M

JLE POLYTECHNIQUE
ERa‘!LE DE LAUSANNE

Parallelizing
Machine Learning- Functionally

A FRAMEWORK and ABSTRACTIONS for Parallel Graph Processing

Philipp HALLER | Heather MILLER

Friday, June 3, 2011

Friday, June 3, 2011

Data 1s growing.

At the same time,
there is a growing desire

*° do MORE with that data.

) for Research in Interaction, Sound, and Signal Processing
iversity Copenhagen, Medialogy

That is how long | must wait for my 5400 simulations to finish running. | started this
process more than 50 hours ago, thinking it would be done Tuesday. Maleki and Donoho
are not kidding when they write,
It would have required several years to complete our study on a single modern
desktop computer.

As an example,

MACHINE LEARNING (ML)

@'9 has provided elegant and sophisticated solutions to
many complex problems on a small scale,

Friday, June 3, 2011

As an example,

MACHINE LEARNING (ML)

@ has provided ele isti
gant and sophisticated soluti
many complex problems on a small scale o

APPLICATIONS + NEW

could open up NEW
orted to a larger scale

AVENUES OF RESEARCH if p

Friday, June 3, 2011

As an example,

MACHINE LEARNING (ML)

@'9 has provided elegant and sophisticated solutions to
many complex problems on a small scale,

@9 but efforts are routinely limited by complexity and
running time of SEQUENTIAL algorithms.

Friday, June 3, 2011

As an example,

MACHINE LEARNING (ML)

@'9 has provided elegant and sophisticated solutions to
many complex problems on a small scale,

@9 but efforts are routinely limited by complexity and
running time of SEQUENTIAL algorithms.

described as,
a community full of “ENTRENCHED PROCEDURAL PROGRAMMERS”

typically focus on optimizing sequential algorithms when faced
with scaling problems.

Friday, June 3, 2011

As an example,

MACHINE LEARNING (ML)

@ has provided elegant and sophisticated solutions to
many complex problems on a small scale,

@9 but efforts are routinely limited by complexity and
running time of SEQUENTIAL algorithms.

described as,
a community full of “ENTRENCHED PROCEDURAL PROGRAMMERS”

e mrw need to make it easier to 1en faced
with scaling CXperiment with parallelism

Friday, June 3, 2011

What about MapReduce?

What about MapReduce?

Poor support for iteration.

MapReduce instances must be chained together
in order to achieve iteration.

@(—) Not always straightforward.
Even building non-cyclic pipelines is hard (e.g.,
FlumeJava, PLDI'10).

@ Overhead is significant.

Communication, serialization (e.g., Phoenix,
IISWC'09).

Friday, June 3, 2011

Menthor...

Menthor...

is a framework for parallel graph processing.
(But it is not limited to graphs.)

Friday, June 3, 2011

Menthor...

is a framework for parallel graph processing.
(But it is not limited to graphs.)

is inspired by BSP.

With functional reduction/aggregation mechanisms.

Friday, June 3, 2011

Menthor...

is a framework for parallel graph processing.
(But it is not limited to graphs.)

is inspired by BSP.

With functional reduction/aggregation mechanisms.

avoids an inversion of control
of other BSP-inspired graph-processing frameworks.

Friday, June 3, 2011

Menthor...

is a framework for parallel graph processing.
(But it is not limited to graphs.)

is inspired by BSP.

With functional reduction/aggregation mechanisms.

avoids an inversion of control
of other BSP-inspired graph-processing frameworks.

is implemented in Scala,
and there is a preliminary experimental evaluation.

Friday, June 3, 2011

Menthor’s
Model of Computation.

Data.

Split into data items managed by vertices.
(and sizes range from primitives to large matrices
A4

./

Friday, June 3, 2011

Data.

Split into data items managed by vertices.
& Relationships expressed using edges between vertices.

T

S80S

Friday, June 3, 2011

Algorithms.

Algorithms.

(*) Data items stored inside of vertices iteratively updated.

Friday, June 3, 2011

Algorithms.

(*) Data items stored inside of vertices iteratively updated.

(*) Iterations happen as SYNCHRONIZED SUPERSTEPS.
(inspired by the BSP model)

Friday, June 3, 2011

Algorithms.

9¢) Data items stored inside of vertices iteratively updated.
E*;

Iterations happen as SYNCHRONIZED SUPERSTEPS.

Friday, June 3, 2011

Algorithms.

9¢) Data items stored inside of vertices iteratively updated.
E*;

Iterations happen as SYNCHRONIZED SUPERSTEPS.

update each vertex in
I o | parallel

e

| superstep #1 | '

time

Friday, June 3, 2011

Algorithms.

9¢) Data items stored inside of vertices iteratively updated.
%) Iterations happen as SYNCHRONIZED SUPERSTEPS.

update each vertex in
parallel.

update produces
outgoing messages to
other vertices

| superstep #1 |

lec

Friday, June 3, 2011

Algorithms.

G 9¢) Data items stored inside of vertices iteratively updated.
@’ %) lterations happen as SYNCHRONIZED SUPERSTEPS.

@ update each vertex in
@ I o | parallel.
2 update produces
@ ®* outgoing messages to
other vertices

@ 3 Incoming messages
. .

available at the

@ beginning of the next

r};g SUPERSTEP.
¥ ' | superstep #2 |

time

Friday, June 3, 2011

Substeps. (and Messages)

SUBSTEPS are computations that,

Substeps. (and Messages)

SUBSTEPS are computations that,

I .| update the value of this Vertex

Substeps. (and Messages)

SUBSTEPS are computations that,

] .| update the value of this Vertex

), | return a list of messages:

case class Message[Data](source: Vertex[Data],
dest: Vertex[Data], value: Data)

Friday, June 3, 2011

Substeps. (and Messages)

SUB

I.
2.

STEPS are computations that,

update the value of this Vertex

return a list of messages:

case class Message[Data](source: Vertex[Data],
dest: Vertex[Data], value: Data)

EXAMPLES...

{

}

value = ...
List()

Friday, June 3, 2011

Substeps. (and Messages)

SUBSTEPS are computations that,

] .| update the value of this Vertex

), | return a list of messages:

case class Message[Data](source: Vertex[Data],
dest: Vertex[Data], value: Data)

EXAMPLES...
{ { [I A |
value = ... for (nb <- neighbors)
\ List() yield Message(this, nb, value)
}

Friday, June 3, 2011

Substeps. (and Messages)

SUBSTEPS are computations that,

] .| update the value of this Vertex

), | return a list of messages:

case class Message[Data](source: Vertex[Data],
dest: Vertex[Data], value: Data)

EXAMPLES...

p
Each is implicitly converted to a

ssaych Liils, nb, value)

Friday, June 3, 2011

Some Examples...

PageRank.

class PageRankVertex extends Vertex[Double] (0.0d) {
def update() = {
var sum = incoming.foldLeft(@)(_ + _.value)
value = (0.15 / numVertices) + 0.85 x sum

if (superstep < 30) {
for (nb <- neighbors) yield
Message(this, nb, value / neighbors.size)
} else
List()

Friday, June 3, 2011

Another Example.

class PhasedVertex extends Vertex[MyData] {
var phase =1

def update() = {
if (phase == 1) {

if (condition)
phase = 2
} else if (phase == 2) {

.
}
}

Friday, June 3, 2011

Another Example.

class PhasedVertex extends Vertex[MyData] {
var phase = 1

if
phase = 2
} else if (phase == 2) {

.
¥

}

Friday, June 3, 2011

Inverting the Inversion.

@ Use high-level combinators to build
expressions of type Substep[Datal

class PhasedVertex extends Vertex[MyDatal {

def update() = {
thenUntil(condition) {
} then {

.
}
}

Friday, June 3, 2011

Inverting the Inversion.
@ Use high-level combinators to build

expressions of type Substep[Datal

class PhasedVertffx extends Vertex[MyDatal] {

Friday, June 3, 2011

Inverting the Inversion.

@9 Use high-level combinators to build
expressions of type Substep[Datal

@ Thus avoiding manual stack management.

class PhasedVertex extends Vertex[MyDatal {

def update() = {
thenUntil(condition) {
} then {

.
}
}

Friday, June 3, 2011

Reduction Combinators:
crunch steps.

Reduction Combinators:
crunch steps.

(-*) Reduction operations important.
— Replacement for shared data.
— Global decisions.

Reduction Combinators:
crunch steps.

(-*) Reduction operations important.
— Replacement for shared data.
— Global decisions.

9 Provided as just another kind of Substep [Datal

Friday, June 3, 2011

Reduction Combinators:
crunch steps.

def update() = {
then {
value = ...
} crunch ((vl: Double, v2: Double) => vl + v2) then {
incoming match { case List(reduced) =>

L
}

Friday, June 3, 2011

Menthor’s .
Implementation

Actors.

Implementation based upon Actors.
GRAPH/\
FOREMEN Central G.RAPH instance is an
actor, which manages a set of
WOW \ / »\ WORKER actors
~—

~= ~—

Friday, June 3, 2011

Actors.

Implementation based upon Actors.

GRAPHAL

FOREMEN >\
\ / WQRKER actors
"KhAn "

Central GRAPH instance is an
actor, which manages a set of

et

Friday, June 3, 2011

Actors.

Implementation based upon Actors.

GRAPH/\

/ \

FOREMEN Central G.RAPH instance is an
actor, which manages a set of
WOW \ / S/\ WORKER actors
s I B e I GRAPH synchronizes workers

using supersteps.

Friday, June 3, 2011

Actors.

Implementation based upon Actors.

Each WORKER manages a
partition of the graph’s vertices

GRAP
)
FOREMEN : : .
— Deliver incoming messages that were
sent in the previous superstep;

W \ l

ii ‘ ‘ ‘ — Select and execute update step on

each vertex in its partition;

— Forward outgoing messages
generated by its vertices in the
current superstep.

Friday, June 3, 2011

Implementing Reduction.

Implementing Reduction.

I . | WORKER reduces the values of all
GRAPH/\ vertices in its partition.

V'S

WORKERS

reducedv reducedv reducedv reducedv

Friday, June 3, 2011

Implementing Reduction.

I . | WORKER reduces the values of all
GRAPH/\ vertices in its partition.

The result and the closure that was
used to compute it is sent to the

GRAPH actor, which computes the
WORK/EFS/\\ f / »\ final reduced value.

ot T ot T o WY |

= et

FOREMEN o

Friday, June 3, 2011

Implementing Reduction.

I . | WORKER reduces the values of all
vertices 1n its partition.

GRAP
2 The result and the closure that was
FOREMEN ..
used to compute it is sent to the

GRAPH actor, which computes the
Wow M final reduced value.
~—

. 3 The final result is passed to all

WORKERS which make it available to
their vertices as incoming messages
(at the beginning of the next

superstep)

Friday, June 3, 2011

Implementation Principles.

Implementation Principles.

(%) A pure Scala library

— No staging and code generation.
— No dependency on language virtualization.

Friday, June 3, 2011

Implementation Principles.

(%) A pure Scala library

— No staging and code generation.
— No dependency on language virtualization.

@ Benefits

— Compatible with mainline Scala compiler.
— Fast compilation.

— Simple debugging and troubleshooting.
— Framework developer-friendly.

Friday, June 3, 2011

Implementation Principles.

(%) A pure Scala library

— No staging and code generation.
— No dependency on language virtualization.

@ Benefits

— Compatible with mainline Scala compiler.
— Fast compilation.

— Simple debugging and troubleshooting.
— Framework developer-friendly.

@ Drawbacks

=— No aggressive optimizations.
— No support for heterogeneous hardware platforms.

Friday, June 3, 2011

Related Work.

GOOGLE’S PREGEL
GRAPHLAB
SIGNAL/COLLECT OrTIML SPARK
MAIN INSPIRATION Aggressive . :
Graphs/BSP PTIMIZATIONS Dssnedl e MRl
CONTROL R S Cluster support
Inverted EQUIRES STAGING No graph support
ASYNC EXECUTION DEBUGGING Non-determinism
Non-determinism Not optimal, yet

Friday, June 3, 2011

Related Work.

GOOGLE’S PREGEL
GRAPHLAB
SIGNAL/COLLECT OrTIML SPARK
MAIN INSPIRATION Aggressive . :
Graphs/BSP PTIMIZATIONS Desg‘edtf"f lesrzaen
uster support
CONTROL
Inverted REQUIRES STAGING No graph support
ASYNC EXECUTION DEBUGGING Non-determinism
Non-determinism Not optimal, yet

Be sure to see their talk!

Friday, June 3, 2011

Related Work.

GOOGLE’S PREGEL
GRAPHLAB
SIGNAL/COLLECT OrTIML SPARK
MAIN INSPIRATION Aggressive . :
Graphs/BSP PTIMIZATIONS Desg‘edtf"f lesrzaen
uster support
CONTROL
Inverted REQUIRES STAGING No graph support
ASYNC EXECUTION DEBUGGING Non-determinism
Non-determinism Not optimal, yet

Be sure to see their talk!

(Many more discussed in the paper.)

Friday, June 3, 2011

Conclusions

Conclusions

Can avoid inversion of control in vertex-based
BSP using closures.

Conclusions

Can avoid inversion of control in vertex-based
BSP using closures.

Higher-order functions useful for reductions, in
an imperative model.

Friday, June 3, 2011

Conclusions

Can avoid inversion of control in vertex-based
BSP using closures.

Higher-order functions useful for reductions, in
an imperative model.

Explicit parallelism feasible if comptitational
model simple (cf. MapReduce)

Conclusions

Can avoid inversion of control in vertex-based
BSP using closures.

Higher-order functions useful for reductions, in
an imperative model.

Explicit parallelism feasible if comptitational
model simple (cf. MapReduce)

The puzzle pieces are there to make analyzing
bigger data easier.

Conclusions

Can avoid inversion of control in vertex-based
BSP using closures.

Higher-order functions useful for reductions, in
an imperative model.

Explicit parallelism feasible if comptitational
model simple (cf. MapReduce)

The puzzle pieces are there to make analyzing
bigger data easier.

Questions?

http://lamp.epfl.ch/~phaller/menthor/
http://lamp.epfl.ch/~phaller/menthor/

Experimental Results.

%) Applications
— PageRank on (subset of) Wikipedia

— Hierarchical clustering
— Loopy belief propagation

(-)G) Very preliminary results
— Evaluating BSP-based model

— Implementation details changing
— Parallel collections (extensions)

Speed Up

o W e N9 0 O

PageR

12

o

1»-

S

T

ank Speed Up on Subsets of the Wikipedia Graph

Linear !
64 000 vertices, 10 iterations
= = =107 000 vertices, 10 iterations |

—e— 107,000 vertices, 30 iterations

@

4 6 b 10
Cores

12

Friday, June 3, 2011

