
Philipp HALLER | Heather MILLER

Parallelizing
Machine Learning-

A FRAMEWORK and ABSTRACTIONS for Parallel Graph Processing

Functionally

Friday, June 3, 2011

Data is growing.
At the same time,

do with that data.
there is a growing desire

to
MORE

Friday, June 3, 2011

As an example,
MACHINE LEARNING (ML)

has provided elegant and sophisticated solutions to
many complex problems on a small scale,

✗✗

Friday, June 3, 2011

As an example,
MACHINE LEARNING (ML)

has provided elegant and sophisticated solutions to
many complex problems on a small scale,

✗✗

could open up NEW APPLICATIONS + NEW

AVENUES OF RESEARCH if ported to a larger scale

Friday, June 3, 2011

As an example,
MACHINE LEARNING (ML)

has provided elegant and sophisticated solutions to
many complex problems on a small scale,

✗✗

but efforts are routinely limited by complexity and
running time of algorithms.

✗✗
SEQUENTIAL

Friday, June 3, 2011

As an example,
MACHINE LEARNING (ML)

has provided elegant and sophisticated solutions to
many complex problems on a small scale,

✗✗

but efforts are routinely limited by complexity and
running time of algorithms.

✗✗
SEQUENTIAL

described as,
a community full of “ENTRENCHED PROCEDURAL PROGRAMMERS”

typically focus on optimizing sequential algorithms when faced
with scaling problems.

Friday, June 3, 2011

As an example,
MACHINE LEARNING (ML)

has provided elegant and sophisticated solutions to
many complex problems on a small scale,

✗✗

but efforts are routinely limited by complexity and
running time of algorithms.

✗✗
SEQUENTIAL

described as,
a community full of “ENTRENCHED PROCEDURAL PROGRAMMERS”

typically focus on optimizing sequential algorithms when faced
with scaling problems.

need to make it easier to experiment with parallelism

Friday, June 3, 2011

What about MapReduce?

Friday, June 3, 2011

What about MapReduce?

MapReduce instances must be chained together
in order to achieve iteration.

Not always straightforward.

Overhead is significant.

✗✗

✗✗

Poor support for iteration.

Even building non-cyclic pipelines is hard (e.g.,
FlumeJava, PLDI’10).

Communication, serialization (e.g., Phoenix,
IISWC’09).

Friday, June 3, 2011

Menthor...

Friday, June 3, 2011

Menthor...

is a framework for parallel graph processing.✗✗
(But it is not limited to graphs.)

Friday, June 3, 2011

Menthor...

is a framework for parallel graph processing.

is inspired by BSP.

✗✗

✗✗

(But it is not limited to graphs.)

With functional reduction/aggregation mechanisms.

Friday, June 3, 2011

Menthor...

is a framework for parallel graph processing.

is inspired by BSP.

✗✗

✗✗

(But it is not limited to graphs.)

With functional reduction/aggregation mechanisms.

avoids an inversion of control✗✗
of other BSP-inspired graph-processing frameworks.

Friday, June 3, 2011

Menthor...

is a framework for parallel graph processing.

is inspired by BSP.

✗✗

✗✗

(But it is not limited to graphs.)

With functional reduction/aggregation mechanisms.

avoids an inversion of control✗✗
of other BSP-inspired graph-processing frameworks.

is implemented in Scala,✗✗
and there is a preliminary experimental evaluation.

Friday, June 3, 2011

Model of Computation.
Menthor’s

Friday, June 3, 2011

Data.

Friday, June 3, 2011

Data.
Split into data items managed by vertices.
and sizes range from primitives to large matrices

Friday, June 3, 2011

Data.
Split into data items managed by vertices.

Relationships expressed using edges between vertices.

Friday, June 3, 2011

Algorithms.

Friday, June 3, 2011

Algorithms.
Data items stored inside of vertices iteratively updated.✗✗

Friday, June 3, 2011

Algorithms.
Data items stored inside of vertices iteratively updated.
Iterations happen as SYNCHRONIZED SUPERSTEPS.

✗✗

✗✗
(inspired by the BSP model)

Friday, June 3, 2011

Algorithms.
Data items stored inside of vertices iteratively updated.
Iterations happen as SYNCHRONIZED SUPERSTEPS.

✗✗

✗✗

time
Friday, June 3, 2011

Algorithms.
Data items stored inside of vertices iteratively updated.
Iterations happen as SYNCHRONIZED SUPERSTEPS.

✗✗

✗✗

1.

def update

update each vertex in
parallel.

def update

def update

def update

def update

def update

def update

def update

def update

time
superstep #1

Friday, June 3, 2011

Algorithms.
Data items stored inside of vertices iteratively updated.
Iterations happen as SYNCHRONIZED SUPERSTEPS.

✗✗

✗✗

1.
2.

update each vertex in
parallel.

update produces
outgoing messages to
other vertices

time
superstep #1

Friday, June 3, 2011

Algorithms.
Data items stored inside of vertices iteratively updated.
Iterations happen as SYNCHRONIZED SUPERSTEPS.

✗✗

✗✗

1.
2.
3.

update each vertex in
parallel.

update produces
outgoing messages to
other vertices
incoming messages
available at the
beginning of the next
SUPERSTEP.

time
superstep #2

Friday, June 3, 2011

Substeps. (and Messages)
SUBSTEPS are computations that,

Friday, June 3, 2011

Substeps. (and Messages)
SUBSTEPS are computations that,

1. update the value of this Vertex

Friday, June 3, 2011

Substeps. (and Messages)
SUBSTEPS are computations that,

1. update the value of this Vertex

2. return a list of messages:
case class Message[Data](source: Vertex[Data],
 dest: Vertex[Data], value: Data)

Friday, June 3, 2011

Substeps. (and Messages)
SUBSTEPS are computations that,

1. update the value of this Vertex

2. return a list of messages:
case class Message[Data](source: Vertex[Data],
 dest: Vertex[Data], value: Data)

EXAMPLES...
{
 value = ...
 List()
}

Friday, June 3, 2011

Substeps. (and Messages)
SUBSTEPS are computations that,

1. update the value of this Vertex

2. return a list of messages:
case class Message[Data](source: Vertex[Data],
 dest: Vertex[Data], value: Data)

EXAMPLES...
{
 value = ...
 List()
}

{
 ...
 for (nb <- neighbors)
 yield Message(this, nb, value)
}

Friday, June 3, 2011

Substeps. (and Messages)
SUBSTEPS are computations that,

1. update the value of this Vertex

2. return a list of messages:
case class Message[Data](source: Vertex[Data],
 dest: Vertex[Data], value: Data)

EXAMPLES...
{
 value = ...
 List()
}

{
 ...
 for (nb <- neighbors)
 yield Message(this, nb, value)
}

Each is implicitly converted to a Substep[Data]

Friday, June 3, 2011

Some Examples...

Friday, June 3, 2011

PageRank.

class PageRankVertex extends Vertex[Double](0.0d) {
 def update() = {
 var sum = incoming.foldLeft(0)(_ + _.value)
 value = (0.15 / numVertices) + 0.85 * sum

 if (superstep < 30) {
 for (nb <- neighbors) yield
 Message(this, nb, value / neighbors.size)
 } else
 List()
 }
}

Friday, June 3, 2011

Another Example.

class PhasedVertex extends Vertex[MyData] {
 var phase = 1

 def update() = {
 if (phase == 1) {
 ...
 if (condition)
 phase = 2
 } else if (phase == 2) {
 ...
 }
 }
}

Friday, June 3, 2011

Another Example.

class PhasedVertex extends Vertex[MyData] {
 var phase = 1

 def update() = {
 if (phase == 1) {
 ...
 if (condition)
 phase = 2
 } else if (phase == 2) {
 ...
 }
 }
}

INVERSION OF CONTROL!!Thus, manual stack management...

Friday, June 3, 2011

Inverting the Inversion.

class PhasedVertex extends Vertex[MyData] {

 def update() = {
 thenUntil(condition) {
 ...
 } then {
 ...
 }
 }
}

Use high-level combinators to build
expressions of type Substep[Data]

✗✗

Friday, June 3, 2011

Inverting the Inversion.

class PhasedVertex extends Vertex[MyData] {

 def update() = {
 thenUntil(condition) {
 ...
 } then {
 ...
 }
 }
}

Use high-level combinators to build
expressions of type Substep[Data]

✗✗

Friday, June 3, 2011

Inverting the Inversion.

class PhasedVertex extends Vertex[MyData] {

 def update() = {
 thenUntil(condition) {
 ...
 } then {
 ...
 }
 }
}

Use high-level combinators to build
expressions of type Substep[Data]

Thus avoiding manual stack management.

✗✗

✗✗

Friday, June 3, 2011

Reduction Combinators:
crunch steps.

Friday, June 3, 2011

Reduction Combinators:
crunch steps.

Reduction operations important.✗✗
Replacement for shared data.
Global decisions.

Friday, June 3, 2011

Reduction Combinators:
crunch steps.

Reduction operations important.✗✗
Replacement for shared data.
Global decisions.

Provided as just another kind of Substep[Data]✗✗

Friday, June 3, 2011

Reduction Combinators:
crunch steps.

Reduction operations important.✗✗
Replacement for shared data.
Global decisions.

Provided as just another kind of Substep[Data]✗✗

def update() = {
 then {
 value = ...
 } crunch ((v1: Double, v2: Double) => v1 + v2) then {
 incoming match { case List(reduced) =>
 ...
 }
 }
 ...
}

Friday, June 3, 2011

Implementation
Menthor’s

Friday, June 3, 2011

Actors.
Implementation based upon Actors.

} } } }

GRAPH

WORKERS

FOREMEN Central GRAPH instance is an
actor, which manages a set of
WORKER actors

Friday, June 3, 2011

Actors.
Implementation based upon Actors.

} } } }

GRAPH

WORKERS

FOREMEN Central GRAPH instance is an
actor, which manages a set of
WORKER actors

Friday, June 3, 2011

Actors.
Implementation based upon Actors.

} } } }

GRAPH

WORKERS

FOREMEN Central GRAPH instance is an
actor, which manages a set of
WORKER actors

GRAPH synchronizes workers
using supersteps.

Friday, June 3, 2011

Actors.
Implementation based upon Actors.

} } } }

GRAPH

WORKERS

FOREMEN

Each WORKER manages a
partition of the graph’s vertices,

Deliver incoming messages that were
sent in the previous superstep;

Select and execute update step on
each vertex in its partition;

Forward outgoing messages
generated by its vertices in the
current superstep.

Friday, June 3, 2011

Implementing Reduction.
} } } }

GRAPH

WORKERS

FOREMEN

Friday, June 3, 2011

Implementing Reduction.

1. WORKER reduces the values of all
vertices in its partition.

} } } }

GRAPH

WORKERS

FOREMEN

reduced✔ reduced✔ reduced✔ reduced✔

Friday, June 3, 2011

Implementing Reduction.

1.
2.

WORKER reduces the values of all
vertices in its partition.

The result and the closure that was
used to compute it is sent to the
GRAPH actor, which computes the
final reduced value.

} } } }

GRAPH

WORKERS

FOREMEN

Friday, June 3, 2011

Implementing Reduction.

1.
2.

3.

WORKER reduces the values of all
vertices in its partition.

The result and the closure that was
used to compute it is sent to the
GRAPH actor, which computes the
final reduced value.

The final result is passed to all
WORKERS which make it available to
their vertices as incoming messages
(at the beginning of the next
superstep)

} } } }

GRAPH

WORKERS

FOREMEN

Friday, June 3, 2011

Implementation Principles.

Friday, June 3, 2011

Implementation Principles.
A pure Scala library✗✗

No staging and code generation.
No dependency on language virtualization.

Friday, June 3, 2011

Implementation Principles.
A pure Scala library✗✗

No staging and code generation.
No dependency on language virtualization.

Benefits✗✗
Compatible with mainline Scala compiler.
Fast compilation.
Simple debugging and troubleshooting.
Framework developer-friendly.

Friday, June 3, 2011

Implementation Principles.
A pure Scala library✗✗

No staging and code generation.
No dependency on language virtualization.

Benefits✗✗
Compatible with mainline Scala compiler.
Fast compilation.
Simple debugging and troubleshooting.
Framework developer-friendly.

Drawbacks✗✗
No aggressive optimizations.
No support for heterogeneous hardware platforms.

Friday, June 3, 2011

GOOGLE’S PREGEL

CONTROL
Inverted

REQUIRES STAGING

OPTIMIZATIONS
Aggressive

Related Work.

GRAPHLAB
SPARK

No graph support
Non-determinism

SIGNAL/COLLECT OPTIML
MAIN INSPIRATION

Graphs/BSP

ASYNC EXECUTION
Non-determinism

DEBUGGING
Not optimal, yet

Designed for Iteration
Cluster support

Friday, June 3, 2011

GOOGLE’S PREGEL

CONTROL
Inverted

REQUIRES STAGING

OPTIMIZATIONS
Aggressive

Related Work.

GRAPHLAB
SPARK

No graph support
Non-determinism

Be sure to see their talk!

SIGNAL/COLLECT OPTIML
MAIN INSPIRATION

Graphs/BSP

ASYNC EXECUTION
Non-determinism

DEBUGGING
Not optimal, yet

Designed for Iteration
Cluster support

Friday, June 3, 2011

GOOGLE’S PREGEL

CONTROL
Inverted

REQUIRES STAGING

OPTIMIZATIONS
Aggressive

Related Work.

GRAPHLAB
SPARK

No graph support
Non-determinism

Be sure to see their talk!

(Many more discussed in the paper.)

SIGNAL/COLLECT OPTIML
MAIN INSPIRATION

Graphs/BSP

ASYNC EXECUTION
Non-determinism

DEBUGGING
Not optimal, yet

Designed for Iteration
Cluster support

Friday, June 3, 2011

Conclusions

Friday, June 3, 2011

Can avoid inversion of control in vertex-based
BSP using closures.

✗✗

Conclusions

Friday, June 3, 2011

Can avoid inversion of control in vertex-based
BSP using closures.

✗✗

Conclusions

Higher-order functions useful for reductions, in
an imperative model.

✗✗

Friday, June 3, 2011

Can avoid inversion of control in vertex-based
BSP using closures.

✗✗

Conclusions

Higher-order functions useful for reductions, in
an imperative model.

Explicit parallelism feasible if computational
model simple (cf. MapReduce)

✗✗

✗✗

Friday, June 3, 2011

Can avoid inversion of control in vertex-based
BSP using closures.

✗✗

Conclusions

Higher-order functions useful for reductions, in
an imperative model.

Explicit parallelism feasible if computational
model simple (cf. MapReduce)

The puzzle pieces are there to make analyzing
bigger data easier.

✗✗

✗✗

✗✗

Friday, June 3, 2011

Questions?

Can avoid inversion of control in vertex-based
BSP using closures.

✗✗

Conclusions

Higher-order functions useful for reductions, in
an imperative model.

Explicit parallelism feasible if computational
model simple (cf. MapReduce)

The puzzle pieces are there to make analyzing
bigger data easier.

✗✗

✗✗

✗✗

http://lamp.epfl.ch/~phaller/menthor/

Friday, June 3, 2011

http://lamp.epfl.ch/~phaller/menthor/
http://lamp.epfl.ch/~phaller/menthor/

Experimental Results.

Applications✗✗
PageRank on (subset of) Wikipedia
Hierarchical clustering

Very preliminary results✗✗

Implementation details changing
Parallel collections (extensions)

Evaluating BSP-based model

Loopy belief propagation

Friday, June 3, 2011

