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Abstract
This paper describes Scala-Virtualized, which extends the Scala
language and compiler with a small number of features that en-
able combining the benefits of shallow and deep embeddings of
DSLs. We demonstrate our approach by showing how to embed
three different domain-specific languages in Scala. Moreover, we
summarize how others have been using our extended compiler in
their own research and teaching. Supporting artifacts of our tool in-
clude web-based tutorials, nightly builds, and an Eclipse update site
hosting an up-to-date version of the Scala IDE for Eclipse based on
the Virtualized Scala compiler and standard library.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

1. Introduction
In his PEPM’10 invited talk “General Purpose Languages Should
be Metalanguages” [15], Jeremy Siek eloquently made the case that
general purpose languages should be designed to host embedded
DSLs and concluded his talk saying “Our current languages are OK
but not great”. We have argued in a similar way and proposed the
notion of language virtualization [3]. Just as in a data center, where
one wants to virtualize costly “big iron” server resources and run
many logical machines on top of them, it is desirable to leverage
the engineering effort that went into a general purpose language to
support many small languages, each of which should feel as “real”
as possible.

In this paper, we present Scala-Virtualized, our effort to improve
the DSL hosting capabilities of Scala. Scala is a mature language
that is seeing widespread adoption in industry. Scala-Virtualized is
a suite of minimal extensions to Scala that is based on the same
codebase and undergoing the same rigorous testing process as the
main Scala distribution.

A main feature of Scala-Virtualized is that it allows to blend
shallow and deep embedding of DSLs. In other words, we can
write embedded DSL code with very low syntactic overhead and
integrated tightly with the surrounding Scala code but nonethe-
less obtain an AST-like representation that is amenable to analysis
and optimization. This makes Scala-Virtualized an attractive target
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platform for applying code generation and program transformation
techniques to embedded programs, which is often difficult.

Implementing program transformation techniques beyond proof-
of-concepts is a laborious task. Scala-Virtualized can provide a use-
ful tool for researchers in the program transformation community
to implement their techniques on embedded programs.

Plain Scala is used successfully for pure library-based DSLs,
such as actors [8], parser combinators [10], and testing frameworks.
The following features make Scala attractive for these DSLs:

• Infix operator syntax for method calls: Scala syntax is quite
flexible, code can look (almost) like English sentences. Here
is an example from the Specs1 testing framework:
// generate 500 different mail addresses
mailAddresses must pass { address =>
address must be matching(companyPattern)

}

• For-comprehensions: Scala has no built-in for loops. Expres-
sions of the form
for (i <- foo) yield 2 * i

are desugared into method calls like
foo.map(i => 2 * i)

where the class of foo defines the implementation and type
signature of map. This allows DSLs to provide non-standard
implementations of looping constructs.

• Implicit definitions and parameters (see Section 4.2). Implicit
resolution enables logic programming on the type level [4].
DSLs can implement domain-specific type restrictions (e.g.
through phantom types).

• Manifests (see Section 3). Run-time descriptors of static types
enable DSLs to leverage type information, e.g. for code gener-
ation.

These features are sufficient for DSLs as pure libraries. In many
cases, however, we require better performance, we need to verify
additional program properties for safety, or we need to generate
code for a different platform. In short, we need an accessible rep-
resentation of embedded programs that we can analyze and trans-
form in various ways. Scala-Virtualized takes the given ideas one
step further by extending Scala in the following ways:

• Redefining most control structures (e.g. conditionals, variable
definitions) in terms of method calls (see Section 2). This allows
DSLs to override the meaning of core language features.

• Implicit source contexts (see Section 3) lift static source infor-
mation such that it becomes part of the object program (e.g. to
improve debugging, error messages, etc.)

Scala-Virtualized is actively used for a number of DSL projects
[1, 13, 16, 17]. Obtaining an analyzable intermediate representa-
tion has allowed us and others to write embedded DSL programs

1 http://code.google.com/p/specs/
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that outperform handwritten C code, compile to GPUs, or query
databases using generated SQL.

2. Everything is a Method Call
The overarching idea of embedded languages is that user-defined
abstractions should be first class in a broad sense. User-defined
abstractions should have the same rights and privileges as built-in
abstractions. Scala-Virtualized redefines many built-in abstractions
as method calls. In this way, the corresponding method definitions
may be redefined by a DSL, just like any other method. Similar to
the “finally tagless” [2] or polymorphic embedding [9] approach,
and going back to an old idea of Reynolds [12], we represent object
programs using method calls rather than data constructors. By over-
riding or overloading the default implementations appropriately,
the embedding can be configured to generate an explicit program
representation, which is typically only provided by a deep embed-
ding using explicit data constructors. To give a quick example, the
expression
if (c) a else b

is defined as the method call
__ifThenElse(c,a,b)

This approach fits well with the overall Scala philosophy: for-
comprehensions and parser combinators have been implemented
like this for years now. Unlike approaches that lift host language
expression trees 1:1 using a fixed set of (host language oriented)
data types, the DSL implementor has control over which language
constructs are lifted and which are not and the lifting is not tied
to the host language grammar but may pick a representation that
closer fits the DSL grammar.

3. Lift Static Information into Object Programs
Our approach for lifting static information into the object program
is based on a single principle, namely implicit parameters. The
basic idea of implicit parameters is simple: instead of providing
an argument explicitly at the call site, the compiler automatically
passes an implicit value which is either defined in the current scope
or which is synthesized based on its type.

Scala-Virtualized includes two instantiations of this principle.
The first mechanism provides run-time type descriptors via implicit
parameters. The idea is that a method can demand that a run-
time type descriptor, called a manifest, be available for certain
polymorphic types (typically type parameters). For example, the
following polymorphic method requires a manifest for its T type
parameter:
def m[T](x: T)(implicit m: Manifest[T]) = ...

Manifests are automatically generated by the Scala compiler (they
are already available in plain Scala [6]). This means that wherever
a method with an implicit manifest parameter is invoked, the com-
piler generates a manifest and passes it implicitly. Manifests are an
extension of Scala’s standard implicits [5]: they are not generated
if there is already an implicit argument that matches the expected
manifest type.2

The main use of manifests in the context of embedded DSLs is
to preserve information necessary for generating efficient special-
ized code in those cases where polymorphic types are unknown at
compile time (e.g. to generate code that is specialized to arrays of
primitive type, say, even though the object program is constructed
using generic types).

The second principle mechanism for lifting static information
into the object program is concerned with source locations. A fun-

2 The Scala standard library contains a hierarchy of four manifest classes;
see Section 7.5 of the Scala language specification.

damental problem of embedded programs is that static source in-
formation, such as line numbers, is typically lost at the point where
the DSL program is executed, in particular when the embedding
contains an intermediate staging step. The idea is that methods can
demand a source context for their current invocation by declaring
an implicit parameter of type SourceLocation:
def m[T](x: T)(implicit ctx: SourceLocation) = ...

Inside the method m, the source context of its invocation, i.e. file
name, line number, character offset, etc. is available as ctx. Like
manifests, source contexts are generated by the compiler. Just
like manifests, they extend Scala’s standard implicit mechanism:
if there is already an implicit SourceContext, it is passed as the
parent of the current source context (see Section 4.3).

In summary, manifests and source contexts allow capturing
essential static information and making it available to embedded
DSLs.

4. Putting Principles Into Action
This section contains further details and examples on how these
principles are applied to support more flexible syntactic embed-
ding, static checking and dynamic debugging in Scala-Virtualized.

4.1 Syntax
Scala’s syntax is quite flexible as it is [7] and can accommodate
many flavors of embedded languages easily. Complementary to
flexibility, Scala’s type system also allows enforcing certain restric-
tions. For example, it is desirable to restrict DSL expressions to a
given grammar. Here is an example how adherence of DSL expres-
sions to a context-free grammar (anbn) can be enforced in the type
system:
object Grammar {
type ::[A,B] = (A,B)
class WantAB[Stack] extends WantB[Stack]
class WantB[Stack]
class Done
def start() = new WantAB[Unit]
def infix_a[Stack](s: WantAB[Stack]) = new WantAB[Unit::Stack]
def infix_b[Rest](s: WantB[Unit::Rest]) = new WantB[Rest]
def infix_end(s: WantB[Unit]) = new Done
def phrase(x: => Done): String = "parsed"

}
import Grammar._
phrase { start () a () a () b () b () end () } // "parsed"
phrase { start () a () a () b () b () b () end () } // error
phrase { start () a () a () b () end () } // error

This can be done in plain vanilla Scala, too, but it is cumber-
some. Scala-Virtualized makes it easier through the addition of in-
fix methods, which provide a straightforward way of (re-)defining
methods on objects outside of their class: here, x a is turned into
infix_a(x) instead of the conventional x.a.

4.2 Static Error Checking
Simple annotations placed on types and constructs of the library
that should not be visible to the user can be used for adapting error
messages of the compiler. Such annotations can already improve
the user experience substantially; at the same time the approach
places only a small burden on the library author.

In fact, this approach is already finding its way into Scala’s stan-
dard collections library. Scala’s collections [11] use implicit pa-
rameters to support operations on collections that are polymorphic
in the type of the resulting collection. These implicit parameters
should not be visible to the application developer. However, in pre-
vious Scala versions, error messages when using collections incor-
rectly could refer to these implicits. In recent versions of Scala,
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a lightweight mechanism has been added to adapt error messages
involving implicits: by adding an annotation to the type of the im-
plicit parameter, a custom error message is emitted when no im-
plicit value of that type can be found.

For instance, immutable maps define a transform method that
applies a function to the key/value pairs stored in the map resulting
in a collection containing the transformed values:
def transform[C, That](f: (A, B) => C)(implicit bf:

CanBuildFrom[This, (A, C), That]): That

This function transforms all the values of mappings contained in the
current map with function f. Here, This is the type of the actual
map implementation. That is the type of the updated map. The
implicit parameter ensures that there is a builder factory that can
be used to construct a collection of type That given a collection of
type This and elements of type (A, C).

Actual implicit arguments passed to transform should not be
visible to the application developer. However, wrong uses of maps
may result in the compiler not finding concrete implicit arguments;
this would result in confusing error messages. In Scala 2.8.1 error
messages involving type CanBuildFrom are improved using a type
annotation:
@implicitNotFound(msg = "Cannot construct a collection of
type ${To} with elements of type ${Elem} based on a
collection of type ${To}.")

trait CanBuildFrom[-From, -Elem, +To] { ... }

The implicitNotFound annotation is understood by the im-
plicit search mechanism in Scala’s type checker. Whenever the
type checker is unable to determine an implicit argument of type
CanBuildFrom, the compiler emits the (interpolated) error mes-
sage specified as the argument of the implicitNotFound anno-
tation. Thereby, a low-level implicit-not-found error message is
transformed to only mention the types From, Elem, and To, which
correspond to types occurring in user programs.

4.3 Dynamic Debugging
When lifting DSL constructs, we typically lose source information.
For example, the IR nodes no longer contain line numbers and
variable names that correspond to the original source. This can be
problematic if the DSL performs checks on the generated IR. In that
case, failing checks should produce meaningful error messages that
refer back to the location in the source that contains the error.

Virtualized Scala allows DSL authors to capture source in-
formation of DSL constructs, such as line numbers and method
names, using implicit parameters of type SourceLocation. For
this, methods used in the embedding of a DSL can be augmented
as follows:
implicit def selectOps(self: Exp[_ <: Result])
(implicit loc: SourceLocation) = new {
def selectDynamic[T](n: String): Exp[T] =
Select(self, n)(loc)

}

The above method can be used to provide a Select operation
on expression trees (e.g., for generating SQL expressions). The
implicit is applied whenever a field is selected on an expression
tree whose result type extends Result. To improve debugging of
problematic field selections we add an implicit SourceLocation
parameter. As a result, whenever the selectOps method is called,
the loc argument describes the invocation site. The compiler auto-
matically generates this loc object for each invocation; it contains
source information specific to the static invocation site. This source
information is accessible through methods such as fileName,
line, and charOffset.

The SourceLocation object can then be passed to the con-
structors of the IR. In the above example, we are passing loc to the

constructor of Select. This way, each Select node is equipped
with source location information which can be used when process-
ing the IR subsequently.

For example, when processing erroneous SQL queries, the DSL
generator can output error messages that contain precise source lo-
cation information. Consider what happens if an invalid query ex-
pression is submitted to a data base. For example, a query might
try to access a column that doesn’t exists in a data base table. This
typically leads to an exception, such that the stack trace points to
the expression which submitted the query to the data base. More-
over, the information about which elements of the DSL program
were involved in the problematic situation is lost. However, in the
above case what the user would really like to know is where the
queried table was declared in the DSL program; this would allow
pin-pointing the error much easier, by giving the user a chance to
check the correctness of their declarations.

Using implicit SourceLocation parameters this information
can be provided in DSL-specific error messages. For this, we ex-
tend the DSL constructs for which we would like to have source
information, in this case, the table constructor:
case class Table[Tuple <: Result](name: String)
(implicit val loc: SourceLocation)
extends Exp[List[Tuple]]

Subsequently, we can make use of this source information when
handling run-time exceptions, and provide DSL-specific error mes-
sages pointing to the precise source location of elements of our
DSL, in this case, table declarations:
case e: Exception => expr match {
case ListSelect(table @ Table(name), _) =>

println("error in query on table " + name +
" declared at " + table.loc.line + ": " + e)

Virtualized Scala provides a refinement of the SourceLocation
type, called SourceContext. An implicit parameter of type
SourceContext allows capturing source information that is im-
possible to recover from exception stack traces, say. Consider the
following example:
def m()(implicit ctx: SourceContext) = ...
def outer()(implicit outerCtx: SourceContext) =
() => m()

val fun = outer()
fun() // invoke closure

Here, the outer method returns a closure which invokes method
m. Since m has an implicit SourceContext parameter, the compiler
generates an object containing source information for the invoca-
tion of m inside the closure. However, since the parameter has type
SourceContext as opposed to its super type SourceLocation,
the compiler will not only pass the SourceContext corresponding
to the current invocation but also the outerCtx context as the par-
ent of the current SourceContext. As a result, when invoking the
closure inside m this chain of source contexts is available and both
inside m as well as inside the closure, the static source context of
the closure is known. This means that even if the closure escapes
its static creation site, when the closure is invoked, the source con-
text of its creation site can be recovered. In contrast, using only
stack traces provided by exceptions, this information is lost since it
is not available on the dynamic call stack.

5. Usage
There are two modes of using the “tool” that we are describing:
virtualized Scala as a language, in which DSLs can be implemented
efficiently in a certain way, and virtualized Scala as an ecosystem of
tool support, user community, documentation, etcetera. The former
is illustrated by the concrete embeddings that are outlined in the
appendix. In this section we consider the ecosystem dimension.
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By shallowly embedding the DSL, both the DSL implementer
and the DSL user (who programs in the DSL) reap the benefits
of Scala’s toolchain: the general-purpose Scala compiler has been
used in production for several years, the IDE support is stable and
maturing steadily, there are several build systems, several books
have been written, catering to various audiences, and so on.

We have discussed some of the challenges of tailoring this
usage modality to a specific domain: how to generate (slightly)
more descriptive error message, how to retain source information,
etc. Many more interesting research questions remain, and we are
actively pursuing several of them. One example is a type debugger,
which visualizes the state of the type checker and how it got to a
certain error. This information could then further be interpreted in a
domain-specific way, or it could assist the DSL implementer when
“debugging” the complex types involved in expressing a domain-
specific type system.

6. Applications
Scala-Virtualized has been used extensively by students and re-
searchers outside of our research group.

6.1 Delite
Delite [1, 14] is a research project from Stanford University’s Per-
vasive Parallelism Laboratory (PPL). Delite is a compiler frame-
work and runtime for parallel embedded domain-specific languages
(DSLs). To enable the rapid construction of high performance,
highly productive DSLs, Delite provides several facilities:

• Code generators for Scala, C++ and CUDA
• Built-in parallel execution patterns
• Optimizers for parallel code
• A DSL runtime for heterogeneous hardware

6.2 OptiML
OptiML [16] is a domain-specific language (DSL) for machine
learning developed using Scala-Virtualized. It uses the building
blocks provided by Delite (see above) to simplify its implemen-
tation. OptiML programs can be compiled for a variety of paral-
lel hardware platforms, including CMPs (chip multi-processors),
GPUs (by automatically generating CUDA code), and eventually
even FPGAs and other specialized accelerators. Cluster support is a
topic of ongoing work. Furthermore, compilation employs aggres-
sive domain-specific optimizations, resulting in high-performance
generated code which outperforms parallel MATLAB on many
common ML kernels.

OptiML makes it easy to express iterative statistical inference
problems. Most of these problems are expressed using dense or
sparse linear algebra operations which can be parallelized using
a large number of fine-grained map-reduce operators. OptiML pro-
grams make use of three fundamental data types, Vector, Matrix,
and Graph, which support all of the standard linear algebra opera-
tions used in most ML algorithms. These data types are polymor-
phic and are compiled to efficient code leveraging BLAS or GPU
support if they are used with scalar values.

6.3 A DSL Course
Scala-Virtualized has been the compiler platform for a course on
DSLs for performance and productivity at Stanford University.3

This advanced undergraduate/graduate level course provides an in-
depth introduction to developing high-performance DSLs in impor-
tant scientific and engineering domains. As such, it is aimed both
at (a) domain experts, that is, students who can define key domain-
specific language elements that capture domain knowledge, and at

3 CS442 was offered by Stanford’s PPL for the first time in Spring 2011.

(b) computer scientists who can implement these DSLs in Scala.
During the second half of the course, students developed their own
DSLs using the Delite DSL framework, which simplifies the pro-
cess of implementing DSLs for parallel computation. This first
edition of the course had 11 registered students and presented 7
projects.

The course material includes a complete set of lecture slides on
(a) embedding DSLs using Scala-Virtualized, (b) the Delite DSL
framework, (c) the OptiML DSL for Machine Learning, and (d)
DSL projects of other research groups and/or industrial projects.4

In addition to that, there is a “getting started” guide on the Delite
web site,5 as well as a complete tutorial on developing a small
parallel DSL using Delite.

6.4 Scala Integrated Query (SIQ)
SIQ [17] compiles an embedded subset of Scala into SQL for
execution in a DBMS. Advantages of SIQ over SQL are type safety,
familiar syntax, and better performance for complex queries by
avoiding avalanches of SQL queries.

7. Supporting Artifacts
These artifacts are available on the Scala-Virtualized wiki6:

• an introduction and a reference of the virtualized constructs
• nightly builds, published as Maven artifacts for build tools
• a Virtualized Scala version of the Scala Eclipse plugin
• a GitHub repository with various self-contained tutorials, in-

cluding an Eclipse project and an sbt build file
• a short description of our development process (a dashboard of

continuous integration results, links to the development and the
stable branches of our GitHub repository)

• the mailing list where we can be reached

8. Discussion
Even though Scala’s syntax is quite flexible, it has its limits: the
syntax of the DSL cannot be completely arbitrary. A similar restric-
tion applies for the type system. However, as mentioned in Section
4.2, implicit resolution can be used to do logic programming at the
type level to a certain degree, as witnessed by the CanBuildFrom
relation, which also illustrates how some type error messages can
be customized (using the @implicitNotFound annotation). Other
classic tricks, such as phantom types, provide further expressive
power. Furthermore, Scala does not yet have an effect system, so
that side-effects cannot be restricted mechanically, and correctness
of the analyses performed by the embedding framework thus fol-
lows from unchecked adherence to conventions.

On the bright side, our approach combines the ease of imple-
mentation of a shallow embedding with the performance character-
istics of deep embedding. Scala’s type system can enforce several
common domain-specific invariants, and it can be used to hide sev-
eral implementation aspects of the DSL from the DSL user, and
even the DSL implementer.

In short, we promise no silver bullet, but a robust and efficient,
though pragmatic, approach that has worked well for us and others,
and that is steadily getting both more robust and more flexible.
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A. Proposed Demo
We propose a tutorial-style demo that introduces Virtualized Scala
by example, from the ground up. The full source for the tutorial is
available on GitHub7.

A.1 Language Virtualization in Scala
The embedding of domain specific languages in Scala is based on
a simple principle: the domain program looks like it’s written in
its own language with its own syntax, but the domain program is

7 https://github.com/adriaanm/scala-virtualized-tutorial

actually just a plain Scala program, where “everything is a method
call”.

Applying this principle naively, you end up with a “shallow em-
bedding”: DSL programs are just thinly veiled Scala programs. By
implementing the methods that make up the DSL so that they build
a representation of the domain program, the main advantage of a
“deep embedding” can be recovered, without the associated imple-
mentation cost. As the DSL programs is represented explicitly, it
can be analyzed (and thus optimized) by the DSL implementation.
In other words, we want to shallowly embed our domain programs
and optimize them too.

The shallow embedding is enabled by Scala’s flexible syntax.
The deep embedding relies on lightweight modular staging [13],
which uses type information to drive staging. For the purpose of
the demo it suffices to think of staging as delaying execution
of programs by turning them into their own representation, which
can then first be analyzed and then executed. This representation is
usually structured as an abstract syntax tree.

The virtualized version of the Scala compiler allows imple-
menters of domain-specific languages to reuse as much of Scala
(the host language) as possible (its syntax, type system, module
system,...), without sacrificing efficient execution of the domain
program. The latter is enabled by what we call “language virtu-
alization”: Scala’s built-in constructs are exposed as method defi-
nitions that can be overridden by the DSL implementer in order to
construct a representation of the programs written in the DSL (the
“domain programs”).

The essential difference between Virtualized Scala and plain
vanilla Scala is that more of a Scala program is expressed in terms
of method calls. Concretely, an expression such as if(c) a else b
is translated into a method call __ifThenElse(c, a, b). By pro-
viding its own implementation of this method, the DSL can have
it generate an AST for this part of the domain program, which
can thus further be analyzed and optimized by the DSL imple-
mentation. When no alternative implementation is provided, the
if-then-else has the usual semantics.

For example, we could change if to print its condition and
return the then-branch, discarding the else-branch:

scala > def __ifThenElse[T](cond: => Boolean,
thenp: => T, elsep: => T): T
= {println("if: "+cond); thenp}

__ifThenElse: [T](cond: => Boolean,
thenp: => T, elsep: => T)T

scala > if(false) 1 else 2
// virtualized to: ‘__ifThenElse(false, 1, 2)‘
if: false
res0: Int = 1

We’ll discuss a more useful implementation of __ifThenElse
in section A.5.3.

Besides if, the following control structures and built-ins (left
column) are virtualized into method calls (right column):

if (c) a else b __ifThenElse(c, a, b)
while(c) b __whileDo(c, b)
do b while(c) __doWhile(b, c)
var x = i val x = __newVar(i)
x = a __assign(x, a)
return a __return(a)
a == b __equal(a, b)
a == (b_1,..., b_n) __equal(a, b_1, ..., b_n)

These methods are defined as follows (in EmbeddedControls, a
trait that is mixed into Predef to provide the virtualization hooks at
the top-level in any Scala program, although it can also be mixed
into DSL traits to tweak the virtualization further):
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def __ifThenElse[T](cond: => Boolean, thenp: => T,
elsep: => T): T

def __whileDo(cond: Boolean, body: Unit): Unit
def __doWhile(body: Unit, cond: Boolean): Unit
def __newVar[T](init: T): T
def __assign[T](lhs: T, rhs: T): Unit
def __return(expr: Any): Nothing
def __equal(expr1: Any, expr2: Any): Boolean

Since Predef inherits EmbeddedControls, these methods are
visible everywhere. You can either shadow them by defining a syn-
onymous method, or override them by inheriting EmbeddedControls.

A.2 Deep Embedding: Expressions
The CoreExps trait provides the core functionality for representing
expressions. It defines the super trait Exp[T] for expressions that
evaluate to a value of type T, and it provides a way of automatically
lifting (staging-time) constants into their (trivial) representation,
Const[T].
trait CoreExps {
trait Exp[T]

case class Const[T](x: T) extends Exp[T]
implicit def liftString(x: String): Exp[String]
= Const(x)

}

It’s really as simple as that: when a DSL program contains the
string "hello", all we need to know in order to represent it, is
its literal value, "hello", which is captured quite readily by the
expression tree Const("hello").

We’ll now extend CoreExps with more interesting types.

A.3 Embedding SQL
Using the embedding of basic expressions introduce in the previous
section, we now show how to generate SQL from a small query
DSL embedded in Scala. Its representation is defined in the trait
SQLExps, which extends the CoreExps trait.
trait SQLExps extends CoreExps {
case class ResultRow[T](fields: Map[String, Exp[_]])

extends Exp[T]

case class Select[T, U](tgt: Exp[U], field: String)
extends Exp[T]

case class Table[Tuple <: Record](name: String)
extends Exp[List[Tuple]]

case class ListSelect[Tuple <: Record, T]
(t: Exp[List[Tuple]],
f: Exp[Tuple] => Exp[T])

extends Exp[List[Tuple]] {
def projectedNames: Iterable[String] = f(null) match {
case ResultRow(fields) => fields.keys

}
}

...
}

An expression object of type ResultRow describes the shape
of results returned by an SQL Select clause. It contains a map-
ping from column names to expression trees that describes how
each column value of the result is computed. The Select case
class represents expressions that select a field on a target tu-
ple, e.g., item.customerName. To represent database tables we
use the Table case class. It takes a type parameter Tuple that

abstracts over the type of tuples stored in the table. Tuple ex-
tends the Record class, introduced below. Essentially, Record is
used to create result tuples in queries. The Table class extends
Exp[List[Tuple]], i.e., it represents an expression returning a
list of Tuple elements. This allows us to treat a table literal (which
only contains the name of the corresponding database table) as a
list of tuples, for which the standard Select clauses are defined.

To represent Select clauses we use the ListSelect case class.
Like Table, it extends Exp[List[Tuple]] where Tuple is a type
parameter for the type of the returned tuples. A ListSelect ex-
pression node points to a list expression of type Exp[List[Tuple]],
which is the list that we are selecting elements from, and an ex-
pression of type Exp[Tuple] => Exp[T], which is the selector
function used for determining (a) how to select elements from the
list, and (b) how to transform a selected element to a result tuple.
For example, the following DSL expression is represented as a
ListSelect node:
items Select (e => new Record {

val customerName = e.customerName })

In this case, items is lifted to an expression tree of type
Exp[List[Tuple]], and the function literal is lifted to an ex-
pression tree of type Exp[Tuple] => Exp[T]. This means the
selector function can use all of the fields defined in the Tuple type
to select columns to be included in the result.

Finally, we add an implicit conversion that lifts generic lists into
expression trees:
implicit def liftList[T](x: List[T]): Exp[List[T]]
= Const(x)

Let’s now define the methods that are concerned with the actual
embedding of query expressions in Scala. For this, we’ll create a
sub trait of SQLExps called EmbedSQL:
trait EmbedSQL extends SQLExps {
...

}

The first method we’ll add provides Select clauses on lists of
tuples:
implicit def listSelectOps[Tuple <: Record]

(l: Exp[List[Tuple]]) = new {
def Select[T](f: Exp[Tuple] => Exp[T])

: Exp[List[Tuple]] = ListSelect(l, f)
}

It relies on Scala’s standard implicit conversion mechanism:
since an expression of type Exp[List[Tuple]] does not provide a
method called Select, the compiler will turn an expression such as
table Select {f => ... }, where table : Exp[List[Tuple]],
into listSelectOps(table).Select{f => ...}. The Select
method call will in turn create a representation of the DSL’s Select
expression, an expression node of type Exp[List[Tuple]].

As we have seen in the previous example, result tuples are
created using new Record { val column_i = ... }. To rep-
resent such an expression in the AST of our DSL, we therefore
need to lift instance creation using new. We use the Row type con-
structor, which is part of virtualized Scala’s library, as a marker
to indicate when an instance creation new T should be virtualized.
This reification will take place whenever T <: Row[R], for some
type constructor R. For convenience, we declare the following class
inside our SQLExps trait:
class Record extends Row[Exp]

The actual lifting relies on the __new method, which is defined
as follows for our embedding:
def __new[T](args: (String, Exp[T] => Exp[_])*)
: Exp[T] = new ResultRow(args map {
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case (n, rhs) => (n, rhs(null))}
toMap)

The __new method takes a variable number of pairs as argu-
ments. Each pair contains the name of a field in our row type, as
well as a function which creates an expression tree for the field ini-
tializer in terms of an expression representing the “self” instance.
Since SQL does not support self-referential rows, we simply pass
null as the representation of the self reference. A more robust im-
plementation could inject an ErrorExpresion so that code gen-
eration can emit a suitable error message. In any case, we simply
create an instance of ResultRow, using the arguments to fill its
map.

To support projections in queries, we need to be able to select
fields of tuples. Therefore, we have to have a way to create ex-
pression trees for field selections. In Virtualized Scala we can lift
such selections by defining the special selectDynamic method for
the types of objects on which we would like to select fields. We
can provide this method through the following implicit conversion,
(which we add to our EmbedSQL trait):

When a field selection does not type check according to the
normal typing rules, as would be the case for, e.g., the selection
e.customerName since e’s type Exp[Tuple] does not define a
field customerName, the Virtualized Scala compiler will generate
an invocation of the selectDynamic method on e. Since it knows
from the row type that the selection is supposed to produce an
expression that evalues to a String, it will pass this information
along to selectDynamic as a type argument.
implicit def selectOps(self: Exp[_ <: Record])
= new { def selectDynamic[T](n: String): Exp[T]

= Select(self, n)
}

Due to the above implicit conversion, objects of type Exp[_ <: Record],
i.e., expression trees whose result type is a subtype of Record, have
a selectDynamic method that creates a Select node that contains
the expression tree of the target of the selection (self), the name
of the selected field (n), and that statically specifies the result type
of the expression.

Let’s create an example query that only uses the DSL elements
introduced so far:
object Example extends EmbedSQL with SQLCodeGen {
type Tuple = Record {
val itemName: String
val customerName: String

}

def prog = {
val items = Table[Tuple]("items")
items Select (e => new Record {

val customerName = e.customerName })
}
}

Compiling the Example object and running its prog method
should create an expression tree corresponding to the following
SQL query:
SELECT customerName FROM items

A.3.1 SQL code generation
Let’s turn the expression trees into SQL. This is straightforward
using methods that traverse and print our expression trees (|Print-
Writer| is imported from the java.io package):
trait SQLCodeGen extends SQLExps {
def emitPlain(out: PrintWriter, s: String,

more: Boolean = false) = {

if (more) out.print(s) else out.println(s)
}

def emitExpr[T](out: PrintWriter, expr: Exp[T]): Unit
= expr match {

case Select(_, field) =>
emitPlain(out, field, true)

}

def emitSelector[T, S](out: PrintWriter,
f: Exp[T] => Exp[S]): Unit

= f(null) match {
case ResultRow(fields) =>
var first = true
for ((name, value) <- fields) {
if (first) { first = false }
else emitPlain(out, ", ", true)
emitExpr(out, value)

}
}

def emitQuery[T](out: PrintWriter,
expr: Exp[T]): Unit

= expr match {
case Table(name) =>
emitPlain(out, name, true)

case ListSelect(table, selector) =>
emitPlain(out, "SELECT ", true)
emitSelector(out, selector)
emitPlain(out, " FROM ", true)
emitQuery(out, table)
emitPlain(out, "")

}
...

}

A.4 Row types in depth
As discussed in the previous section, the virtualizing Scala com-
piler turns new C{val x_i: T_i = v_i} into the method call
__new( ("x_i", (self_i: R) => v’_i) ). This section dis-
cusses this translation in more detail. It is also used in the JavaScript
embedding below.

(Note: the subscripted index _i denotes implicit repetition of
the smallest syntax tree that encompasses the subtrees subscripted
by the same index.)

There’s no definition of __new in EmbeddedControls, as
its signature would be too unwieldy. Virtualization is not per-
formed unless there exists a type constructor Rep, so that C is a
subtype of Row[Rep], where the marker trait Row is defined in
EmbeddedControls:

trait Row[+Rep[x]]

Furthermore, for all i,

• there must be some T’_i so that T_i = Rep[T’_i] – or, if that
previous equality is not unifiable, T_i = T’_i

• v’_i results from retyping v_i with expected type Rep[T’_i],
after replacing this by a fresh variable self_i (with type
Rep[C{ val x_i: T’_i }], abbreviated as R)

Finally, the call __new(("x_i", (self_i: R) => v’_i))
must type check with expected type R. If this is the case, the new
expression is replaced by this method call.

This assumes a method in scope whose definition conforms to:
def __new[T](args: (String, Rep[T] => Rep[_])*): Rep[T].

7 2011/10/17



A.4.1 Type-safe selection on rows
When e refers to a representation of a row, e.x_i is turned into
e.selectDynamic[T_i]("x_i") as follows.

When a selection e.x_i does not type check according to the
normal typing rules, and e has type Rep[C{ val x_i: T_i }]
(for some Rep and where C and the refinement meet the criteria out-
lined above), e.x_i is turned into e.selectDynamic[T_i]("x_i").
Note the T_i type argument: by defining selectDynamic appro-
priately, the DSL can provide type safe selection on rows. No type
argument will be supplied when the field’s type cannot be deter-
mined (i.e., it’s not in the row’s refinement).

A.5 Embedding JavaScript
To embed JavaScript, we must add a new kind of AST node to our
program representation: statements.

Consider the following JavaScript program:
var kim = { "name" : "kim", "age" : 20 }
kim.age = 21
if (kim.age >= 21) {
var allowedDrink = "beer"

} else {
var allowedDrink = "milk"

}

The following section will show how to set up the DSL so that
we can embed this programs as follows:
var kim = new JSObj { val name = "kim"; val age = 20 }
kim.age = 21
var allowedDrink = if (kim.age >= 21) {
"beer"

} else {
"milk"

}

A.5.1 Statements
Virtualized Scala does not provide support for reifying (or virtualiz-
ing) the sequencing of statements. Luckily, it doesn’t have to, as we
can rely on a shallow embedding using mutable state and the native
run-time semantics of Scala statements to capture the sequencing
of statements in embedded domain programs.

To see how this works, let’s consider the following fragment of
our running example.
var kim = ...
kim.age = 21

The virtualizing Scala compiler rewrites this to:
val kim = __newVar(...)
__assign(selectOps(kim).selectDynamic("age"),

liftInt(21))

(See the reference in the beginning of this appendix for the
details.)

These methods are defined as follows (see the full source for
details):
def __newVar[T](x: Exp[T]): Exp[T]
= VarInit(x)

def __assign[T](lhs: Exp[T], rhs: Exp[T]): Exp[Unit]
= VarAssign(lhs, rhs)

What you don’t see here is that VarInit and VarAssign are not
expressions (Exp[T]); they are statements (Def[T])! The infras-
tructure for dealing with statements provides the crucial missing in-
gredient, toAtom: an implicit conversion from Exp[T] to Def[T].
Let’s first make the conversion explicit:
def __newVar[T](x: Exp[T]): Exp[T]
= toAtom(VarInit(x))

def __assign[T](lhs: Exp[T], rhs: Exp[T]): Exp[Unit]
= toAtom(VarAssign(lhs, rhs))

The crucial insight is that the order in which these toAtom’s are
executed corresponds to the order in which the statements occur in
the embedded JavaScript program above. This tells us all we need
to know about sequencing of statements in the embedded program!

To drive the point home, inlining __newVar and __assign
peels off the last layer of syntactic sugar and indirection from our
initial fragment:

val kim = toAtom(VarInit(...))
toAtom(VarAssign(selectOps(kim).selectDynamic("age"),

liftInt(21)))

Running this Scala program creates an accurate representation
of the embedded JavaScript program, as the DSL implementa-
tion keeps track of the current scope of the domain program, and
toAtom populates this scope in the order in which it is called. On
each invocation, toAtom creates a fresh symbol and enters it into
the current scope. The symbol links the new entry in the current
scope to the original expression.

A.5.2 Statements in depth

Statements in the domain program (values of type Def[T]) are
embedded as Scala statements that have a single side-effect (from
the host language’s point of view): registering a new definition in
the current scope (the scope that represents a part of the domain
program).

This side-effect is implemented by toAtom, which largely re-
mains hidden from the user (both of the DSL framework and the
DSL itself) by virtue of being an implicit conversion. To achieve
this, it is driven by type information: a statement is of type Def[T],
but the virtualizing methods are set up to return Exp[T]’s. This po-
tential in type-difference drives Scala’s implicit conversion mech-
anism to insert the toAtom conversion whenever a statement must
be turned into an expression, the real representation of a DSL pro-
gram.

The DSL scope book keeping uses lists of Scope’s, themselves
lists of ScopeEntry’s to correlate a definition and the unique
symbol, an expression, that is used to refer to it.

The method reifyBlock creates a block by collecting the def-
initions that are entered in scope during the evaluation of the ar-
gument ‘e‘. This operation increases the nesting level by creating
a new nested scope: call it when entering a block in the DSL pro-
gram.

The method toAtom appends a new definition to the current
scope. This reifies the sequencing of definitions.

trait CoreDefs extends CoreExps {
abstract class Def[T]

case class ScopeEntry[T](sym: Sym[T], rhs: Def[T])
type Scope = List[ScopeEntry[_]]
var scopeDefs: List[Scope] = Nil

case class Block[T](stms: Scope, e: Exp[T])

implicit def reifyBlock[T](e: => Exp[T]): Block[T] = {
// push a new nested scope onto the stack
scopeDefs = Nil::scopeDefs
// evaluate e after going to a new nesting level
val r = e
// toAtom calls will now populate the current scope
val stms = scopeDefs.head // save the populated scope
scopeDefs = scopeDefs.tail // pop it
Block(stms, r) // wrap it up in a block

}

8 2011/10/17



implicit def toAtom[T](d: Def[T]): Exp[T] = {
// make a fresh symbol (: Exp[T]) to refer to the def
val sym = Sym[T]()
// append it to the current scope
scopeDefs = (scopeDefs.head :+ ScopeEntry(sym, d)) ::

scopeDefs.tail
sym // the expression-representation of the definition

}
}

A.5.3 If-then-else
Finally, with all this machinery in place, we can explain the virtu-
alization of an if-then-else statement.

Its representation is defined as follows, and the virtualization
hook looks simple enough: it simply creates an IfThenElse node.
case class IfThenElse[T](c: Exp[Boolean],

a: Block[T],
b: Block[T]) extends Def[T]

def __ifThenElse[T](cond: Exp[Boolean], thenp: Exp[T],
elsep: Exp[T]): Exp[T]

= IfThenElse(cond, thenp, elsep)

However, looks can be deceiving. Behind the scenes, implicit
conversions are taking care of reifying the sequencing. In a sense
this is “type-directed aspect-oriented programming”: the concern of
reifying sequence is factored out into implicit conversions (the “ad-
vice”), which are triggered by type annotations (the “join points”).

Making the implicit conversions explicit, we see what’s really
going on:

= toAtom(IfThenElse(cond,
reifyBlock(thenp),
reifyBlock(elsep)))

A.5.4 JavaScript Code Generation
The details of code generation for JavaScript do not provide any
further insights. For completeness, the generated code looks as
follows:
var x1 = {"name" : "kim","age" : 20}
var x2 = (x1.age = 21)
if (x1.age >= 21) {
var x3 = "beer"

} else {
var x3 = "milk"

}

The full source8 completes the example by generating a html
page so you can easily run the generated code in your browser.

A.6 Compiling and Running Embedded Code (Staging)
As a final example we show why you might want to embed Scala in
Scala. Generic matrix multiplication in Scala is very slow because
primitive values are boxed and for comprehensions are translated
into method calls, which entails allocating and garbage collecting
a significant amount of closures. Additionally, Range objects are
allocated simply to denote the start and end of the iteration’s index.

Consider the following naive implementation of matrix multi-
plication:
def multGeneric[T:Numeric:Manifest](m: Matrix[T], n: Matrix[T]) = {
val p = new Matrix[T](m.rows, n.cols)

8 https://github.com/adriaanm/scala-virtualized-tutorial/
blob/master/src/org/scala_lang/virtualized/js/embedjs.
scala

for (i <- 0 until m.rows) {
for (j <- 0 until n.cols) {
for (k <- 0 until n.rows)
p(i, j) += m(i, k) * n(k, j)

}
}
p

}

By implementing Matrix in terms of Exp[T] internally, we can
reify the matrix operations and optimize them later.
class Matrix[A: Manifest](val rows: Exp[Int],

val cols: Exp[Int]) {
private val arr: Exp[Array[A]]
= ArrayNew[A](rows * cols)

def apply(i: Exp[Int], j: Exp[Int]): Exp[A]
= arr(i*cols + j)

def update(i: Exp[Int], j: Exp[Int], e: Exp[A])
= { arr(i*cols + j) = e }

}

Similarly, we provide an implementation of a.until(b) where
a and b have type Exp[Int] using virtualized Scala’s infix_*
external method introduction mechanism, which achieves the same
effect as implicitly converting Exp[Int] to an anonymous class
that has an until method (as we have been doing until now), but
without the associated overhead.

Our more efficient RangeExp provides a foreach method that
reifies the block that is passed into it.
def infix_until(x: Exp[Int], y: Exp[Int]) = RangeExp(x,y)
case class RangeExp(val start: Exp[Int], val end: Exp[Int]) {
def foreach(f: Exp[Int] => Exp[Unit]): Exp[Unit] = {
val x = Sym[Int]()
val y = reifyBlock { f(x) }
Foreach(this, x, y)

}
}

By splicing in matrices and ranges that perform reification, in
addition to intercepting array update, multiplication, and addition
in the usual way, our naive program now generates a representation
of itself.

The reification of array creation provides a nice use case for
type manifests.
def ArrayNew[T: Manifest](n: Exp[Int]): Exp[Array[T]]
= ArrayNewOp[T](n, manifest[T])

case class ArrayNewOp[T](n: Exp[Int], tp: Manifest[T])
extends Def[Array[T]]

def emitNode[T](s: Sym[T], d: Def[T]): Unit = d match {
case ArrayNewOp(n, tp) =>
emitValDef(s, "new Array[" + tp + "](" + n + ")")

...

Here, the standard library’s manifest[T] provides easy access
to the implicit manifest that is in scope due to the Manifest context
bound on T.

Finally, we can generate more efficient code for this representa-
tion.

First of all, we compile for loops down to while loops, as shown
by this snippet from the code generator:
def emitNode[T](s: Sym[T], d: Def[T]): Unit = d match {
case Foreach(r,x,y) =>
emitPlain("var " + x + ": Int = " + r.start)
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emitPlain("while (" + x + " < " + r.end + ") ", true)
emitBlock(y, false, x + " += 1")
emitValDef(s, "()")

...

We also remove generic dispatch and instantiate all generic
types. We get these optimizations essentially for free due to the
way the embedding is set up. Our minimal “optimizer” yields the
following program:
var x27 = 500 * 500
var x28 = new Array[Double](x27)
var x29: Int = 0
while (x29 < 500) {
var x30: Int = 0
while (x30 < 500) {
var x31: Int = 0
while (x31 < 100) {
...
x31 += 1

}
var x46 = ()
x46
x30 += 1

}
var x47 = ()
x47
x29 += 1

}

Finally, we simply instantiate a Scala compiler instance and use
its API to generate bytecode for the optimized Scala code that we
generated, and run the resulting program. We refer to the online
sources for the details.
val f = compile {
val m = randomMatrix(500, 100
val n = randomMatrix(100, 500)

val p = multGeneric(m,n)
p.print

}
// call f() to execute block

Informal benchmarks indicate these simple optimizations result
in a 20x speedup: the polymorphic multiplication takes 1.4s, when
specializing to matrices of doubles the run time is reduced to 1s,
and the staged implementation reduces this time further by a factor
of 20.
compilation: ok
3117192.0
--- generic took 2.691s
3117192.0
--- generic took 1.4s
3117192.0
--- generic took 1.464s
3117192.0
--- generic took 1.359s
3117192.0
--- generic took 1.244s

3117192.0
--- double took 1.062s
3117192.0
--- double took 1.228s
3117192.0
--- double took 1.076s
3117192.0
--- double took 1.03s

3117192.0
--- double took 1.076s

3117192.0
--- staged took 0.088s
3117192.0
--- staged took 0.058s
3117192.0
--- staged took 0.055s
3117192.0
--- staged took 0.054s
3117192.0
--- staged took 0.056s

This is just the tip of the iceberg of the optimizations enabled
by our approach. Using Lightweight Modular Staging9 and Delite10

we can add parallelism, loop fusion, code motion and other ad-
vanced optimizations. We have a full program representation, so
we can do anything a regular compiler can do, at a fraction of the
implementation cost.

9 http://github.com/TiarkRompf/virtualization-lms-core
10 http://github.com/stanford-ppl/Delite

10 2011/10/17
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