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Data is growing.
At the same time, 

do             with that data.
there is a growing desire

to
MORE
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As an example,
MACHINE LEARNING (ML)

has provided elegant and sophisticated solutions to 
many complex problems on a small scale,

✗✗
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As an example,
MACHINE LEARNING (ML)

has provided elegant and sophisticated solutions to 
many complex problems on a small scale,

✗✗

could open up NEW APPLICATIONS + NEW 

AVENUES OF RESEARCH if ported to a larger scale
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As an example,
MACHINE LEARNING (ML)

has provided elegant and sophisticated solutions to 
many complex problems on a small scale,

✗✗

but efforts are routinely limited by complexity and 
running time of                             algorithms.

✗✗
SEQUENTIAL

Friday, June 3, 2011



As an example,
MACHINE LEARNING (ML)

has provided elegant and sophisticated solutions to 
many complex problems on a small scale,

✗✗

but efforts are routinely limited by complexity and 
running time of                             algorithms.

✗✗
SEQUENTIAL

described as,
a community full of “ENTRENCHED PROCEDURAL PROGRAMMERS”

typically focus on optimizing sequential algorithms when faced 
with scaling problems.

Friday, June 3, 2011



As an example,
MACHINE LEARNING (ML)

has provided elegant and sophisticated solutions to 
many complex problems on a small scale,

✗✗

but efforts are routinely limited by complexity and 
running time of                             algorithms.

✗✗
SEQUENTIAL

described as,
a community full of “ENTRENCHED PROCEDURAL PROGRAMMERS”

typically focus on optimizing sequential algorithms when faced 
with scaling problems.

need to make it easier to experiment with parallelism
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What about MapReduce?
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What about MapReduce?

MapReduce instances must be chained together 
in order to achieve iteration.

Not always straightforward.

Overhead is significant.

✗✗

✗✗

Poor support for iteration.

Even building non-cyclic pipelines is hard (e.g., 
FlumeJava, PLDI’10). 

Communication, serialization (e.g., Phoenix, 
IISWC’09).
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Menthor... 
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Menthor... 

is a framework for parallel graph processing.✗✗
(But it is not limited to graphs.)
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Menthor... 

is a framework for parallel graph processing.

is inspired by BSP.

✗✗

✗✗

(But it is not limited to graphs.)

With functional reduction/aggregation mechanisms.

avoids an inversion of control✗✗
of other BSP-inspired graph-processing frameworks.

is implemented in Scala,✗✗
and there is a preliminary experimental evaluation.
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Model of Computation.
Menthor’s
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Data.
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Data.
Split into data items managed by vertices.
and sizes range from primitives to large matrices
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Data.
Split into data items managed by vertices.

Relationships expressed using edges between vertices.
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Algorithms.
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Algorithms.
Data items stored inside of vertices iteratively updated.✗✗
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Algorithms.
Data items stored inside of vertices iteratively updated.
Iterations happen as SYNCHRONIZED SUPERSTEPS.

✗✗

✗✗
(inspired by the BSP model)
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Algorithms.
Data items stored inside of vertices iteratively updated.
Iterations happen as SYNCHRONIZED SUPERSTEPS.

✗✗

✗✗

time
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Algorithms.
Data items stored inside of vertices iteratively updated.
Iterations happen as SYNCHRONIZED SUPERSTEPS.

✗✗

✗✗

1.

def update

update each vertex in 
parallel.

def update

def update

def update

def update

def update

def update

def update

def update

time
superstep #1
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Algorithms.
Data items stored inside of vertices iteratively updated.
Iterations happen as SYNCHRONIZED SUPERSTEPS.

✗✗

✗✗

1.
2.

update each vertex in 
parallel.

update produces 
outgoing messages to 
other vertices

time
superstep #1
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Algorithms.
Data items stored inside of vertices iteratively updated.
Iterations happen as SYNCHRONIZED SUPERSTEPS.

✗✗

✗✗

1.
2.
3.

update each vertex in 
parallel.

update produces 
outgoing messages to 
other vertices
incoming messages 
available at the 
beginning of the next 
SUPERSTEP.

time
superstep #2
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Substeps. (and Messages)
SUBSTEPS are computations that,
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Substeps. (and Messages)
SUBSTEPS are computations that,

1. update the value of this Vertex

2. return a list of messages:
case class Message[Data](source: Vertex[Data],  
  dest: Vertex[Data], value: Data)

EXAMPLES...
{
  value = ...
  List()
}

{
  ...
  for (nb <- neighbors)
    yield Message(this, nb, value)
}
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Substeps. (and Messages)
SUBSTEPS are computations that,

1. update the value of this Vertex

2. return a list of messages:
case class Message[Data](source: Vertex[Data],  
  dest: Vertex[Data], value: Data)

EXAMPLES...
{
  value = ...
  List()
}

{
  ...
  for (nb <- neighbors)
    yield Message(this, nb, value)
}

Each is implicitly converted to a Substep[Data]

Friday, June 3, 2011



Some Examples...
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PageRank.

class PageRankVertex extends Vertex[Double](0.0d) {
  def update() = {
    var sum = incoming.foldLeft(0)(_ + _.value)
    value = (0.15 / numVertices) + 0.85 * sum

    if (superstep < 30) {
      for (nb <- neighbors) yield
        Message(this, nb, value / neighbors.size)
    } else
      List()
  }
}
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Another Example.

class PhasedVertex extends Vertex[MyData] {
  var phase = 1

  def update() = {
    if (phase == 1) {
      ...
      if (condition)
        phase = 2
    } else if (phase == 2) {
      ...
    }
  }
}
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Another Example.

class PhasedVertex extends Vertex[MyData] {
  var phase = 1

  def update() = {
    if (phase == 1) {
      ...
      if (condition)
        phase = 2
    } else if (phase == 2) {
      ...
    }
  }
}

INVERSION OF CONTROL!!Thus, manual stack management...

Friday, June 3, 2011



Inverting the Inversion.

class PhasedVertex extends Vertex[MyData] {

  def update() = {
    thenUntil(condition) {
      ...
    } then {
      ...
    }
  }
}

Use high-level combinators to build 
expressions of type Substep[Data]

✗✗
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Inverting the Inversion.

class PhasedVertex extends Vertex[MyData] {

  def update() = {
    thenUntil(condition) {
      ...
    } then {
      ...
    }
  }
}

Use high-level combinators to build 
expressions of type Substep[Data]

Thus avoiding manual stack management.

✗✗

✗✗
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Reduction Combinators:
crunch steps.
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Reduction Combinators:
crunch steps.

Reduction operations important.✗✗
Replacement for shared data.
Global decisions.
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Reduction Combinators:
crunch steps.

Reduction operations important.✗✗
Replacement for shared data.
Global decisions.

Provided as just another kind of Substep[Data]✗✗

def update() = {
  then {
    value = ...
  } crunch ((v1: Double, v2: Double) => v1 + v2) then {
    incoming match { case List(reduced) =>
      ...
    }
  }
  ...
}
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Implementation
Menthor’s
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Actors.
Implementation based upon Actors.

} } } }

GRAPH

WORKERS

FOREMEN Central GRAPH instance is an 
actor, which manages a set of 
WORKER actors
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Actors.
Implementation based upon Actors.

} } } }

GRAPH

WORKERS

FOREMEN Central GRAPH instance is an 
actor, which manages a set of 
WORKER actors

GRAPH synchronizes workers 
using supersteps.

Friday, June 3, 2011



Actors.
Implementation based upon Actors.

} } } }

GRAPH

WORKERS

FOREMEN

Each WORKER manages a 
partition of the graph’s vertices,

Deliver incoming messages that were 
sent in the previous superstep;

Select and execute update step on 
each vertex in its partition;

Forward outgoing messages 
generated by its vertices in the 
current superstep.
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Implementing Reduction.
} } } }

GRAPH

WORKERS

FOREMEN
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Implementing Reduction.

1. WORKER reduces the values of all 
vertices in its partition.

} } } }

GRAPH

WORKERS

FOREMEN

reduced✔ reduced✔ reduced✔ reduced✔
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Implementing Reduction.

1.
2.

WORKER reduces the values of all 
vertices in its partition.

The result and the closure that was 
used to compute it is sent to the 
GRAPH actor, which computes the 
final reduced value.

} } } }

GRAPH

WORKERS

FOREMEN
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Implementing Reduction.

1.
2.

3.

WORKER reduces the values of all 
vertices in its partition.

The result and the closure that was 
used to compute it is sent to the 
GRAPH actor, which computes the 
final reduced value.

The final result is passed to all 
WORKERS which make it available to 
their vertices as incoming messages 
(at the beginning of the next 
superstep)

} } } }

GRAPH

WORKERS

FOREMEN
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Implementation Principles.
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Implementation Principles.
A pure Scala library✗✗

No staging and code generation.
No dependency on language virtualization.
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Implementation Principles.
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Fast compilation.
Simple debugging and troubleshooting.
Framework developer-friendly.
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Implementation Principles.
A pure Scala library✗✗

No staging and code generation.
No dependency on language virtualization.

Benefits✗✗
Compatible with mainline Scala compiler.
Fast compilation.
Simple debugging and troubleshooting.
Framework developer-friendly.

Drawbacks✗✗
No aggressive optimizations.
No support for heterogeneous hardware platforms.
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GOOGLE’S PREGEL

CONTROL
Inverted

REQUIRES STAGING

OPTIMIZATIONS
Aggressive

Related Work.

GRAPHLAB
SPARK

No graph support
Non-determinism

SIGNAL/COLLECT OPTIML
MAIN INSPIRATION

Graphs/BSP

ASYNC EXECUTION
Non-determinism

DEBUGGING
Not optimal, yet

Designed for Iteration
Cluster support
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GOOGLE’S PREGEL

CONTROL
Inverted

REQUIRES STAGING

OPTIMIZATIONS
Aggressive

Related Work.

GRAPHLAB
SPARK

No graph support
Non-determinism

Be sure to see their talk!

(Many more discussed in the paper.)

SIGNAL/COLLECT OPTIML
MAIN INSPIRATION

Graphs/BSP

ASYNC EXECUTION
Non-determinism

DEBUGGING
Not optimal, yet

Designed for Iteration
Cluster support
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Questions?

Can avoid inversion of control in vertex-based 
BSP using closures.

✗✗

Conclusions

Higher-order functions useful for reductions, in 
an imperative model. 

Explicit parallelism feasible if computational 
model simple (cf. MapReduce)

The puzzle pieces are there to make analyzing 
bigger data easier.

✗✗

✗✗

✗✗

http://lamp.epfl.ch/~phaller/menthor/
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Experimental Results.

Applications✗✗
PageRank on (subset of) Wikipedia
Hierarchical clustering

Very preliminary results✗✗

Implementation details changing
Parallel collections (extensions)

Evaluating BSP-based model

Loopy belief propagation
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