) is that the object to be
exposed, denoted by t1, must have a guarded type ρ . C; rule (T-Exp) only
exposes objects of tracked type. Using the uniqueF ields predicate, we obtain
a list of �elds that are marked as unique in class C, together with their types.
expose introduces x as an alias for (the result of) t1, which provides access to
it under a tracked type tr(ρ′). This allows us to record the types of its unique
�elds in the capability {ρ′ 7→ C[k : tr(τ)]}. The capability to access C's unique
�elds, ⊗{τ 7→ E}, is available for type-checking t2, the body of expose. This
means that the unique �elds are accessible through �eld selection under tracked
types in the scope of t2. Note that capability {ρ} is not available in t2 to avoid
exposing t1 multiple times, which could produce aliases of unique �elds. At the
end of type-checking t2, the capability to access the containing object, as well
as all unique �elds, must be available. Together with the assignment rule below,
this makes sure that the unique �elds either have not been consumed, or have
been re-assigned in the scope of t2. The substitution σ indicates that some of
the guards in τ may be renamed due to re-assignment, which is checked using
the following rule.

Γ ; ∆ ` t1 : tr(ρ) ; ∆′

l : D ∈ fields(C) E <: D τ ′fresh

∆ρ := {ρ 7→ C[k : tr(τ)]} l = kj
Γ ; ∆′ ` t2 : tr(ρ′) ; ∆′′ ⊗ {ρ′ 7→ E} ⊗∆ρ

Γ ; ∆ ` t1.l = t2 : tr(ρ) ; ∆′′ ⊗ [τ ′/τj ]∆ρ ⊗ {τ ′ 7→ D}
(T-Assign2)

Term t1 must have tracked type tr(ρ), and its class must have a unique �eld l,
that is, l must correspond to some kj in the list of unique �elds. The right-hand
side t2 must also have tracked type; its capability is consumed by the assignment.
When assigning to a unique �eld, the capability to access it is restored. To make
sure we do not accidentally create duplicate capabilities, we create a fresh guard
τ ′ for the capability of the unique �eld. Then, we update the type of kj to tr(τ ′)
and add the new capability {τ ′ 7→ D} to the environment.



Evaluation t, s, d ⇓ t′, s′, d′

t, s, d ⇓ r, s′, d′ s′(r) = σ . C(r)
s′(ri) = σi . D(s) s′′ = s′[ri 7→ σ . D(s)]

t.li, s, d ⇓ ri, s
′′, d′

(B-Sel)

t, s, d ⇓ r, s′, d′

t′, s′, d′ ⇓ r′, s′′, d′′ s′′(r) = σ . C(r)
s′′′ = s′′[r 7→ σ . C([r′/ri]r)]

t.li = t′, s, d ⇓ r, s′′′, d′′
(B-Ass)

t1, s, d ⇓ r1, s2, d2

∀i ∈ {2..n}. ti, si, (di − {σi−1}) ⇓ ri, si+1, di+1

∀i ∈ {1..n}. si+1(ri) = σi I Di(qi)
d′ = (dn+1 − {σn}) ∪ {σ} σ /∈ dn+1

s′ = sn+1[r 7→ σ I C(r)] r /∈ dom(sn+1)

new C(t), s, d ⇓ r, s′, d′
(B-New)

t0, s, d ⇓ r0, s1, d1

∀i ∈ {1..n}. ti, si, di ⇓ ri, si+1, di+1

sn+1(r0) = σ ? C(r′) mbody(m,C) = (x, t′)
[r/x, r0/this]t

′, sn+1, dn+1 ⇓ r′, s′, d′

t0.m(t), s, d ⇓ r′, s′, d′
(B-Invk)

t, s, d ⇓ r, s′, d′ s′(r) = σ I C(r)
d′′ = d′ − {σ} t′, s′, d′′ ⇓ r′, s′′, d′′′

s′′(r′) = σ′ . D(s) s′′′ = s′′[r 7→ σ′ . C(r)]

localize(t, t′), s, d ⇓ r, s′′′, d′′′
(B-Loc)

t1, s, d ⇓ r1, s
′, d′ s′(r1) = σ I D(s)

σ ∈ d σ′ /∈ d′ d′′ = (d′ − {σ}) ∪ {σ′}
s′′ = s′[r1 7→ σ′ . D(s)] [r1/x]t2, s

′′, d′′ ⇓ r2, s
′′′, d′′′

ŝ = s′′′[r1 7→ σ I D(s)] d̂ = (d′′′ − {σ′}) ∪ {σ}
expose x = t1 in t2, s, d ⇓ r2, ŝ, d̂

(B-Exp)

Fig. 6. Operational Semantics



∀r ∈ dom(Γ ). Γ ` Γ (r) ok

Γ ok
(Store-Typing-WF)

Γ ok dom(s) = dom(Γ )
s(r) = ρ . C(r)⇔ Γ (r) = ρ . C

s(r) = ρ . C(r) ∧ fields(C) = l : D ⇒
(∀ri ∈ r. ri ∈ dom(Γ )⇒ Γ (ri) = ρ . Di)

Γ ` s
(Store-WF)

Fig. 7. Store Typing and Well-Formedness

5 Operational Semantics

In this section we discuss the dynamic aspects of our object calculus. The store
typing rules shown in Figure 7 are standard. Γ is a store typing that maps
reference locations to their types. The Store-Typing-WF rule ensures that
every type occurring in the store typing is well-formed. A store s maps reference
locations to object instantiations ρ ? C(r) where ? ∈ {.,I}. The Store-WF

rule ensures that the store typing Γ agrees with the store s on the type of
each allocated object; furthermore, the types of objects stored in each �eld must
correspond to the declared �eld type and have the same guard as the containing
object.

Figure 6 shows a big-step operational semantics that de�nes the evaluation
of a term t in the context of a store s and a set d of available capabilities. To
simplify the presentation we do not include evaluation rules corresponding to the
(T-Exp2) and (T-Assign2) type rules of Section 4.5. The rules for �eld selec-
tion, assignment, instance creation and method invocation are mostly standard,
except that they provide additional information about type guards and available
capabilities. We use this information subsequently to show a number of invari-
ances that our type system guarantees by relating the operational semantics to
the type rules.

Two of the standard expression forms operate on guards and capabilities:

1. In the rule for �eld selection (B-Sel) the guard of the object that the �eld
points to is updated to the guard of the selector object. This behavior re�ects
the corresponding type rule (T-Sel).

2. In the rule for instance creation (B-New) a fresh capability σ is created that
is used to track the allocated object; σ is added to the capabilities that are
available after the evaluation.

Reducing a localize expression consumes the capability that is used to track
the object r that t reduces to; the type of r is changed such that it is guarded
by the same capability that guards the object denoted by t′.

In the rule for expose we �rst determine the capability σ that tracks the
object r1 that is the result of reducing t1. While reducing t2 σ is not available;
instead, r1 is guarded by a fresh capability σ′. After t2 has been reduced, the



temporary capability σ′ is replaced with σ; we also change the type of r1 such
that it is again tracked by σ.

5.1 Type Preservation

In this section we prove a standard type preservation theorem that relates the
above operational semantics to the type system that we presented in Section 4.

Lemma 1 (Substitution) If Γ, x : S ; ∆ ` t : T ; ∆′ and Γ (r) = S, then
Γ ; ∆ ` [r/x]t : T ; ∆′.

Proof: By induction on the typing derivation. 2

Lemma 2 If Γ ; ∆ ` t : T ; ∆′, then either ∆′ ⊆ ∆, or (T = ρ I D ∧∆′ =
ρ⊗∆′′ ∧∆′′ ⊆ ∆).

Proof: By induction on the typing derivation. The cases (T-Var), (T-Sel),
(T-Ass), (T-New), (T-Loc), and (T-Exp) are simple.
Case (T-Invk):
By IH, ∀i ∈ {0..n} ∆i+1 ⊆ ∆i. By (WF-Method), σ∆′′ ⊆ σ∆′ or σ∆′′ = ∆̂⊗
ρ∧∆̂ ⊆ σ∆′∧σC = ρ I D. Moreover,∆n+1⊗∆t ⊆ ∆0⊗(∆t−∆0)⇒ σ∆′⊗∆r ⊆
∆0⊗ (∆t−∆0). Therefore, ∆′′′− (∆t−∆0) ⊆ ∆0 or ∆′′′− (∆t−∆0) = ∆′0⊗ ρ
and σC = ρ I D where ∆′0 ⊆ ∆0.

2

Lemma 3 (Weakening) If Γ ; ∆ ` t : T ; ∆f , ∆
′ ⊇ ∆, and Γ ′ is a store-

typing such that ∀q ∈ dom(Γ ). q : Γ (q) ∈ Γ ′ ∨ (Γ (q) = ρ I C ∧ ρ /∈ ∆′). Then:
Γ ′ ; ∆′ ` t : T ; ∆f ⊗ (∆′ −∆).

Proof: By induction on the typing derivation with case analysis on the last
type rule used in the derivation.
Case (T-Sel): Immediate from the IH.
Case (T-Ass):
We have Γ ; ∆ ` t1.li = t2 : ρ . C ; ∆′′. By IH, Γ ′ ; ∆′ ` t1 : ρ . C ; ∆′′ ⊗
(∆′ −∆). By Lemma 2, ∆′′ ⊆ ∆ ⊆ ∆′, therefore ∆′′ ⊗ (∆′ −∆) ⊆ ∆′. By IH,
Γ ′ ; ∆′′ ⊗ (∆′ −∆) ` t2 : ρ . E ; ∆f ⊗ (∆′ −∆). Applying (T-Ass) closes this
case.
Cases (T-Loc) and (T-Exp): analogous to case (T-Ass).
Case (T-New):
We have ∀i ∈ {1..n} Γ ; ∆i ` ti : ρi I Ci ; ∆i+1 ⊗ ρi. By Lemma 2, ∀i ∈
{1..n} ∆i⊗ (∆′−∆1) ⊆ ∆′. Therefore by IH, ∀i ∈ {1..n} Γ ′ ; ∆i⊗ (∆′−∆1) `
ti : ρi I Ci ; ∆i+1 ⊗ ρi ⊗ (∆′ −∆1). Applying (T-New) closes this case. Case
(T-Invk):
By Lemma 2, ∀i ∈ {1..n} ∆i+1 ⊆ ∆i ⇒ ∀i ∈ {1..n} ∆i ⊆ ∆0 ⇒ ∀i ∈ {1..n} ∆i⊗
(∆′ − ∆0) ⊆ ∆′. By IH, ∀i ∈ {1..n} Γ ′ ; ∆i ⊗ (∆′ − ∆0) ` ti : Ui ; ∆′i+1 ⊗
(∆′−∆0). Since ∆n+1⊗∆t⊗ (∆′−∆0) = σ∆′⊗∆r ⊗ (∆′−∆0), we can apply
(T-Invk), which closes this case. 2



We are now ready to prove a type preservation theorem. We use the notation
∆ ` d for indicating that the static capabilities ∆ correctly approximate the
dynamic capabilities d, that is, the dynamic capabilities contain at least the
capabilities available statically. Formally, ∆ ` d if and only if ∀ρ ∈ ∆. ρ ∈ d.

Note that in the following type preservation theorem, the store typing Γ ′

that approximates the store after evaluation is not a superset of the initial store
typing Γ . The reason is that references may be localized during evaluation;
localizing a reference changes its tracked type ρ I C to a guarded type ρ′ . C
while consuming ρ. Note that the underlying class type does not change.

Theorem 1 (Type Preservation) If Γ ; ∆ ` t : T ; ∆′, Γ ` s, ∆ ` d,
and t, s, d ⇓ r, s′, d′, then Γ ′(r) = T and ∆′ ` d′ for some Γ ′ ` s′ such that

∀q ∈ dom(Γ ). q : Γ (q) ∈ Γ ′ ∨ (Γ (q) = σ I E ∧ σ /∈ ∆′) (4)

Proof: By induction on the typing derivation with case analysis on the last
type rule used in the derivation.
Case (T-Sel):
We have Γ ; ∆ ` t′.li : ρ.Di ; ∆′ for some ρ. By (T-Sel), Γ ; ∆ ` t′ : ρ.C ; ∆′

with fields(C) = l : D. For evaluation only (B-Sel) applies. Therefore, t′, s, d ⇓
r′, s′′, d′. By IH, Γ1(r′) = ρ . C and ∆′ ` d′ for some Γ1 ` s′′ such that

∀q ∈ dom(Γ ). q : Γ (q) ∈ Γ1 ∨ (Γ (q) = σ I E ∧ σ /∈ ∆′) (5)

By (B-Sel), s′′(r′) = σ . C(r) for some σ. Since Γ1 ` s′′, by (Store-WF):
σ = ρ. De�ne Γ ′ := Γ1[ri 7→ ρ . Di]. By (B-Sel), s′ = s′′[ri 7→ ρ . Di(s)].
We have Γ ′ ⊇ Γ1 ` s′′. Since Γ ′(ri) = ρ . Di, we have by (Store-WF) that
Γ ′ ` s′. It remains to show:

∀q ∈ dom(Γ ). q : Γ (q) ∈ Γ ′ ∨ (Γ (q) = σ I E ∧ σ /∈ ∆′) (6)

We show that Γ ′ ⊇ Γ , which implies (6).

1. Case ri /∈ dom(Γ1). Then, Γ ′ ⊃ Γ1 ⊇ Γ .
2. Case ri ∈ dom(Γ1). Since s′′(r′) = ρ . C(r) and Γ1 ` s′′, we have by

(Store-WF) that Γ1(ri) = ρ . Di. Therefore, Γ
′ = Γ1 ⊇ Γ .

Case (T-Ass):
We have Γ ; ∆ ` t.li = t′ : ρ . C ; ∆′ for some ρ. By (T-Ass), Γ ; ∆ ` t :
ρ.C ; ∆′′ and fields(C) = l : D. For evaluation only (B-Ass) applies. Therefore,
t, s, d ⇓ r, s′′, d′′. By IH, Γ1(r) = ρ . C and ∆′′ ` d′′ for some Γ1 ` s′′ such
that

∀q ∈ dom(Γ ). q : Γ (q) ∈ Γ1 ∨ (Γ (q) = σ I E ∧ σ /∈ ∆′′) (7)

Weakening provides Γ1 ; ∆′′ ` t′ : ρ . E ; ∆′. By (B-Ass), t′, s′′, d′′ ⇓
r′, s′′′, d′. Therefore, by IH, Γ ′(r′) = ρ . E and ∆′ ` d′ for some Γ ′ ` s′′′ such
that



∀q ∈ dom(Γ1). q : Γ1(q) ∈ Γ ′ ∨ (Γ1(q) = σ I E ∧ σ /∈ ∆′) (8)

By (Store-WF), s′′′(r) = ρ.C(r). By (B-Ass), s′ = s′′′[r 7→ ρ.C([r′/ri]r)].
Since Γ ′ ` s′′′ we have Γ ′(r) = ρ . C. Thus, Γ ′ ` s′. It remains to show

∀q ∈ dom(Γ ). q : Γ (q) ∈ Γ ′ ∨ (Γ (q) = σ I E ∧ σ /∈ ∆′) (9)

Let u ∈ dom(Γ ).

1. Case u : Γ (u) ∈ Γ1. Then either u : Γ (u) ∈ Γ ′, or Γ (u) = σ I E and
σ /∈ ∆′′, in which case by Lemma 2, σ /∈ ∆′.

2. Case Γ (u) = σ I E ∧ σ /∈ ∆′′. By Lemma 2, σ /∈ ∆′.

Case (T-New):
We have Γ ; ∆1 ` new C(t) : ρ I C ; ∆′. By (T-New), ∀i ∈ {1..n}. Γ ; ∆i `
ti : ρi I Ci ; ∆i+1 ⊗ ρi, fields(C) = l : D, and C <: D. For evaluation only
(B-New) applies. Therefore, t1, s, d ⇓ r1, s2, d2. By IH, Γ1(r1) = ρ1 I C1 for
some Γ1 ` s2 and ∆2 ⊗ ρ1 ` d2 such that

∀q ∈ dom(Γ ). q : Γ (q) ∈ Γ1 ∨ (Γ (q) = σ I E ∧ σ /∈ ∆2 ⊗ ρ1) (10)

Weakening provides Γ1 ; ∆2 ` t2 : ρ2 I C2 ; ∆3 ⊗ ρ2. Since ∆2 ⊗ ρ1 ` d2,
we have ∆2 ` (d2 − {ρ1}). We apply the IH iteratively for all ti ∈ t, and we
obtain ∀i ∈ {1..n}. Γi(ri) = ρi I Ci for some Γi ` si+1 and ∆i+1 ⊗ ρi ` di+1

such that

∀q ∈ dom(Γi−1). q : Γi−1(q) ∈ Γi ∨ (Γi−1(q) = σ I E ∧ σ /∈ ∆i+1 ⊗ ρi) (11)

De�ne Γ ′ := Γn[r 7→ ρ I C] and ∆′ := ∆n+1 ⊗ ρ where r /∈ dom(sn+1) and
ρ /∈ dn+1. By (B-New), s′ = sn+1[r 7→ ρ I C(r)]. Since Γn ` sn+1, we have
Γ ′ ` s′. We have ∆n+1 ⊗ ρn ` dn+1. Therefore, ∆n+1 ` dn+1 − {ρn}, and
∆′ ` (dn+1 − {ρn}) ∪ {ρ} = d′. It remains to show:

∀q ∈ dom(Γ ). q : Γ (q) ∈ Γ ′ ∨ (Γ (q) = σ I E ∧ σ /∈ ∆′) (12)

Let u ∈ dom(Γ )⇒ u 6= r (since r /∈ dom(s) and Γ ` s).

1. Case u : Γ (u) ∈ Γn ⇒ u : Γ (u) ∈ Γ ′.
2. Case Γi−1(u) = σ I E and σ /∈ ∆i+1 ⊗ ρi. Then, Γ (u) = σ I E and by

Lemma 2, σ /∈ ∆n+1. Since u 6= r, σ /∈ ∆′.

Case (T-Loc):
We have Γ ; ∆ ` localize(t, t′) : ρ′ .C ; ∆′ where Γ ; ∆ ` t : ρ I C ; ∆′′⊗ρ
and Γ ; ∆′′ ` t′ : ρ′ . D ; ∆′. For evaluation only (B-Loc) applies. Therefore,
t, s, d ⇓ r, s′′, d′′. By IH, Γ1(r) = ρ I C for some Γ1 ` s′′ and ∆′′ ⊗ ρ ` d′′

such that

∀q ∈ dom(Γ ). q : Γ (q) ∈ Γ1 ∨ (Γ (q) = σ I E ∧ σ /∈ ∆′′ ⊗ ρ) (13)



By Weakening Lemma, Γ1 ; ∆′′ ` t′ : ρ′ .D ; ∆′. By (Store-WF), s′′(r) =
ρ I C(r). Let d′′′ = d′′−{ρ}, then∆′′ ` d′′′. By (B-Loc), t′, s′′, d′′′ ⇓ r′, s′′′, d′.
By IH, Γ2(r′) = ρ′ . D for some Γ2 ` s′′′ and ∆′ ` d′ such that

∀q ∈ dom(Γ1). q : Γ1(q) ∈ Γ2 ∨ (Γ1(q) = σ I E ∧ σ /∈ ∆′) (14)

By (Store-WF), s′′′(r′) = ρ′ . D(s). By (B-Loc), s′ = s′′′[r 7→ ρ′ . C(r)].
De�ne Γ ′ := Γ2[r 7→ ρ′ . C]. Then, Γ ′ ` s′. It remains to show:

∀q ∈ dom(Γ ). q : Γ (q) ∈ Γ ′ ∨ (Γ (q) = σ I E ∧ σ /∈ ∆′) (15)

Let u ∈ dom(Γ ).

1. Case u 6= r.
(a) Subcase u : Γ (u) ∈ Γ1. Then, either u : Γ1(u) ∈ Γ2, and thus, u : Γ1(u) ∈

Γ ′. Or, Γ1(u) = σ I E ∧ σ /∈ ∆′.
(b) Subcase Γ (u) = σ I E ∧ σ /∈ ∆′′ ⊗ ρ. Thus, by Lemma 2, σ /∈ ∆′.

2. Case u = r. Then, Γ1(r) = ρ I C ∧ ρ /∈ ∆′′ ⇒ ρ /∈ ∆′.
(a) Subcase r : Γ (r) ∈ Γ1. Then, by (13), Γ (r) = ρ I C ∧ ρ /∈ ∆′.
(b) Subcase Γ (r) = σ I E ∧ σ /∈ ∆′′ ⊗ ρ. Thus, by Lemma 2, σ /∈ ∆′.

Case (T-Invk):
We have ∀i ∈ {0..n} Γ ; ∆i ` ti : Ui ; ∆′i+1. By (B-Invk), t0, s, d ⇓ r0, s1, d1.
Therefore, by IH, Γ0(r0) = U0 for some Γ0 ` s1 and ∆′1 ` d1 such that

∀q ∈ dom(Γ ). q : Γ (q) ∈ Γ0 ∨ (Γ (q) = τ I E ∧ τ /∈ ∆′1) (16)

By Weakening Lemma, Γ0 ; ∆1 ` t1 : U1 ; ∆′2. We apply the IH iteratively
for all ti ∈ t and obtain ∀i ∈ {1..n}. Γi(ri) = Ui where Γi ` si+1 and ∆′i+1 `
di+1 such that

∀q ∈ dom(Γi−1). q : Γi−1(q) ∈ Γi ∨ (Γi−1(q) = τ I E ∧ τ /∈ ∆′i+1) (17)

By (T-Invk),mtype(m,C0) = [ρ ?](∆′, F )→ (∆′′, C) and by (WF-Method),
ΓP ; ∆′ ` t′ : T0 ; ∆′′ and T0 <: C where mbody(m,C0) = (x, t′) and ΓP =
x : F , this : ρ ? C0. Let σ = unify(U,F ). Then σΓP ; σ∆′ ` t′ : σT0 ; σ∆′′

since σ is injective.
Weakening provides Γn, σΓP ; σ∆′ ⊗ ∆r ` t′ : σT0 ; σ∆′′ ⊗ ∆r. By the

Substitution Lemma, Γn ; σ∆′ ⊗ ∆r ` [r/x, r0/this]t′ : σT0 ; σ∆′′ ⊗ ∆r.
Furthermore, we have ∆n+1 ⊗∆t ` dn+1 and Γn ` sn+1. By IH, Γ ′(r′) = σT0

for some Γ ′ ` s′ and ∆′ = σ∆′′ ⊗∆r ` d′ such that

∀q ∈ dom(Γn). q : Γn(q) ∈ Γ ′ ∨ (Γn(q) = τ I E ∧ τ /∈ σ∆′′ ⊗∆r) (18)

It remains to show:

∀q ∈ dom(Γ ). q : Γ (q) ∈ Γ ′ ∨ (Γ (q) = τ I E ∧ τ /∈ ∆′) (19)

Let u ∈ dom(Γ ).



1. Case u : Γ (u) ∈ Γn. Then either u : Γ (u) ∈ Γ ′, or Γ (u) = Γn(u) = τ I
E ∧ τ /∈ ∆′.

2. Case Γ (u) = Γi−1(u) = τ I E∧τ /∈ ∆′i+1 ⇒ τ /∈ ∆t. By Lemma 2, τ /∈ ∆n+1

and also τ /∈ ∆′.

Case (T-Exp):
We have Γ ; ∆ ` expose x = t1 in t2 : T ; ∆′′ ⊗ τ where Γ ; ∆ ` t1 : τ I
C ; ∆′⊗ τ and Γ, x : σ′ .C ; ∆′⊗σ′ ` t2 : T ; ∆′′⊗σ′ (σ′ /∈ Γ ∪∆∪∆′ ∪∆′′).
By (B-Exp), t1, s, d ⇓ r1, s

′, d′. By IH, Γ1(r1) = τ I C for some Γ1 ` s′ and
∆′ ⊗ τ ` d′ such that

∀q ∈ dom(Γ ). q : Γ (q) ∈ Γ1 ∨ (Γ (q) = σ I E ∧ σ /∈ ∆′ ⊗ τ) (20)

We have σ′ /∈ d′, since ∆′ ⊗ τ 0 σ′. By (Store-WF), s′(r1) = τ I C(s).
By (B-Exp), d′′ = (d′ − {τ}) ∪ {σ′} and s′′ = s′[r1 7→ σ′ . C(s)]. Therefore,
∆′⊗σ′ ` d′′. Since ∆′ 0 τ , we have by Weakening Lemma, Γ1, x : σ′ .C ; ∆′⊗
σ′ ` t2 : T ; ∆′′ ⊗ σ′.

De�ne Γ ′′ := Γ1[r1 7→ σ′ . C]. Then, Γ ′′ ` s′′. Weakening provides Γ ′′, x :
σ′ . C ; ∆′ ⊗ σ′ ` t2 : T ; ∆′′ ⊗ σ′. By Substitution Lemma, Γ ′′ ; ∆′ ⊗ σ′ `
[r1/x]t2 : T ; ∆′′ ⊗ σ′. By (B-Exp), [r1/x]t2, s′′, d′′ ⇓ r2, s

′′′, d′′′. By IH,
Γ2(r2) = T for some Γ2 ` s′′′ and ∆′′ ⊗ σ′ ` d′′′ such that

∀q ∈ dom(Γ ′′). q : Γ ′′(q) ∈ Γ2 ∨ (Γ ′′(q) = σ I E ∧ σ /∈ ∆′′ ⊗ σ′) (21)

By (B-Exp), ŝ = s′′′[r1 7→ τ I C(s)] and d̂ = (d′′′ − {σ′}) ∪ {τ}. Thus,
∆′′ ⊗ τ ` d̂. De�ne Γ ′ := Γ2[r1 7→ τ I C]. Then, Γ ′ ` ŝ. It remains to show:

∀q ∈ dom(Γ ). q : Γ (q) ∈ Γ ′ ∨ (Γ (q) = σ I E ∧ σ /∈ ∆′′ ⊗ τ) (22)

Let u ∈ dom(Γ ).

1. Case u : Γ (u) ∈ Γ1.

(a) Subcase u 6= r1 ⇒ u : Γ (u) ∈ Γ ′′ ⇒ u : Γ (u) ∈ Γ2∨(Γ (u) = σ I E∧σ /∈
∆′′ ⊗ σ′)⇒ u : Γ (u) ∈ Γ ′ ∨ (Γ (u) = σ I E ∧ σ /∈ ∆′′ ⊗ τ).

(b) Subcase u = r1 ⇒ Γ1(u) = τ I C. Then, by (20), Γ (u) = τ I C =
Γ ′(u), i.e., u : Γ (u) ∈ Γ ′.

2. Case u : Γ (u) /∈ Γ1 ⇒ u 6= r1. By (20), Γ (u) = σ I E ∧ σ /∈ ∆′ ⊗ τ . Thus,
σ /∈ ∆′. By Lemma (2) and (21), σ /∈ ∆′′ ⊗ τ .

2

We have not done a proof of a progress theorem, which would be needed for a
complete soundness proof for the type system. Instead, we focus on establishing
the alias invariant that we introduced in Section 3.3. The following section intro-
duces a theorem that states that references of tracked type are externally-unique
when they are accessible.



6 Aliasing Guarantees

In this section we formalize the aliasing properties that our system guarantees.
We start by de�ning a reachability property of object locations.

De�nition 1 (Stack-Con�nement) A reference location r ∈ dom(s) is stack-
con�ned in store s if and only if

(∀r′, r′′ ∈ dom(s). (reachables(r, r′)
∧ reachables(r′′, r′))⇒ reachables(r, r′′)) and
(∀r′. reachables(r′, r)⇒ reachables(r, r′))

Lemma 4 Let s be a store and r, r′ ∈ dom(s) reference locations such that
reachables(r, r′), guard(r, s) = ρ, and r is stack-con�ned.

If Γ ; ∆ ` t : T ; ∆′, and t, s, d ⇓ r′, s′, d′ with Γ ` s and ∆ ` d, then
guard(r′, s′) = ρ.

Proof Sketch: By induction on the typing derivation. 2

Lemma 5 (Expose Preserves Stack-Con�nement) Let
Γ ; ∆ ` t1 : σ I T ; ∆′ ⊗ σ and t1, s, d ⇓ r, s1, d1 with Γ ` s, ∆ ` d,
and r is stack-con�ned in s1. If t = expose x = t1 in t2 is well-typed and
t, s, d ⇓ rf , sf , df , then r is stack-con�ned in sf .

Proof:According to de�nition 1 there are two ways to break stack-con�nement
of r. We show that establishing reachablesf

(r̂, r′) for some r̂ such that
reachablesf

(r, r′) implies reachablesf
(r, r̂) or r̂ is garbage in sf . (The proof for

the other case is analogous.) We use the simplifying assumption that
reachablesi

(r, r′) throughout all stores si ∈ s . . . sf .
Part 1. Let s′ be the �rst store in the evaluation of t with reachables′(r̂, r′).

In the following we show: guard(r̂, s′) = guard(r, s′)
To establish reachablesf

(r̂, r′), the evaluation of t must contain an instance

of the rule (B-Ass) such that t̂.li = t′, sa, da ⇓ r̂r, s
′, d′ with

t̂, sa, da ⇓ r̂r, ŝ, d̂ (23)

t′, ŝ, d̂ ⇓ r′, s′′, d′′ (24)

where either reachables′(r̂, r̂r) or r̂ = r̂r. For simplicity we assume r̂ = r̂r.
By (B-Ass), s′′(r̂r) = σ . C(r) and s′ = s′′[r̂r 7→ σ . C([r′/ri]r)]. Since the
assignment is well-typed, we have by type preservation that guard(r̂, s′) =
guard(r′, s′). Since reachableŝ(r, r′) and r is stack-con�ned in ŝ, we have by
Lemma 4 that guard(r′, s′) = guard(r′, s′′) = guard(r, ŝ). It remains to show
that guard(r, s′) = guard(r, ŝ). Assume this is not the case. The only rule that
could change the guard of r is (B-Sel); the rules (B-Loc) and (B-Exp) are not
applicable since r is exposed. Therefore, to change r's guard in the evaluation
of t′, there must be an instance of rule (B-Sel) such that tb.li, sb, db ⇓ r, sc, dc
where tb, sb, db ⇓ rb, s

′
b, d
′
b, reachablesb

(rb, r), and guard(rb, s′b) 6= guard(r, s′b).



Then, by stack-con�nement, reachablesb
(r, rb). By Lemma 4, guard(rb, s′b) =

guard(r, sb). We assume that the guard of r does not change during the eval-
uation from sb to s′b. Therefore, guard(rb, s

′
b) = guard(r, s′b) = guard(r, sb).

Contradiction. Therefore, we have shown guard(r̂, s′) = guard(r, s′).
Part 2. We show that either reachables′(r, r̂) or r̂ is garbage in sf . Con-

sider the sequence of stores s, . . . , ŝ, . . . s′ = S. If there is no si ∈ S such that
reachablesi(r, r̂), then guard(r̂, s′) 6= guard(r, s′) since expose creates a fresh
guard (B-Exp) that is only propagated through �eld selection (B-Sel). Con-
tradiction. Therefore, reachablesi

(r, r̂) for some si ∈ S. If not reachablesf
(r, r̂),

then r̂ is garbage in sf since, by subject reduction, only objects reachable from
r may refer to r̂ according to the guards. 2

Theorem 2 (External Uniqueness) Let
Γ ; ∆ ` t1 : σ I T ; ∆′ ⊗ σ and t1, s, d ⇓ r, s1, d1 with Γ ` s, ∆ ` d, and r
is externally-unique in s1.

If t is a well-typed term, t, s, d ⇓ rf , sf , df , and ρ ∈ df , then r is externally-
unique in sf .

Proof Sketch: First, r remains stack-con�ned, since the �elds of the object o
that r points to are only accessible when r is exposed, which preserves stack-
con�nement according to Lemma 5. Second, according to the evaluation rules
(B-New) and (B-Loc) the capability ρ is consumed before r can be aliased.
Taken together, r remains the only accessible external reference to o in sf . 2

7 Extensions

In this section we address some of the issues when integrating OCT into full
languages like Scala or Java that we ommitted from the formalization for sim-
plicity.

7.1 Closures

A number of object-oriented languages, such as Scala, have special support for
closures. In this section we discuss how OCT can be extended to handle clo-
sures that capture unique references in their environment. We show that in
certain cases, such a closure can be given a tracked type, thus providing external
uniqueness.

In the case where a unique reference is captured by a closure, we have to be
careful not to introduce accidental aliasing, so that the unique reference could
be accessed and consumed multiple times. Consider the following example:

val r: C @unique = new C(...)

val myClosure = (x: Int) => {

expose (r) { ... }

}

consume(r)

myClosure(5) // error!



The method creates a new instance of class C with a unique reference r (of type
ρ I C for some ρ) pointing to it. This unique reference is captured by the closure
that is assigned to myClosure. Note that type checking the expose expression is
only possible in an environment where the capability of r is available. The invo-
cation of consume consumes r. Finally, the closure is applied to some argument.
This application should be rejected by the type checker since the unique object
captured by the closure has already been consumed.

The following approach enables type-safe ownership transfer for closures. The
idea is to record the information about required capabilities in the type of the
closure. For simplicity we consider only the special case where a closure captures
a single unique reference. Type checking proceeds according to the following
inference rule:

Γ, x : T1 ; ∆ ` t : T2 ; ∆′

∆− (∆′|dom(∆)) = {ρ} ρ I T ∈ Γ
Γ ; ∆ ` λx : T1. t : ρ I (T1 → T2) ; ∆′ ⊗ ρ

(T-Clos)

Type-checking the body of the closure yields ∆′ which lets us compute the set
of capabilities that are consumed as ∆− (∆′|dom(∆)). If this set contains only a
single capability ρ that is the component of a tracked type in the environment,
then the type of the closure must also be tracked with ρ. Otherwise, an applica-
tion of the closure could violate the uniqueness of the captured reference. This
means that the evaluation context can choose to either consume the closure or
the variable that was captured by the closure, but not both, since no additional
capability is created. Note that the capability ρ, which is available in the initial
capabilities ∆, is not consumed.

7.2 Nested Classes

Nested classes can be seen as a generalization of closures; a nested class may
de�ne multiple methods, and it may be instantiated several times. An important
use case are anonymous iterator de�nitions in collection classes.

For instance, the SingleLinkedList class in Scala's standard library pro-
vides the following method for obtaining an iterator (the A type parameter is
the collection's element type):

override def elements: Iterator[A] =

new Iterator[A] {

var elems = SingleLinkedList.this

def hasNext = (elems ne null)

def next = {

val res = elems.elem

elems = elems.next

res

}

}



In this example, it would be erroneous to annotate the receiver as @transient.
The nested class instance captures a reference to the receiver and stores it into
a �eld. Therefore, the iterator instance would have to be tracked with the same
capability as the receiver, which is possible as we discussed above for the special
case of closures. The elementsmethod would then have to return a unique object
that is tracked with the same capability as the receiver. While the type system
that we introduced in Section 4 (which our implementation uses internally) can
express this, our user-visible annotations cannot.

Fortunately, in our type system it is easy to check for illegal aliasing: nested
class de�nitions are type-checked in an environment where the set of available
capabilities is empty. This way, all capturing occurrences of unique references
are detected as illegal.

However, a more �exible approach is to return an exposed iterator that op-
erates on an exposed collection:

@exposed override def elements:

Iterator[A] @exposed = { ... }

For convenience, we can implicitly localize new instances of the nested class to
the cluster of the captured exposed reference. It is illegal to capture a unique
reference in addition to an exposed reference. The above annotation allows ar-
bitrary uses of an iterator instance while its underlying unique (or transient)
collection is exposed. Closures that capture exposed references are supported in
an analogous way.

7.3 Actor-Based Concurrency

Figure 8 shows a concurrent variant of an example adapted from [30]. The pur-
pose of this example is to demonstrate how our system supports the repeated
ownership transfer of single objects. This is common in work �ow or communi-
cation systems that process packets or tasks. Our example models a concurrent
work �ow system for processing orders (class Order) using a pipeline of concur-
rently running processors (abstract class Processor).

A Dispatcher handles orders by iterating over its pipeline, sending the cur-
rent order to each processor in sequence. The expression (pipeline(i) !? o)

sends o as a message to the processor at index i of the pipeline and waits for a
reply. The result of the expression is the received reply; its type is recovered by
matching on it (using Scala's match). Each processor is implemented as an actor
that waits to receive an order, processes it, and sends it back to the dispatcher. A
processor receives each order as an externally unique object with the capability
to consume it. To gain access to its �elds, the order is exposed using expose.
The processor's doWork method is then free to operate on the exposed order; the
type system ensures that its external uniqueness is preserved. For example, the
Pricer processor updates the order's total �eld.



class Order {

var clientId: Int = 0

var items: List[Int] = List()

// fields to be filled by work flow stages

var total: Int = 0

// other fields and methods omitted

}

abstract class Processor extends Actor {

def act() {

react {

case ord: Order =>

expose (ord) { xord =>

doWork(xord)

}

sender ! ord

act()

}

}

def doWork(current: Order @exposed)

}

class Pricer extends Processor {

def doWork(current: Order @exposed) {

val price: Int = /* determine price */

current.total = price

}

// other fields and methods omitted

}

abstract class Dispatcher {

val pipeline = new Array[Processor](5)

def handleOrder(o: Order @unique) {

var tmp: Order @unique = o

for (i <- 0 until pipeline.length)

(pipeline(i) !? tmp) match {

case ord: Order @unique => tmp = ord

}

}

// other fields and methods omitted

}

Fig. 8. Example: Concurrent work �ow



8 Implementation

We have implemented a type checker for Object Capability Types as a compiler
plug-in for the Scala compiler developed at EPFL.1 The plug-in inserts an addi-
tional compiler phase that runs right after the normal type checker. The extended
compiler �rst does standard Scala type checking on the erased terms and types
of our system. Secondly, the additional phase infers tracked and guarded types,
and in some cases, localize and expose expressions (see Section 3), for each
method separately. Then, types and capabilities are checked using (an extension
of) the type rules presented in Section 4. For subsequent code generation, all
guards, localize and expose expressions are erased.

8.1 Practical Experience

Our type system is designed to allow the use of mutable objects and contain-
ers as part of messages in concurrent actor-based programs. Consequently, we
annotated some of the most important mutable container classes in Scala's
standard collection library to evaluate the type system. The annotated classes
are DoubleLinkedList, HashMap, ListBuffer, and ArrayBuffer, including all
classes (or traits) that these classes directly or indirectly inherit (an exception is
the Seq trait that virtually all collection classes share). Together, these classes
comprise around 2640 lines of source code, including comments and whitespace.

We were interested to see how many of the methods of each class could be
annotated such that the receiver and all parameters are @exposed (in this case
we say the method is marked as exposed). As we discussed in Section 3, such an
annotation is very �exible, since it allows passing unique or transient references
that have been localized or exposed, respectively, as actual parameters in a call.
While this annotation allows the receiver and the parameters to refer to each
other (and to objects in their cluster), it prevents the creation of references
between the exposed cluster and other objects in the system, notably globally
visible objects that correspond to static classes and class members in Java.

In Section 3 we already reported on the most interesting issues with anno-
tating the DoubleLinkedList class and its superclass SingleLinkedList. All
its methods could be marked as exposed. The HashMap class inherits from 6
additional classes (or traits), comprising 70 non-abstract methods. All of these
methods could be marked as exposed. The ListBuffer class de�nes or inher-
its 41 non-abstract methods. Of those, 40 could be marked as exposed. The
following method could not be annotated:

override def ++(that: Iterable[A]): Seq[A] = {

val buf = new ArrayBuffer[A]

this.copyToBuffer(buf)

that.copyToBuffer(buf)

return buf

}

1 See http://lamp.epfl.ch/�phaller/uniquerefs/.



The problem here is the two invocations of the copyToBuffer method; it is
de�ned in the Iterable trait that we did not annotate. Therefore, the checker
must conservatively assume that the (exposed) receiver and parameters could
be consumed, which is illegal.

The ArrayBuffer class de�nes or inherits 48 methods. Of those, 3 could not
be marked as exposed, because of missing annotations on external classes. Addi-
tionally, the checker reported a couple of spurious warnings, because ArrayBuffer
uses a fast array-copy method, which did not carry annotations.

In summary, our experiments show that

1. in many classes that are used in Scala's standard collection libraries, all
methods can be marked as exposed, suggesting the introduction of a class-
level @exposed annotation, and that

2. our type system enables common mutable collection classes that involve com-
plex internal aliasing to be used as targets of tracked references, providing
external uniqueness.

9 Related Work

Ownership and Uniqueness. Our approach is closely related to previous work
on ownership types and uniqueness types. Clarke and Wrigstad's proposal for
external uniqueness [10, 42] is based on ownership types [31, 13]; our system can
be seen as an alternative way of providing external uniqueness based on capabili-
ties instead of ownership. Our guard parameters are similar to owner parameters,
but, in contrast to owner parameters, they are never explicitly written in a pro-
gram; instead, all guard parameters are inferred by the type checker. A complete
discussion of previous proposals for unique pointers in object-oriented languages
is beyond the scope of this paper. An overview of type systems that do not
provide external uniqueness can be found in [10].

UTT [30] extends Universe Types [16, 15] to provide external uniqueness for
object clusters. Clusters in UTT are declared explicitly, whereas in our type
system, clusters are implicit. While explicit clusters require additional declara-
tions, they enable UTT to infer many of the capture and release statements
that correspond to our localize and expose expressions. UTT does not have a
quali�er that is analogous to our transient. Finally, the alias invariant of UTT
does not guarantee race freedom, since read-only references into clusters remain
accessible after ownership transfer.

In a concurrent setting, temporary aliasing of unique references must be
done in a way that avoids race conditions. In Ei�el∗ [29], Balloon Types [2],
Capabilities for Sharing [6], Pivot Uniqueness [26], and AliasJava [1], a unique
reference is still usable despite the existence of temporary (borrowed) aliases.
Transferring a unique reference to another concurrent process while retaining
a temporary alias may lead to data races. Our approach avoids this problem
by revoking the capability to use a unique reference while temporary aliases
exist. Several type systems based on ownership have been proposed to verify
the safety of concurrent programs. The PRFJ language of Boyapati et al. [5]



associates owners with shared-memory locks to verify correct lock acquisition
before accessing objects. Unlike our approach, PRFJ does not provide external
uniqueness and uses destructive reads for ownership transfer. Universe Types
have also been used to verify race safety of shared-memory threads [14].

9.1 Relationship with Minimal Ownership for Active Objects

Among the work that is most closely related to ours is Minimal Ownership for
Active Objects [11] (MOAO in the following); it combines a minimal notion of
ownership, external uniqueness, and immutability into a system that provides
race freedom for active objects [43, 8]. MOAO's immutable and safe (arg refer-
ences in the terminology of [31]) references are orthogonal and complementary
to our approach. In MOAO, abstracting from the fact whether a method con-
sumes a unique parameter or not requires explicit owner parameters. For that
purpose our system provides the @transient and @exposed quali�ers, instead.
Although these quali�ers are less general than explicit owner parameters, we
found that they are su�cient to guarantee external uniqueness for common col-
lection classes. Our expose expression is similar to MOAO's borrow in that it
allows accessing the representation of a unique object while ensuring external
uniqueness. Unlike borrow in MOAO, expose is inferred for parameters carrying
the @transient quali�er.

Our system enforces the invariant that a unique reference is not consumed
while it is borrowed. In contrast, in MOAO this invariant is not enforced, leading
to a null-pointer exception in the following example.

class C {

var l: Object;

def mutate() { l = new Object; }

def badBorrow(p: unique::C) {

var x: unique::C;

borrow p as a::C pb {

x = p--;

pb.mutate();

}

}

}

Method badBorrow contains a local variable x of type unique::C; unique is an
owner that restricts x to only refer to externally unique objects. The borrow

construct introduces an alias pb with owner a for p, so that it can be mutated
using the mutate method (mutate is owner-polymorph wrt. the owner of the
receiver; for brevity, the owner parameter is omitted). However, inside the body
of borrow, p is read destructively (p--), thereby causing a null-pointer excep-
tion at the invocation of mutate. To see why MOAO does not reject the above
program, it is instructive to look at the typing rule for borrow as given in [12].



Γ ` lval : unique :: C
Γ, a : ∗, x : a :: C ` s ok

Γ ` borrow lval as a :: C x {s} ok
(stat-borrow)

(Exact typing, and read/write e�ects have been omitted since they are irrel-
evant for the discussion.) The environment Γ binds variables to their type and
records the owners that are currently in scope (with dummy type ∗). Since Γ
is immutable, it is impossible to revoke the permission to access lval inside the
body s, and to restore the permission afterwards. In contrast, our type system
uses an additional capability context that restricts access to unique references.
This context may change in the course of deriving the type of an expression. In
the above example, the capability to access p is temporarily revoked while type
checking the body of borrow, thereby rejecting the (destructive) read of p.

Linear Types In functional languages, linear types [38] have been used to imple-
ment operations like array updating without the cost of a full copy. An object
of linear type must be used exactly once; as a result, linear objects must be
threaded through the computation. Wadler's let! or observers [32] can be used
to temporarily access a linear object under a non-linear type. Linear types have
also been combined with regions, where let! is only applicable to regions [41].
Ennals et al. [17] have used quasi-linear types [25] for e�cient network packet
processing; however, unlike our clusters, their packets may not contain nested
pointers. Our system of capabilities is inspired to a large extent by Fähndrich
and DeLine's adoption and focus [19]. The second type rule for our expose

expression corresponds to their let-focus. Our system extends adoption and
focus with external uniqueness in an object-oriented setting. Adoption and fo-
cus builds on Alias Types [40] that allow a precise description of the shape of
recursive data structures in a type system. Boyland and Retert [7] generalize
adoption to model both e�ects and uniqueness. Their type language is more ex-
pressive, but also signi�cantly more complex than our type language. Their real-
ized source-level annotations include data group and e�ect declarations, whereas
our annotation system does not require those declarations. Sing# [18] allows the
linear transfer of message records that are explicitly allocated in a special ex-
change heap reserved for inter-process communication. Our tracked references
are similar to Sing#'s tracked pointers. However, our notion of uniqueness is
more �exible since it allows arbitrary internal aliases. It should be possible to
apply the principles of our type system to formalize the message exchange heap
of Sing#. StreamFlex [35] is a programming model for stream-based program-
ming in Java. It allows zero-copy message passing of so-called capsules along
linear �lter pipelines. Capsules are instances of classes that satisfy stringent
constraints: �elds of capsule classes may only have primitive types or primitive
array types. In contrast, our system allows linear transfer of internally-aliased
objects. Kilim [36] combines a system of type quali�ers with an intra-procedural
shape analysis to verify the isolation of Java-based actors. In Kilim, the shape of
messages is restricted to trees, whereas our system allows messages with internal
aliasing thanks to external uniqueness.



Region-Based Memory Management. Object clusters in our system are related
to regions in region-based memory management [37, 39, 22, 44]. Objects inside a
cluster may not refer to objects inside another cluster that may be separately
consumed; consumption of clusters corresponds to deletion of regions. The main
di�erence between regions and our object clusters are that (1) clusters are �rst-
class values that can be stored in aliased objects, and (2) clusters do not have
to be explicitly consumed, since they are garbage-collected.

10 Conclusion and Future Work

We have presented a type system that integrates capability-checking and exter-
nal uniqueness, striving for simplicity and �exibility in both the formalization
and the practical realization. We implemented our approach as a lightweight ex-
tension to Scala, without changing the language syntax. Instead of introducing
uniqueness-polymorphic methods through explicit parameterization, we provide
a small set of type quali�ers. Practical experience shows that these quali�ers are
su�cient to add uniqueness information to common collection classes of Scala's
standard library without requiring changes to their implementation.

In future work, we intend to investigate ways to automatically infer unique-
ness annotations from method implementations. Furthermore, we believe that it
is worthwhile to explore the application of ownership transfer to shared-memory
concurrency, where objects may be transferred between shared and unshared
regions of memory.

References

1. Jonathan Aldrich, Valentin Kostadinov, and Craig Chambers. Alias annotations
for program understanding. In OOPSLA, pages 311�330, 2002.

2. Paulo Sérgio Almeida. Balloon types: Controlling sharing of state in data types.
In ECOOP, pages 32�59, 1997.

3. Joe Armstrong, Robert Virding, Claes Wikström, and Mike Williams. Concurrent
Programming in Erlang, Second Edition. Prentice-Hall, 1996.

4. Ken Arnold and James Gosling. The Java Programming Language. The Java
Series. Addison-Wesley, 1996.

5. Chandrasekhar Boyapati, Robert Lee, and Martin C. Rinard. Ownership types
for safe programming: preventing data races and deadlocks. In OOPSLA, pages
211�230, 2002.

6. John Boyland, James Noble, and William Retert. Capabilities for sharing: A gen-
eralisation of uniqueness and read-only. In ECOOP, pages 2�27. Springer, 2001.

7. John Tang Boyland and William Retert. Connecting e�ects and uniqueness with
adoption. In POPL, pages 283�295. ACM, 2005.

8. Denis Caromel. Towards a method of object-oriented concurrent programming.
Commun. ACM, 36(9):90�102, 1993.

9. Sigmund Cherem and Radu Rugina. Uniqueness inference for compile-time object
deallocation. In ISMM, pages 117�128. ACM, 2007.

10. Dave Clarke and Tobias Wrigstad. External uniqueness is unique enough. In
ECOOP, pages 176�200. Springer, 2003.



11. Dave Clarke, Tobias Wrigstad, Johan Östlund, and Einar Broch Johnsen. Minimal
ownership for active objects. In APLAS, pages 139�154. Springer, 2008.

12. Dave Clarke, Tobias Wrigstad, Johan Östlund, and Einar Broch Johnsen. Minimal
ownership for active objects. Technical Report SEN-R0803, CWI, 2008.

13. David G. Clarke, John Potter, and James Noble. Ownership types for �exible alias
protection. In OOPSLA, pages 48�64, 1998.

14. David Cunningham, Sophia Drossopoulou, and Susan Eisenbach. Universe Types
for Race Safety. In VAMP 07, pages 20�51, August 2007.

15. Werner Dietl, Sophia Drossopoulou, and Peter Müller. Generic universe types. In
ECOOP, pages 28�53. Springer, 2007.

16. Werner Dietl and Peter Müller. Universes: Lightweight ownership for JML. Journal
of Object Technology, 4(8):5�32, 2005.

17. Robert Ennals, Richard Sharp, and Alan Mycroft. Linear types for packet pro-
cessing. In ESOP, pages 204�218. Springer, 2004.

18. Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson, Galen C. Hunt,
James R. Larus, and Steven Levi. Language support for fast and reliable message-
based communication in singularity OS. In EuroSys, pages 177�190. ACM, 2006.

19. Manuel Fähndrich and Robert DeLine. Adoption and focus: Practical linear types
for imperative programming. In PLDI, pages 13�24, 2002.

20. Lift Web Application Framework. http://liftweb.net/.
21. Philipp Haller and Martin Odersky. Scala actors: Unifying thread-based and event-

based programming. Theor. Comput. Sci, 410(2-3):202�220, 2009.
22. Michael W. Hicks, J. Gregory Morrisett, Dan Grossman, and Trevor Jim. Expe-

rience with safe manual memory-management in cyclone. In ISMM, pages 73�84.
ACM, 2004.

23. Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight java:
a minimal core calculus for java and GJ. ACM Trans. Program. Lang. Syst,
23(3):396�450, 2001.

24. Twitter Kestrel. http://github.com/robey/kestrel/.
25. Naoki Kobayashi. Quasi-linear types. In POPL, pages 29�42, 1999.
26. K. Rustan M. Leino, Arnd Poetzsch-He�ter, and Yunhong Zhou. Using data groups

to specify and check side e�ects. In PLDI, pages 246�257, 2002.
27. T. Lindholm and F. Yellin. The Java Virtual Machine Speci�cation. Addison-

Wesley, 1996.
28. Kin-Keung Ma and Je�rey S. Foster. Inferring aliasing and encapsulation proper-

ties for java. In OOPSLA, pages 423�440. ACM, 2007.
29. Naftaly H. Minsky. Towards alias-free pointers. In ECOOP, pages 189�209.

Springer, 1996.
30. Peter Müller and Arsenii Rudich. Ownership transfer in universe types. In OOP-

SLA, pages 461�478. ACM, 2007.
31. James Noble, Jan Vitek, and John Potter. Flexible alias protection. In ECOOP,

pages 158�185. Springer, 1998.
32. Martin Odersky. Observers for linear types. In ESOP, pages 390�407. Springer,

1992.
33. Martin Odersky. The Scala experiment: can we provide better language support

for component systems? In POPL, pages 166�167. ACM, 2006.
34. Amazon SimpleDB. http://aws.amazon.com/simpledb/.
35. Jesper Honig Spring, Jean Privat, Rachid Guerraoui, and Jan Vitek. Stream�ex:

high-throughput stream programming in java. In OOPSLA, pages 211�228. ACM,
2007.



36. Sriram Srinivasan and Alan Mycroft. Kilim: Isolation-typed actors for java. In
ECOOP, pages 104�128. Springer, 2008.

37. Mads Tofte and Jean-Pierre Talpin. Region-based memory management. Inf.

Comput, 132(2):109�176, 1997.
38. Philip Wadler. Linear types can change the world! In Programming Concepts and

Methods, Sea of Galilee, Israel, April 1990. North Holland. IFIP TC 2 Working
Conference.

39. David Walker, Karl Crary, and J. Gregory Morrisett. Typed memory management
via static capabilities. ACM Trans. Program. Lang. Syst, 22(4):701�771, 2000.

40. David Walker and J. Gregory Morrisett. Alias types for recursive data structures.
In TIC, pages 177�206. Springer, 2000.

41. David Walker and Kevin Watkins. On regions and linear types. In ICFP, pages
181�192, 2001.

42. Tobias Wrigstad. Ownership-Based Alias Managemant. PhD thesis, KTH, Sweden,
May 11 2006.

43. Akinori Yonezawa, Jean-Pierre Briot, and Etsuya Shibayama. Object-oriented
concurrent programming in ABCL/1. In OOPSLA, pages 258�268, 1986.

44. Tian Zhao, James Noble, and Jan Vitek. Scoped types for real-time java. In RTSS,
pages 241�251. IEEE Computer Society, 2004.


