
An Overview of Scala

Philipp Haller, EPFL

(Lots of things taken from Martin Odersky's Scala talks)

June 2, 2008 Philipp Haller -- An Overview of Scala 2/27

The Scala Programming Language

● Unifies functional and object-oriented
programming concepts

● Enables embedding rich domain-specific
languages (DSLs)

● Supports high-level concurrent programming
through library extensions that are efficient and
expressive

June 2, 2008 Philipp Haller -- An Overview of Scala 3/27

A Scalable Language

● Language scalability: express small + large
programs using the same constructs

● Unify and generalize object-oriented and
functional programming concepts to achieve
language scalability

● Interoperable with Java
– .NET version under reconstruction

● Open-source distribution available since 2004
– 5000 downloads/month (from EPFL)

June 2, 2008 Philipp Haller -- An Overview of Scala 4/27

From Java to Scala

object Example1 {
 def main(args: Array[String]) {
 val b = new StringBuilder()
 for (i <- 0 until args.length) {
 if (i > 0) b.append(" ")
 b.append(args(i).toUpperCase)
 }
 Console.println(b.toString)
 }
}

● Scala's syntax often the same as Java's
(method call, field selection, class inheritance)

● Scala compiles to JVM bytecodes

Scala’s version of the
extended for loop

Arrays are indexed
args(i) instead of

args[i]

Array[String] instead
of String[]

object instead of
static members

June 2, 2008 Philipp Haller -- An Overview of Scala 5/27

Functional Scala

● Arrays are instances of general sequence
abstractions

● Higher-order functions instead of loops

object Example2 {
 def main(args: Array[String]) {
 println(args
 .map(arg => arg.toUpperCase)
 .mkString(" "))
 }
}

Applies function on its right
to each array element

Closure that applies
toUpperCase method to its

String argument

Forms a string of all elements
with a given separator

between them

June 2, 2008 Philipp Haller -- An Overview of Scala 6/27

Principles of Scala

(a) Unify algebraic data types (ADTs) and
class hierarchies

(b) Unify functions and objects

Integrate OOP and FP as tightly as
possible in a statically-typed language

June 2, 2008 Philipp Haller -- An Overview of Scala 7/27

ADTs and Pattern Matching

● FP: ADTs and pattern matching → concise and
canonical manipulation of data structures

● OOP objects against ADTs:
– Not extensible

– Violate purity of OOP data model

● OOP objects against pattern matching:
– Breaks encapsulation

– Violates representation independence

June 2, 2008 Philipp Haller -- An Overview of Scala 8/27

Pattern Matching in Scala

def inOrder[T](t: Tree[T]): List[T] =
 t match {
 case Leaf => List()
 case Fork(e,l,r) => inOrder(l):::List(e):::inOrder(r)
 }

In-order traversal

abstract class Tree[+T]
case object Leaf extends Tree[Nothing]
case class Fork(elem: T, left: Tree[T], right: Tree[T])
 extends Tree[T]

Binary trees

● Purity: cases are objects or classes
● Extensibility: can define more cases elsewhere
● Encapsulation: only parameters revealed
● Representation independence: extractors [ECOOP'07]

case modifier enables
pattern matching

June 2, 2008 Philipp Haller -- An Overview of Scala 9/27

Extractors

● Objects with unapply methods
● Pattern matcher implicitly calls unapply

methods (if they exist)

object Twice {
 def apply(x: Int) = x*2
 def unapply(z: Int) = if (z%2==0) Some(z/2) else None
}
val x = Twice.apply(21)
x match {
 case Twice(y) => println(x+" is two times "+y)
 case _ => println("x is odd")
}

June 2, 2008 Philipp Haller -- An Overview of Scala 10/27

Principles of Scala

(a) Unify algebraic data types (ADTs) and
class hierarchies

(b) Unify functions and objects

Integrate OOP and FP as tightly as
possible in a statically-typed language

June 2, 2008 Philipp Haller -- An Overview of Scala 11/27

Functions in Scala

● Functions are first-class values
● Values are objects → functions are objects
● Function type A => B equivalent to type
Function1[A, B]:

trait Function1[-A, +B] {
 def apply(x: A): B
}

● Compilation of anonymous functions:

(x: Int) => x + 1

new Function1[Int, Int] {
 def apply(x: Int): Int =
 x + 1
}

June 2, 2008 Philipp Haller -- An Overview of Scala 12/27

Subclassing Functions

● Arrays are mutable functions over integer
ranges:

class Array[T](length: Int) extends (Int => T) {
 def length: Int = ...
 def apply(i: Int): T = ...
 def update(i: Int, x: T): Unit = ...
 def elements: Iterator[T] = ...
 def exists(p: T => Boolean): Boolean = ...
}

● Syntactic sugar:

a(i) = a(i) + 2 a.update(i, a.apply(i) + 2)

June 2, 2008 Philipp Haller -- An Overview of Scala 13/27

Partial Functions

● Defined only for subset of domain:
trait PartialFunction[-A, +B] extends (A => B) {
 def isDefinedAt(x: A): Boolean
}

● Anonymous partial functions:
{ case pat

1
: A => body

1
: B

 ...
 case pat

n
: A => body

n
: B }

new PartialFunction[A, B] {
 def isDefinedAt(x: A): Boolean = ...
 def apply(x: A): B = ... }

June 2, 2008 Philipp Haller -- An Overview of Scala 14/27

Principles of Scala

(a) Unify algebraic data types (ADTs) and
class hierarchies

(b) Unify functions and objects

Integrate OOP and FP as tightly as
possible in a statically-typed language

June 2, 2008 Philipp Haller -- An Overview of Scala 15/27

Library Extensions

● Functional objects enable rich embedded DSLs
● First-class partial functions enable definition of

control structures in libraries
● Example: Scala Actors concurrency library

June 2, 2008 Philipp Haller -- An Overview of Scala 16/27

Scala Actors

● Two basic operations (adopted from Erlang)

● Asynchronous send (!) buffers messages in
receivers's mailbox

● Synchronous receive waits for message that
matches any of the patterns msgpat

i

actor ! message // message send

receive { // message receive
 case msgpat

1
 => action

1

 ...
 case msgpat

n
 => action

n

}

June 2, 2008 Philipp Haller -- An Overview of Scala 17/27

A Simple Actor

case class Data(bytes: Array[Byte])
case class Sum(receiver: Actor)

val checkSumCalculator: Actor =
 actor {
 var sum = 0
 loop {
 receive {
 case Data(bs) => sum += hash(bs)
 case Sum(receiver) => receiver ! sum
 }
 }
 }

June 2, 2008 Philipp Haller -- An Overview of Scala 18/27

Implementing receive

def receive[R](f: PartialFunction[Message, R]): R =
 synchronized {
 mailbox.dequeueFirst(f.isDefinedAt) match {
 case Some(msg) =>
 f(msg)
 case None =>
 waitingFor = f.isDefinedAt
 suspendActor()
 }
 }
}

Queue of pending
messages

Extracts first queue
element matching given

predicate

June 2, 2008 Philipp Haller -- An Overview of Scala 19/27

Library vs. Language

● Libraries much easier to extend and adapt than
languages

● Example: thread-based receive requires one
VM thread per actor
– Problem: high memory consumption and context

switching overhead

– Solution: second, non-returning receive operation
called react that makes actors event-based

– Haller, Odersky: Actors that Unify Threads and
Events, Coordination'07

June 2, 2008 Philipp Haller -- An Overview of Scala 20/27

Extension: Joins for Actors

● Joins: high-level, declarative synchronization
constructs (based on join calculus)

● Goal: enable join patterns alongside normal
message patterns

● Example:

receive {
 case Put(x) & Get() => Get reply x
 case Some(other) => ...
}

June 2, 2008 Philipp Haller -- An Overview of Scala 21/27

Implementing Joins

● Problem: outcome of matching depends on
multiple message sends
● When sending a Get message, the pattern
case Put(x) & Get() matches iff there is also a Put
message in the mailbox

● Idea: use extensible pattern matching to search
mailbox

June 2, 2008 Philipp Haller -- An Overview of Scala 22/27

Matching Join Patterns
{ case &(Get(), Put(x)) => ... }

new PartialFunction[?, Unit] {
 def isDefinedAt(y: ?) =
 &.unapply(y) match {
 case Some((Get(), Put(x))) => true
 case None => false }

(gets compiled into)

June 2, 2008 Philipp Haller -- An Overview of Scala 23/27

Matching Join Patterns (cont'd)
{ case &(Get(), Put(x)) => ... }

(gets compiled into)

new PartialFunction[?, Unit] {
 def isDefinedAt(y: ?) =
 &.unapply(y) match {
 case Some((u, v)) =>
 Get.unapply(u) match {
 case true =>
 Put.unapply(v) match {
 case Some(x) => true
 case None => false }
 case false => false }
 case None => false }

June 2, 2008 Philipp Haller -- An Overview of Scala 24/27

Scala Joins: Summary

● Novel implementation based on extensible
pattern matching (Scala, F#)
– New library-based solution

● More consistency checks
– Re-use variable binding

– Re-use guards

● More expressive
– Nested patterns and guards

– Dynamic join patterns

June 2, 2008 Philipp Haller -- An Overview of Scala 25/27

Scala Actors: Summary

● Scala library extension for high-level concurrent
programming
– Pair of message receive operations (receive/react)

allows trade-off between efficiency and flexibility

● Message handlers as first-class partial
functions
– Enables extension of actor behavior

● Support for expressive join-style message
patterns (Haller, Van Cutsem: Implementing Joins using
Extensible Pattern Matching, Coordination'08)

June 2, 2008 Philipp Haller -- An Overview of Scala 26/27

Application: lift Web Framework

● Similar to Rails and Seaside, exercises many
features of Scala
– Actors: AJAX/Comet-style applications

– Closures: HTML form elements

– Traits/Mixins: persistence, data binding, query
building

– Pattern matching: extensible URL matching

● Use case: Skittr, a Twittr clone
● Excellent scalability: 106 actors on dual-core

June 2, 2008 Philipp Haller -- An Overview of Scala 27/27

Scala: Conclusion

● Integration of FP and OOP as tight as possible
● A scalable language: the same constructs

express small and large programs
● Enables high-level concurrency libraries that

are efficient and expressive
– Example: Scala Actors

● Try it out: http://www.scala-lang.org/

