
Scala: How to make best use of
functions and objects

Philipp Haller
Lukas Rytz

Martin Odersky
EPFL

ACM Symposium on Applied Computing Tutorial

2

Where it comes from
Scala has established itself as one of the main alternative languages

on the JVM.

Prehistory:

1996 – 1997: Pizza
1998 – 2000: GJ, Java generics, javac

 (“make Java better”)

Timeline:

2003 – 2006: The Scala “Experiment”
2006 – 2009: An industrial strength programming language

 (“make a better Java”)

3

4

Why Scala?

5

Scala is a Unifier

 Agile, with lightweight syntax

Object-Oriented Scala Functional

 Safe and performant, with strong static typing

6

What others say:

7

 “If I were to pick a language to use today other than Java, it would be
Scala.”
 - James Gosling, creator of Java

 “Scala, it must be stated, is the current heir apparent to the Java
throne. No other language on the JVM seems as capable of being a
"replacement for Java" as Scala, and the momentum behind Scala is
now unquestionable. While Scala is not a dynamic language, it has
many of the characteristics of popular dynamic languages, through its
rich and flexible type system, its sparse and clean syntax, and its
marriage of functional and object paradigms.”

 - Charles Nutter, creator of JRuby

 “I can honestly say if someone had shown me the Programming in
Scala book by Martin Odersky, Lex Spoon & Bill Venners back in 2003
I'd probably have never created Groovy.”

 - James Strachan, creator of Groovy.

8

Let’s see an example:

9

A class ...
public	 class	 Person	 {	

	 	 public	 final	 String	 name;	

	 	 public	 final	 int	 age;	

	 	 Person(String	 name,	 int	 age)	 {	

	 	 	 	 	 	 this.name	 =	 name;	

	 	 	 	 	 	 this.age	 =	 age;	

	 	 }	

}	

class	 Person(val	 name:	 String,	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 val	 age:	 Int)	 {}	

... in Java:

... in Scala:

10

... and its usage
import	 java.util.ArrayList;	
...	
Person[]	 people;	

Person[]	 minors;	
Person[]	 adults;	
{	 	 ArrayList<Person>	 minorsList	 =	 new	 ArrayList<Person>();	
	 	 	 ArrayList<Person>	 adultsList	 =	 new	 ArrayList<Person>();	
	 	 	 for	 (int	 i	 =	 0;	 i	 <	 people.length;	 i++)	
	 	 	 	 	 	 	 (people[i].age	 <	 18	 ?	 minorsList	 :	 adultsList)	

	 	 	 	 	 .add(people[i]);	
	 	 	 minors	 =	 minorsList.toArray(people);	
	 	 	 adults	 =	 adultsList.toArray(people);	
}	

... in Java:

... in Scala: val	 people:	 Array[Person]	
val	 (minors,	 adults)	 =	 people	 partition	 (_.age	 <	 18)	

A simple pattern match

An infix method call

A function value

11

But there’s more to it

12

Embedding Domain-Specific Languages

 Scala’s flexible syntax makes it
easy to define
 high-level APIs &
 embedded DSLs

 Examples:
 - Scala actors (the core of
 Twitter’s message queues)
 - specs, ScalaCheck
 - ScalaFX
 - ScalaQuery

 scalac’s plugin architecture makes it easy to typecheck DSLs and to
enrich their semantics.

 //	 asynchronous	 message	 send	
actor	 !	 message	

//	 message	 receive	

receive	 {	

	 	 case	 msgpat1	 =>	 action1	
	 	 …	 	 	 	 	

	 	 case	 msgpatn	 =>	 actionn	
}	

13

The Essence of Scala

 The work on Scala was motivated by two
hypotheses:

 Hypothesis 1: A general-purpose language needs
to be scalable; the same concepts should describe
small as well as large parts.

 Hypothesis 2: Scalability can be achieved by
unifying and generalizing functional and object-
oriented programming concepts.

14

Why unify FP and OOP?

Both have complementary strengths for composition:

Object-oriented programming:

Makes it easy to adapt and extend
complex systems, using

•  subtyping and inheritance,
•  dynamic configurations,
•  classes as partial abstractions.

Functional programming:

Makes it easy to build interesting
things from simple parts, using

•  higher-order functions,
•  algebraic types and
 pattern matching,
•  parametric polymorphism.

15

Scala

•  Scala is an object-oriented and functional
language which is completely
interoperable with Java. (the .NET version
is currently under reconstruction.)

•  It removes some of the more arcane
constructs of these environments and
adds instead:
(1) a uniform object model,
(2) pattern matching and higher-order

functions,
(3) novel ways to abstract and compose

programs.

16

Scala is interoperable

 Scala programs interoperate
seamlessly with Java class
libraries:
–  Method calls
–  Field accesses
–  Class inheritance
–  Interface implementation

 all work as in Java.
 Scala programs compile to JVM
bytecodes.

Scala’s syntax resembles Java’s,
but there are also some
differences.

object Example1 {
 def main(args: Array[String]) {
 val b = new StringBuilder()
 for (i ← 0 until args.length) {
 if (i > 0) b.append(" ")
 b.append(args(i).toUpperCase)
 }
 Console.println(b.toString)
 }

}

object instead of
static members
Array[String] instead of

String[]

Scala’s version of the extended
for loop

(use <- as an alias for ←)
Arrays are indexed args

(i) instead of args[i]

17

Scala is functional

 The last program can also
be written in a completely
different style:
–  Treat arrays as instances of

general sequence abstractions.
–  Use higher-order

functions instead of loops.

object Example2 {
 def main(args: Array[String]) {
 println(args
 .map(_.toUpperCase)
 .mkString(" ")
 }
}

Arrays are instances of sequences
with map and mkString methods.

A closure which applies the
toUpperCase method to its

String argument

map is a method of Array which
applies the function on its right

to each array element.

mkString is a method of Array which
forms a string of all elements with a

given separator between them.

18

Scala is concise

 Scala’s syntax is lightweight
and concise.

 Contributors:
–  semicolon inference,
–  type inference,
–  lightweight classes,
–  extensible API’s,
–  closures as

control abstractions.

Average reduction in LOC wrt Java: ≥ 2
 due to concise syntax and better abstraction capabilities

 ***** Guy Steele:
 Scala led to a 4 times LOC reduction in the Fortress typechecker *****

var capital = Map("US" → "Washington",
 "France" → "paris",
 "Japan" → "tokyo")

capital += ("Russia" → "Moskow")

for ((country, city) ← capital)
 capital += (country → city.capitalize)

assert (capital("Japan") == "Tokyo")

19

Scala is precise

 All code on the previous slide
used library abstractions, not
special syntax.

 Advantage: Libraries are
extensible and give fine-
grained control.

 Elaborate static type system
catches many errors early.

import scala.collection.mutable._

val capital =
 new HashMap[String, String]
 with SynchronizedMap[String, String] {
 override def default(key: String) =
 "?"
 }

capital += ("US" → "Washington",
 "France" → "Paris",
 "Japan" → "Tokyo")

assert(capital("Russia") == "?")

Specify kind of collections: mutable Specify map implementation: HashMap
Specify map type: String to String

Mixin trait SynchronizedMap to
make capital map thread-safe

Provide a default value: "?"

20

Big or small?
 Every language design faces the
tension whether it should be big
or small:

–  Big is good: expressive,
easy to use.

–  Small is good: elegant,
easy to learn.

 Can a language be both big and
small?

 Scala’s approach: concentrate on
abstraction and composition
capabilities instead of basic
language constructs.

Scala adds Scala removes

+ a pure object
 system

- static members

+ operator
 overloading

- special treatment of
 primitive types

+ closures as control
 abstractions

- break, continue

+ mixin composition
 with traits

- special treatment of
 interfaces

+ abstract type
 members

- wildcards

+ pattern matching

21

Scala is extensible

 Guy Steele has formulated a
benchmark for measuring
language extensibility [Growing a
Language, OOPSLA 98]:

 Can you add a type of
complex numbers to the
library and make it work as if
it was a native number type?

 Similar problems: Adding type
BigInt, Decimal, Intervals,
Polynomials...

scala> import Complex._
import Complex._

scala> val x = 1 + 1 * i
x: Complex = 1.0+1.0*i

scala> val y = x * i
y: Complex = -1.0+1.0*i

scala> val z = y + 1
z: Complex = 0.0+1.0*i

22

Implementing complex numbers
object Complex {
 val i = new Complex(0, 1)
 implicit def double2complex(x: Double): Complex = new Complex(x, 0)
 ...
}
class Complex(val re: Double, val im: Double) {
 def + (that: Complex): Complex = new Complex(this.re + that.re, this.im + that.im)
 def - (that: Complex): Complex = new Complex(this.re - that.re, this.im - that.im)
 def * (that: Complex): Complex = new Complex(this.re * that.re - this.im * that.im,
 this.re * that.im + this.im * that.re)
 def / (that: Complex): Complex = {
 val denom = that.re * that.re + that.im * that.im
 new Complex((this.re * that.re + this.im * that.im) / denom,
 (this.im * that.re - this.re * that.im) / denom)
 }
 override def toString = re+(if (im < 0) "-"+(-im) else "+"+im)+"*I"
 ...
}

+ is an identifier; can be used as a
method name

Infix operations are method calls:
a + b is the same as a.+(b)

Objects replace static class members

Implicit conversions for mixed arithmetic

Class parameters instead of
fields+ explicit constructor

23

Implicits are Poor Man’s Type Classes

 /** A “type class” */
class Ord[T] { def < (x: T, y: T): Boolean }

 /** An “instance definition” */
implicit object intOrd extends Ord[Int] {
 def < (x: Int, y: Int) = x < y
}

 /** Another instance definition */
implicit def listOrd[T](implicit tOrd: Ord[T]) = new Ord {
 def < (xs: List[T], ys: List[T]) = (xs, ys) match {
 case (_, Nil) => false
 case (Nil, _) => true
 case (x :: xs, y :: ts) => x < y || x == y && xs < ys
 }
}

24

The Bottom Line
 When going from Java to Scala, expect at least a factor
of 2 reduction in LOC.

 But does it matter?
Doesn’t Eclipse write these extra lines for me?

 This does matter. Eye-tracking experiments* show that
for program comprehension, average time spent per
word of source code is constant.

 So, roughly, half the code means half the time necessary
to understand it.

*G. Dubochet. Computer Code as a Medium for Human Communication: Are Programming Languages Improving?
In 21st Annual Psychology of Programming Interest Group Conference, pages 174-187, Limerick, Ireland, 2009.

25

Part 2: The Scala Design

26

The Scala design

 Scala strives for the
tightest possible
integration of OOP and
FP in a statically typed
language.

 This continues to have
unexpected
consequences.

 Scala unifies
–  algebraic data types

with class hierarchies,
–  functions with objects

 This gives a nice & rather
efficient formulation of
Erlang style actors

27

ADTs are class hierarchies

 Many functional languages
have algebraic data types
and pattern matching.
 ⇒
 Concise and canonical
manipulation of data
structures.

 Object-oriented
programmers object:
–  ADTs are not extensible,
–  ADTs violate the purity of

the OO data model,
–  Pattern matching breaks

encapsulation,
–  and it violates

representation
independence!

28

Pattern matching in Scala

 Here's a a set of
definitions describing
binary trees:

 And here's an
inorder traversal of
binary trees:

 This design keeps
–  purity: all cases are classes or objects.
–  extensibility: you can define more cases elsewhere.
–  encapsulation: only parameters of case classes are revealed.
–  representation independence using extractors [ECOOP 07].

abstract class Tree[T]

case object Empty extends Tree[Nothing]

case class Binary[T](elem: T, left: Tree[T], right: Tree[T])
 extends Tree[T]

def inOrder [T] (t: Tree[T]): List[T] = t match {
 case Empty => List()
 case Binary(e, l, r) => inOrder(l) ::: List(e) ::: inOrder(r)
}

The case modifier of an object or class
means you can pattern match on it

29

Extractors

 ... are objects with unapply methods.
... similar to active patterns in F#
 unapply is called implicitly for pattern matching

object Twice {
 def apply(x: Int) = x*2
 def unapply(z: Int): Option[Int] = if (z%2==0) Some(z/2) else None
}
val x = Twice(21)
x match {
 case Twice(y) => println(x+" is two times "+y)
 case _ => println("x is odd") }
}

30

Functions are objects
 Scala is a functional language, in
the sense that every function is a
value.
 If functions are values, and values
are objects, it follows that functions
themselves are objects.
 The function type S => T is
equivalent to scala.Function1[S, T]
where Function1 is defined as
follows :

 So functions are interpreted as
objects with apply methods.
 For example, the anonymous
successor function
(x: Int) => x + 1 is expanded to

trait Function1[-S, +T] {
 def apply(x: S): T
}

new Function1[Int, Int] {
 def apply(x: Int): Int =
 x + 1
}

31

Why should I care?

•  Since (=>) is a class, it can be
subclassed.

•  So one can specialize the
concept of a function.

•  An obvious use is for arrays,
which are mutable functions
over integer ranges.

•  Another bit of syntactic
sugaring lets one write:
a(i) = a(i) + 2 for
a.update(i, a.apply(i) + 2)

class Array [T] (length: Int)
 extends (Int => T) {
 def length: Int = ...
 def apply(i: Int): A = ...
 def update(i: Int, x: A): unit = ...
 def elements: Iterator[A] = ...
 def exists(p: A => Boolean):Boolean

 = ...
}

32

Partial functions

•  Another useful abstraction are
partial functions.

•  These are functions that are
defined only in some part of
their domain.

•  What's more, one can inquire
with the isDefinedAt method
whether a partial function is
defined for a given value. •  Scala treats blocks of pattern

matching cases as instances
of partial functions.

•  This lets one write control
structures that are not easily
expressible otherwise.

trait PartialFunction[-A, +B]
extends (A => B) {
 def isDefinedAt(x: A): Boolean
}

33

Example: Erlang-style actors

•  Two principal constructs
(adopted from Erlang):

•  Send (!) is asynchronous;
messages are buffered in an
actor's mailbox.

•  receive picks the first message
in the mailbox which matches
any of the patterns mspati.

•  If no pattern matches, the actor
suspends.

// asynchronous message send
actor ! message

// message receive
receive {
 case msgpat1 => action1
 ...
 case msgpatn => actionn
}

A partial function of type
PartialFunction[MessageType, ActionType]

34

A simple actor
 case class Data(b: Array[Byte])
 case class GetSum(receiver: Actor)
 val checkSumCalculator =
 actor {
 var sum = 0
 loop {
 receive {
 case Data(bytes) => sum += hash(bytes)
 case GetSum(receiver) => receiver ! sum
 }
 }
 }

35

Implementing receive

•  Using partial functions, it is
straightforward to implement
receive:

•  Here,
 self designates the currently
executing actor,
 mailBox is its queue of pending
messages, and
 extractFirst extracts first queue
element matching given
predicate.

def receive [A]
 (f: PartialFunction[Message, A]): A = {
 self.mailBox.extractFirst(f.isDefinedAt)
 match {
 case Some(msg) =>
 f(msg)
 case None =>
 self.wait(messageSent)
 }
}

36

Library or language?

•  A possible objection to Scala's
library-based approach is:

 Why define actors in a
library when they exist already
in purer, more optimized form
in Erlang?

•  First reason: interoperability
•  Another reason: libraries are much

easier to extend and adapt than
languages.

Experience:
 Initial versions of actors used
one thread per actor
 ⇒ lack of speed and scalability
 Later versions added a non-
returning `receive’ called react
which makes actors event-
based.
 This gave great improvements
in scalability.

 New variants using delimited
continuations are being
explored (this ICFP).

37

Scala cheat sheet (1): Definitions

Scala method definitions:

 def fun(x: Int): Int = {
 result
}

 def fun = result

Scala variable definitions:

 var x: int = expression
val x: String = expression

Java method definition:

int fun(int x) {
 return result
}

 (no parameterless methods)

Java variable definitions:

int x = expression
final String x = expression

38

Scala cheat sheet (2): Expressions

Scala method calls:

obj.meth(arg)
or: obj meth arg

Scala choice expressions:

if (cond) expr1 else expr2

expr match {
 case pat1 => expr1

 case patn => exprn
 }

Java method call:

obj.meth(arg)
 (no operator overloading)

Java choice expressions, stats:

cond ? expr1 : expr2 // expression
 if (cond) return expr1; // statement
else return expr2;

switch (expr) {
 case pat1 : return expr1;
 ...
 case patn : return exprn ;
 } // statement only

39

Scala cheat sheet (3): Objects and Classes

Scala Class and Object

class Sample(x: Int) {
 def instMeth(y: Int) = x + y
}

object Sample {
 def staticMeth(x: Int, y: Int) = x * y
}

Java Class with static

class Sample {
 final int x;
 Sample(int x) { this.x = x }

 int instMeth(int y) {
 return x + y;
 }

 static int staticMeth(int x, int y) {
 return x * y;
 }
}

40

Scala cheat sheet (4): Traits

Scala Trait

trait T {
 def abstractMeth(x: String): String

 def concreteMeth(x: String) =
 x+field

 var field = “!”
 }

Scala mixin composition:

class C extends Super with T

Java Interface

interface T {
 String abstractMeth(String x)

 (no concrete methods)

 (no fields)
}

Java extension + implementation:

class C extends Super implements T

41

Part 3: Programming in Scala

42

Scala in serious use

•  You'll see now how Scala's
constructs play together in a
realistic application.

•  Task: Write a spreadsheet
•  Start from scratch, don't use

any parts which are not in the
standard libraries

•  You'll see that this can be done
in under 200 lines of code.

•  Nevertheless it demonstrates
many aspects of scalability

•  For comparison: Java demo: 850 LOC, MS
Office 30Million LOC

43

Step 1: The main function

•  Advantage of objects over statics: objects can inherit.
•  Hence, can hide low-level fiddling necessary to set up a swing application.

package scells
import swing._

object Main extends SimpleSwingApplication {
 def top = new MainFrame {
 title = "ScalaSheet"
 contents += new SpreadSheet(100, 26)
 }
}

44

Step 2: The SpreadSheet class - view
class SpreadSheet(val height: Int, val width: Int) extends ScrollPane {
 val cellModel = new Model(height, width)
 import cellModel.{cells, valueChanged}

 val table = new Table(height, width) {
 rowHeight = 25
 autoResizeMode = Table.AutoResizeMode.Off
 showGrid = true
 gridColor = Color(150, 150, 150)

 def userData(row: Int, column: Int): String = {
 val v = this(row, column); if (v == null) "" else v.toString
 }

 override def render(isSelected: Boolean, hasFocus: Boolean, row: Int, column: Int) =
 if (hasFocus) new TextField(userData(row, column))
 else new Label(cells(row)(column).toString) { halign = Orientation.right }

 reactions += {
 case event.TableChanged(table, firstRow, lastRow, column) =>
 for (row <- firstRow to lastRow)
 cells(row)(column).formula =
 FormulaParsers.parse(userData(row, column))
 case ValueChanged(cell) =>
 markUpdated(cell.row, cell.column)
 }

 for (row <- cells; cell <- row) listenTo(cell)

 }

 val rowHeader = new ComponentList(0 until height map (_.toString)) {
 fixedCellWidth = 30
 fixedCellHeight = table.rowHeight
 }
 viewportView = table; rowHeaderView = rowHeader
}

 Property syntax; expands to method call
rowHeight_=(25)

This calls in turn jtable.setRowHeight(25)

45

Step 3: The SpreadSheet class - controller

class SpreadSheet(val height: Int, val width: Int) extends ScrollPane {
 val cellModel = new Model(height, width)
 import cellModel.{cells, valueChanged}

 val table = new Table(height, width) {
 rowHeight = 25
 autoResizeMode = Table.AutoResizeMode.Off
 showGrid = true
 gridColor = Color(150, 150, 150)

 def userData(row: Int, column: Int): String = {
 val v = this(row, column)
 if (v == null) "" else v.toString
 }

 override def render(isSelected: Boolean, hasFocus: Boolean, row: Int, column: Int) =
 if (hasFocus) new TextField(userData(row, column))
 else new Label(cells(row)(column).toString) { halign = Orientation.right }

 reactions += {
 case event.TableChanged(table, firstRow, lastRow, column) =>
 for (row <- firstRow to lastRow)
 cells(row)(column).formula = FormulaParsers.parse(userData(row, column))
 case ValueChanged(cell) =>
 markUpdated(cell.row, cell.column)
 }

 for (row <- cells; cell <- row) listenTo(cell)
 }

 val rowHeader = new ComponentList((0 until height) map (_.toString)) {
 fixedCellWidth = 30
 fixedCellHeight = table.rowHeight
 }
 viewportView = table; owHeaderView = rowHeader

}

Import can be used anywhere,
not just at top-level

Events are objects,
can pattern match on them.

 reactions property defines component
behavior with closures.

46

Spreadsheet formulas

•  We consider:

-12.34 Number
text Text label
=expr Formulas, consisting of

 B12 Cell
 B12:C18 Range of cells
 add(A7,A4) Binary operation
 sum(A12:A14,A16) Vararg operation
 (no infix operations such as X+Y)

•  Formula expressions can nest, as in:

=sum(mul(A4, 2.0), B7:B15))

47

Step 4: Representing formulas internally

trait Formula {}

case class Coord(row: Int, column: Int) extends Formula {
 override def toString = ('A' + column).toChar.toString + row
}
case class Range(c1: Coord, c2: Coord) extends Formula {
 override def toString = c1.toString+":"+c2.toString
}
case class Number(value: Double) extends Formula {
 override def toString = value.toString
}
case class Textual(value: String) extends Formula {
 override def toString = value.toString
}
case class Application(function: String, arguments: List[Formula])
extends Formula {
 override def toString = function+arguments.mkString("(",", ",")")
}
object Empty extends Textual("")

Case classes enable pattern matching B12 becomes
Coord(12, 1) B0:B9 becomes

Range(Coord(0, 1), Coord(9, 1)
-12.34

becomes Number(-12.34d)
``Sales forecast'' becomes

Textual("Sales forcast")
add(A7, 42) becomes

Application(Coord(7, 0), Number(42))

48

A grammar for formulas

number = -?\d+(\.\d*)
ident = [A-Za-z_]\w*
cell = [A-Za-Z]\d+
range = cell : cell
application = ident

 (expr (, expr)*)
expr = number

 | cell
 | range
 | application

formula = = expr
textual = [^=].*

49

A grammar for formulas and their parsers

number = -?\d+(\.\d*) """-?\d+(\.\d*)?""".r
ident = [A-Za-z_]\w* """[a-zA-Z_]\w*""".r
cell = [A-Za-Z]\d+ """ [A-Za-z]\d\d*""".r
range = cell : cell cell~":"~cell
application = ident ident~

 (expr (, expr)*) "("~repsep(expr, ",")~")"
expr = number number | cell | range |

 | cell application
 | range
 | application

formula = = expr "="~expr
textual = [^=].* """[^=].*""".r

50

Step 5: Parsing formulas

object FormulaParsers
extends RegexParsers {

 def ident: Parser[String] =
 """[a-zA-Z_]\w*""".r
 def decimal: Parser[String] =
 """-?\d+(\.\d*)?""".r

 def cell: Parser[Coord] =
 """[A-Za-z]\d+""".r ^^ { s =>
 val column = s.charAt(0) - 'A'
 val row = s.substring(1).toInt
 Coord(row, column)
 }

 def range: Parser[Range] =
 cell~":"~cell ^^ {
 case c1~":"~c2 => Range(c1, c2)
 }

 def number: Parser[Number] =
 decimal ^^ (s => Number(s.toDouble))

def application: Parser[Application] =
 ident~"("~repsep(expr, ",")~")" ^^ {
 case f~"("~ps~")" =>
 Application(f, ps)
 }

 def expr: Parser[Formula] =
 application | range | cell | number

 def textual: Parser[Textual] =
 """[^=].*""".r ^^ Textual

 def formula: Parser[Formula] =
 number | textual | "=" ~> expr

 def parse(input: String): Formula =
 parseAll(formula, input) match {
 case Success(e, _) => e
 case f: NoSuccess =>

 Textual("["+f.msg+"]")
 }

}

This makes use of an internal DSL, much like the external Lex and Yacc.

51

Step 6: Evaluating formulas
trait Evaluator { this: Model =>
 val operations = new collection.mutable.HashMap[String, List[Double] => Double]

 def evaluate(e: Formula): Double = e match {
 case Number(v) => v

 case Textual(_) => 0
 case Coord(row, column) => cells(row)(column).value
 case Application(function, arguments) =>

 val argvals = arguments flatMap evalList
 operations(function)(argvals)

 }
 private def evalList(e: Formula): List[Double] = e match {
 case Range(_, _) => references(e) map (_.value)

 case _ => List(evaluate(e))
 }

 def references(e: Formula): List[Cell] = e match {
 case Coord(row, column) => List(cells(row)(column))
 case Range(Coord(r1, c1), Coord(r2, c2)) =>

 for (row <- (r1 to r2).toList; column <- c1 to c2)
 yield cells(row)(column)

 case Application(function, arguments) => arguments flatMap references
 case => List()
 }

Evaluate by pattern matching
on the kind of formula

But how does Evaluator know about cells?

Scala's Self-type feature lets us assume the type of
this in Evaluator is Model

52

Step 7: The spreadsheet Model class

class Model(val height: Int, val width: int) extends Evaluator with Arithmetic {

 class Cell(row: Int, column: Int) extends Publisher {
 private var v: Double = 0
 def value: Double = v
 def value_=(w: Double) {
 if (!(v == w || v.isNaN && w.isNaN)) {
 v = w

 publish(ValueChanged(this))
 }
 }
 private var e: Formula = Empty
 def formula: Formula = e
 def formula_=(e: Formula) {
 for (c <- references(formula)) deafTo(c)
 this.e = e
 for (c <- references(formula)) listenTo(c)
 value = evaluate(e)
 }
 reactions += {
 case ValueChanged(_) => value = evaluate(formula)
 }
 }

 case class ValueChanged(cell: Cell) extends event.Event

 val cells = Array.fromFunction(new Cell(_, _))(width, height)
}

Property definitions make interesting
things happen when variables are set

53

Lessons learned

•  DSL's can help keep software short and clear: Parser combinators,
swing components and reactions.

•  Internal DSLs have advantages over external ones.
•  Mixin composition + self types let you write fully re-entrant complex

systems without any statics.
•  Application complexity can be reduced by the right language

constructs.
•  To ensure you always have the right constructs, you need a

language that's extensible and scalable.

54

But how long will it take me
to switch?

55

100%

200%

0%

4-6 weeks 8-12 weeks

Learning Curves

Scala

Keeps familiar environment: :

IDE’s: Eclipse, IDEA, Netbeans, ...

Tools: JavaRebel, FindBugs, Maven, ...

Libraries: nio, collections, FJ, ...

Frameworks; Spring, OSDI, J2EE, ...

...all work out of the box. .

Alex Payne, Twitter:

“Ops doesn’t know it’s not Java”

Productivity

Alex McGuire, EDF, who replaced majority of
300K lines Java with Scala:

 “Picking up Scala was really easy.”
 “Begin by writing Scala in Java style.”
 “With Scala you can mix and match
withwell.”
 your old Java.”
 “You can manage risk really

56

How to get started

100s of resources on the
web.

Here are three great
entry points:

•  Simply Scala
•  Scalazine @ artima.com
•  Scala for Java

refugees

57

How to find out more

Scala site: www.scala-lang.org Six books last year

58

Soon to come

New release Scala 2.8, with
–  named and default parameters,
–  @specialized annotations for high performance numerical

computations,
–  improved IDE plugin support,
–  and much more.

New version on .NET with Visual Studio integration

59

Long term focus: Concurrency & Parallelism

 Our goal: establish Scala as the premier language for multicore
programming.

 Actors gave us a head start.

Actors as a library worked well because of Scala’s flexible syntax and
strong typing.

The same mechanisms can also be brought to bear in the development
of other concurrency abstractions, such as:
–  parallel collections,
–  software transactional memory,
–  stream processing.

60

Thank You

