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Data 1s growing.

At the same time,
there is a growing desire

*° do MORE with that data.

) for Research in Interaction, Sound, and Signal Processing
iversity Copenhagen, Medialogy

That is how long | must wait for my 5400 simulations to finish running. | started this
process more than 50 hours ago, thinking it would be done Tuesday. Maleki and Donoho
are not kidding when they write,
It would have required several years to complete our study on a single modern
desktop computer.




As an example,

MACHINE LEARNING (ML)

@'9 has provided elegant and sophisticated solutions to
many complex problems on a small scale,
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As an example,

MACHINE LEARNING (ML)

@'9 has provided elegant and sophisticated solutions to
many complex problems on a small scale,

@9 but efforts are routinely limited by complexity and
running time of SEQUENTIAL algorithms.
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As an example,

MACHINE LEARNING (ML)

@'9 has provided elegant and sophisticated solutions to
many complex problems on a small scale,

@9 but efforts are routinely limited by complexity and
running time of SEQUENTIAL algorithms.

described as,
a community full of “ENTRENCHED PROCEDURAL PROGRAMMERS”

typically focus on optimizing sequential algorithms when faced
with scaling problems.
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As an example,

MACHINE LEARNING (ML)

@ has provided elegant and sophisticated solutions to
many complex problems on a small scale,

@9 but efforts are routinely limited by complexity and
running time of SEQUENTIAL algorithms.

described as,
a community full of “ENTRENCHED PROCEDURAL PROGRAMMERS”

e mrw need to make it easier to 1en faced
with scaling CXperiment with parallelism
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What about MapReduce?




What about MapReduce?

Poor support for iteration.

MapReduce instances must be chained together
in order to achieve iteration.

@(—) Not always straightforward.
Even building non-cyclic pipelines is hard (e.g.,
FlumeJava, PLDI'10).

@ Overhead is significant.

Communication, serialization (e.g., Phoenix,
IISWC'09).
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Menthor...

is a framework for parallel graph processing.
(But it is not limited to graphs.)
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Menthor...

is a framework for parallel graph processing.
(But it is not limited to graphs.)

is inspired by BSP.

With functional reduction/aggregation mechanisms.

avoids an inversion of control
of other BSP-inspired graph-processing frameworks.

is implemented in Scala,
and there is a preliminary experimental evaluation.
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Menthor’s
Model of Computation.







Data.

Split into data items managed by vertices.
( and sizes range from primitives to large matrices
A4

./
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Data.

Split into data items managed by vertices.
& Relationships expressed using edges between vertices.

T

S80S

Friday, June 3, 2011



Algorithms.




Algorithms.

(*) Data items stored inside of vertices iteratively updated.
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Algorithms.

(*) Data items stored inside of vertices iteratively updated.

(*) Iterations happen as SYNCHRONIZED SUPERSTEPS.
(inspired by the BSP model)
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Algorithms.

9¢) Data items stored inside of vertices iteratively updated.
E*;

Iterations happen as SYNCHRONIZED SUPERSTEPS.
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Algorithms.

9¢) Data items stored inside of vertices iteratively updated.
E*;

Iterations happen as SYNCHRONIZED SUPERSTEPS.

update each vertex in
I o | parallel

e

| superstep #1 | '

time
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Algorithms.

9¢) Data items stored inside of vertices iteratively updated.
%) Iterations happen as SYNCHRONIZED SUPERSTEPS.

update each vertex in
parallel.

update produces
outgoing messages to
other vertices

| superstep #1 |

lec
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Algorithms.

G 9¢) Data items stored inside of vertices iteratively updated.
@’ %) lterations happen as SYNCHRONIZED SUPERSTEPS.

@ update each vertex in
@ I o | parallel.
2 update produces
@ ®* outgoing messages to
other vertices

@ 3 Incoming messages
. .

available at the

@ beginning of the next

r};g SUPERSTEP.
¥ ' | superstep #2 |

time
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Substeps. (and Messages)

SUBSTEPS are computations that,
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Substeps. (and Messages)

SUBSTEPS are computations that,

] .| update the value of this Vertex

), | return a list of messages:

case class Message[Data](source: Vertex[Data],
dest: Vertex[Data], value: Data)
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Substeps. (and Messages)

SUB

I.
2.

STEPS are computations that,

update the value of this Vertex

return a list of messages:

case class Message[Data](source: Vertex[Data],
dest: Vertex[Data], value: Data)

EXAMPLES...

{

}

value = ...
List()
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Substeps. (and Messages)

SUBSTEPS are computations that,

] .| update the value of this Vertex

), | return a list of messages:

case class Message[Data](source: Vertex[Data],
dest: Vertex[Data], value: Data)

EXAMPLES...
{ { [ I A |
value = ... for (nb <- neighbors)
\ List() yield Message(this, nb, value)
}
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Substeps. (and Messages)

SUBSTEPS are computations that,

] .| update the value of this Vertex

), | return a list of messages:

case class Message[Data](source: Vertex[Data],
dest: Vertex[Data], value: Data)

EXAMPLES...

p
Each is implicitly converted to a

ssaych Liils, nb, value)
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Some Examples...




PageRank.

class PageRankVertex extends Vertex[Double] (0.0d) {
def update() = {
var sum = incoming.foldLeft(@)(_ + _.value)
value = (0.15 / numVertices) + 0.85 x sum

if (superstep < 30) {
for (nb <- neighbors) yield
Message(this, nb, value / neighbors.size)
} else
List()
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Another Example.

class PhasedVertex extends Vertex[MyData] {
var phase =1

def update() = {
if (phase == 1) {

if (condition)
phase = 2
} else if (phase == 2) {

.
}
}
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Another Example.

class PhasedVertex extends Vertex[MyData] {
var phase = 1

if
phase = 2
} else if (phase == 2) {

.
¥

}
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Inverting the Inversion.

@ Use high-level combinators to build
expressions of type Substep[Datal

class PhasedVertex extends Vertex[MyDatal {

def update() = {
thenUntil(condition) {
} then {

.
}
}
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Inverting the Inversion.
@ Use high-level combinators to build

expressions of type Substep[Datal

class PhasedVertffx extends Vertex[MyDatal] {
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Inverting the Inversion.

@9 Use high-level combinators to build
expressions of type Substep[Datal

@ Thus avoiding manual stack management.

class PhasedVertex extends Vertex[MyDatal {

def update() = {
thenUntil(condition) {
} then {

.
}
}
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Reduction Combinators:
crunch steps.




Reduction Combinators:
crunch steps.

(-*) Reduction operations important.
— Replacement for shared data.
— Global decisions.




Reduction Combinators:
crunch steps.

(-*) Reduction operations important.
— Replacement for shared data.
— Global decisions.

9 Provided as just another kind of Substep [Datal
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Reduction Combinators:
crunch steps.

def update() = {
then {
value = ...
} crunch ((vl: Double, v2: Double) => vl + v2) then {
incoming match { case List(reduced) =>

L
}
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Menthor’s .
Implementation




Actors.

Implementation based upon Actors.
GRAPH/\
FOREMEN Central G.RAPH instance is an
actor, which manages a set of
WOW \ / »\ WORKER actors
~—

~= ~—
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Actors.

Implementation based upon Actors.

GRAPHAL

FOREMEN >\
\ / WQRKER actors
"KhAn "

Central GRAPH instance is an
actor, which manages a set of

et
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Actors.

Implementation based upon Actors.

GRAPH/\

/ \

FOREMEN Central G.RAPH instance is an
actor, which manages a set of
WOW \ / S/\ WORKER actors
s I B e I GRAPH synchronizes workers

using supersteps.
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Actors.

Implementation based upon Actors.

Each WORKER manages a
partition of the graph’s vertices

GRAP
)
FOREMEN : : .
— Deliver incoming messages that were
sent in the previous superstep;

W \ l

ii ‘ ‘ ‘ — Select and execute update step on

each vertex in its partition;

— Forward outgoing messages
generated by its vertices in the
current superstep.
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Implementing Reduction.




Implementing Reduction.

I . | WORKER reduces the values of all
GRAPH/\ vertices in its partition.

V'S

WORKERS

reducedv reducedv reducedv reducedv
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Implementing Reduction.

I . | WORKER reduces the values of all
GRAPH/\ vertices in its partition.

The result and the closure that was
used to compute it is sent to the

GRAPH actor, which computes the
WORK/EFS/\\ f / »\ final reduced value.

ot T ot T o WY |

= et

FOREMEN o
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Implementing Reduction.

I . | WORKER reduces the values of all
vertices 1n its partition.

GRAP
2 The result and the closure that was
FOREMEN ..
used to compute it is sent to the

GRAPH actor, which computes the
Wow M final reduced value.
~—

. 3 The final result is passed to all

WORKERS which make it available to
their vertices as incoming messages
(at the beginning of the next

superstep)

Friday, June 3, 2011



Implementation Principles.




Implementation Principles.

(%) A pure Scala library

— No staging and code generation.
— No dependency on language virtualization.
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(%) A pure Scala library
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— No dependency on language virtualization.

@ Benefits

— Compatible with mainline Scala compiler.
— Fast compilation.

— Simple debugging and troubleshooting.
— Framework developer-friendly.
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Implementation Principles.

(%) A pure Scala library

— No staging and code generation.
— No dependency on language virtualization.

@ Benefits

— Compatible with mainline Scala compiler.
— Fast compilation.

— Simple debugging and troubleshooting.
— Framework developer-friendly.

@ Drawbacks

=— No aggressive optimizations.
— No support for heterogeneous hardware platforms.
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Related Work.

GOOGLE’S PREGEL
GRAPHLAB
SIGNAL/COLLECT OrTIML SPARK
MAIN INSPIRATION Aggressive . :
Graphs/BSP PTIMIZATIONS Dssnedl e MRl
CONTROL R S Cluster support
Inverted EQUIRES STAGING No graph support
ASYNC EXECUTION DEBUGGING Non-determinism
Non-determinism Not optimal, yet
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Related Work.

GOOGLE’S PREGEL
GRAPHLAB
SIGNAL/COLLECT OrTIML SPARK
MAIN INSPIRATION Aggressive . :
Graphs/BSP PTIMIZATIONS Desg‘edtf"f lesrzaen
uster support
CONTROL
Inverted REQUIRES STAGING No graph support
ASYNC EXECUTION DEBUGGING Non-determinism
Non-determinism Not optimal, yet

Be sure to see their talk!

(Many more discussed in the paper.)
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Conclusions

Can avoid inversion of control in vertex-based
BSP using closures.

Higher-order functions useful for reductions, in
an imperative model.

Explicit parallelism feasible if comptitational
model simple (cf. MapReduce)

The puzzle pieces are there to make analyzing
bigger data easier.

Questions?



http://lamp.epfl.ch/~phaller/menthor/
http://lamp.epfl.ch/~phaller/menthor/

Experimental Results.

%) Applications
— PageRank on (subset of) Wikipedia

— Hierarchical clustering
— Loopy belief propagation

(-)G) Very preliminary results
— Evaluating BSP-based model

— Implementation details changing
— Parallel collections (extensions)

Speed Up

o W e N9 0 O

PageR

12
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1»-
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ank Speed Up on Subsets of the Wikipedia Graph

Linear !
64 000 vertices, 10 iterations
= = =107 000 vertices, 10 iterations |

—e— 107,000 vertices, 30 iterations

@
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