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Abstract

Implementing machine learning algorithms for large data, such as the Web graph and
social networks, is challenging. Even though much research has focused on making se-
quential algorithms more scalable, their running times continue to be prohibitively long.
Meanwhile, parallelization remains a formidable challenge for this class of problems,
despite frameworks like MapReduce which hide much of the associated complexity.
We present three ongoing efforts within our team, previously presented at venues in
other fields, which aim to make it easier for machine learning researchers and practi-
tioners alike to quickly implement and experiment with their algorithms in a parallel or
distributed setting. Furthermore, we hope to highlight some of the language features
unique to the Scala programming language in the treatment of our frameworks, in an
effort to show how these features can be used to produce efficient and correct parallel
systems more easily than ever before.

1 Introduction

There is a growing need to facilitate the analysis of large data. Machine learning (ML) has provided ele-
gant and sophisticated solutions to many complex problems on a small scale, which if ported to large scale
problems, could open up new applications and avenues of research for numerous fields. Unfortunately,
ML research efforts are routinely limited by the complexity and running time of sequential algorithms.
Despite their success in other contexts, parallel programming paradigms like MapReduce/Hadoop are, in
many ways, too limited to express the charicteristics of problems which frequently arise in fields like ML.
Inspired by these limitations, we present several projects which, in different ways, aim to make it easier
for ML researchers and practitioners to implement and experiment with their algorithms in a parallel or
distributed setting.

The goals of this paper are two-fold; we aim to showcase some of our tools, libraries, and frameworks
suited to large-scale parallel and distributed learning, meanwhile highlighting language features that the
Scala programming language integrates in a unique way, and which we argue make using and developing
parallel systems much more easily achievable.

We first present three projects suited for large-scale ML. Two of which have been recently presented at
non-ML oriented venues: Menthor [1], a framework for distributed graph-processing, and Scala’s Parallel
Collections [2], a library which provides parallel bulk operations on generic collection types, such as
Arrays, Maps, and Sets. And finally, OptiML [3], a parallel domain-specific language (DSL) for machine
learning on heterogeneous hardware platforms’.

'As a member of the Scala team at EPFL, Heather has worked on Scala parallel collections, and is also one of
the primary authors of the Menthor ML framework. As a member of Stanford’s PPL, Philipp works on debugging
tools for the Delite DSL framework, as a member of the Scala team at EPFL, he works on the Scala language and
(concurrency) libraries.



Finally, we hope to show how each of these projects rely on a unique combination of interesting language
features, which in many respects are responsible for making their implementations possible, and we note
the existence of other related projects like Spark [4] and FACTORIE [5] who have also chosen Scala for
its language features.

2 Our Tools, Libraries, and Frameworks for Big Learning

2.1 Menthor

Menthor [1] is a framework and abstraction for parallelizing (and distributing) iterative algorithms, that
is well-suited to operate on graphs. It is implemented as a normal library in Scala, and as such, requires
no additional compiler plugin.

Within the Menthor programming model, data is represented as a graph; vertices represent atomic data
items, and edges represent relationships between these data items?. Data items stored inside of vertices are
iteratively updated in globally synchronized supersteps, inspired by Valiant’s Bulk Synchronous Parallel
model [6] and Google’s Pregel [7], via an update method, until some convergence condition is satisfied.

Additionally, supersteps can be created by a composition of so-called substeps. A set of substep combi-
nators available within the framework allows composing substeps to form chains of computations within
supersteps, which essentially structures an iteration into several phases, where each phase may be either
parallel or sequential. The combinators available include then steps (and variants such as thenUntil)
which roughly correspond to a map or foreach combinator, and crunch which corresponds to a reduce
combinator, commonly found in functional programming. A principal difference, however, between a
standard functional combinator and the substep combinators provided by the Menthor framework is that
the result of a substep combinator is made available as an incoming message to vertices at the start of
the next substep, via the incoming field. In particular, the crunch combinator ensures that its result is
available to all vertices, while all other combinators make their results available to a targeted subset of
vertices, making it easy to express message-passing algorithms on graphs. A more deailed treatment of
the programming model can be be found in [1] along with examples and a performance evaluation.

2.2 Parallel Collections

Parallel Collections [2] is a normal library included in Scala’s standard distribution; as such, it requires
no additional compiler plugin, and ships with the standard Scala compiler. It can be thought of as simply
a parallel version of the standard collections library with exactly the same interface.

Like Scala’s sequential collections library, data structures (collections) implemented in Scala’s parallel
collections framework, each come with dozens of functional operations, such as fold, reduce, filter,
foreach, and map. Thus, if one can express their algorithm in a functional style, it can be automatically
parallelized by simply using the Scala parallel collections framework.

Usage is simple— most collections in Scala’s standard library include a parallel counterpart. A sequential
collection can be converted to a parallel version simply by calling its par method. Subsequently, all bulk
operations performed on the parallel version are executed in parallel.

The parallel collections framework was also designed to be generic; users are able to define their own
collections, which automatically inherit all of the parallel methods supported within the framework. Ex-
tensibility and the design of the framework is further elaborated upon in [2] along with performance
evaluations.

2.3 OptiML

OptiML [3] is a domain-specific language (DSL) for machine learning. It is embedded in Scala which
means that a Scala compiler is used to compile DSL programs.? The OptiML language itself is a restricted
subset of Scala. Programs can be compiled for a variety of parallel hardware platforms, including CMPs

2For data types that are not typically represented by graphs, like images or video for example, a pixel can be
represented as a vertex with edges connecting neighboring pixels.

3Currently, OptiML requires the Virtualized Scala compiler which is a small compiler extension supporting lan-
guage virtualization [8].



(chip multi-processors), GPUs (by automatically generating CUDA code), and eventually even FPGAs
and other specialized accelerators. Cluster support is currently not available, but is a topic of ongoing
work. Furthermore, compilation employs aggressive domain-specific optimizations, resulting in high-
performance generated code which outperforms parallel MATLAB on many common ML kernels.

OptiML makes it easy to express iterative statistical inference problems, such as those conforming to
the Statistical Query Model [9] which has been shown to cover a large subset of ML algorithms [10].
Most of these problems are expressed using dense or sparse linear algebra operations which can be paral-
lelized using a large number of fine-grained map-reduce operators. OptiML programs make use of three
fundamental data types, Vector, Matrix, and Graph, which support all of the standard linear algebra oper-
ations used in most ML algorithms. These data types are polymorphic and are compiled to efficient code
leveraging BLAS or GPU support if they are used with scalar values.

OptiML provides high-level control structures tailored to iterative algorithms involving vectors and ma-
trices. Consider the following example using the untilconverged operator:

untilconverged (mu, tol) { mu =>
// computing newMu
newMu

}

The untilconverged operator takes two parameters mu and tol as arguments, as well as a function
{ mu => ... newMu } that takes a value mu and returns a value newMu. Executing untilconverged
iterates until the difference between mu and newMu falls below the tolerance tol.

Vectors and matrices offer convenient ways for construction, and can be used with normal arithmetic syn-
tax (e.g., x (1) for indexing). In summary, the provided features enable programs resembling pseudocode
or scripts. In [3] the authors discuss more extensive examples that illustrate the conciseness of OptiML,
while also showing some detailed benchmarks.

3 Scala’s Language Features for Big Learning

In the following we present a number of language features that we categorize according to the level of
(Scala) expertise required to make effective use of them (basic, intermediate, and advanced). Based on
the above categories, we provide an overview of how the language features discussed below, and the tools
discussed above in Section 2 come together to affect end users, ML experts, and parallel system architects.
For example, the OptiML DSL can be used by an ML expert, it can be implemented by an intermediate
Scala user, but it requires a parallel system architect to distribute its run-time system.

e For comprehensions (basic). Make it possible to perform implicity parallel bulk operations on
parallel collections. For example,
for (url <- urls){ url.rank = computePageRank(url) }

o Closures (basic). Used for high-level control structures like untilconverged in OptiML and
crunch in Menthor (see Section 2). Many bulk operations for parallel collections take closures
as parameters (e.g., the find method takes a closure to filter with as an argument). Moreover,
closures enable productive use of immutable data structures, which are essential for providing
fault tolerance in Spark [4].

e By-name parameters (intermediate). Library methods can take unevaluated blocks of code as
arguments, known as by-name parameters. The library or framework can then chose to evaluate
the code block at a later point in time. This mechanism is used in Menthor to create chains of
computational steps by passing code blocks to substep combinators, like then or crunch. By-
name parameters enable one to create what seem like custom keywords without extending the
language or compiler.

e Syntactic shorthands (intermediate). Scala provides a small number of simple syntactic
rewritings which help produce clearer and more readable APIs. For example, the expression
x(1) = x(j) + 1isrewritten to x.update(i, x.apply(j) + 1). By providing appropri-
ate definitions for the update and apply methods, OptiML enables standard arithmetic nota-
tions for vectors and matrices. Syntactic shorthands can be used to provide familiar notations
for custom data types.



o Trait composition (intermediate). Scala’s traits [11] roughly correspond to interfaces in Java
(supporting multiple inheritance), except that they can also have concrete methods and fields.
Trait composition is used to combine the functionality of multiple traits in a new trait or class. It
is used when extending the parallel collections framework with a new, custom collection type, for
example, a DNA sequence type. Traits enable safe and flexible combinations of type hierarchies,
resulting in richer ways to extend libraries and frameworks.

o Implicits (advanced). Implicits are used, for example, in Scala’s parallel collections to avoid
bit rot [12] (complicated and difficult-to-maintain libraries, full of code duplication). In parallel
collections, they enable uniform result types for parallel bulk operations: for example, invoking
map on a parallel vector returns a parallel vector, as opposed to a less-specific super type. Ar-
guably, this makes parallel collections easier to use by preventing the user from having to use
type casts in many cases. Implicits allow framework implementers to avoid having to write a
considerable amount of repetitive boilerplate code.

o Delimited continuations (advanced). Continuations make it possible to suspend computation
and to automatically create a closure (see above) to hold the remaining compution within. A
popular Scala middleware used for distributing computation, known as Akka, uses continuations
for providing futures [13] for lightweight, event-driven actors [14, 15]. Continuations make it
possible to define APIs with what seem like blocking operations, while never actually blocking
at all, resulting in extremely lightweight and scalable processing of concurrent tasks.

e Specialization (advanced). In parallel collections, specialization of type parameters can be used
to avoid the performance overhead of boxing, the wrapping of primitives on the heap, which
leads to an indirection when attempting to access data elements. Specialization avoids this, thus
improving cache locality which is especially important on multi-core systems to achieve good
scalability. Specialization is essential for high-performance parallel data structures on the JVM.

e Higher-kinded types (advanced). Makes it possible to avoid the use of concrete type construc-
tors. Used in the DSL framework, Delite [16] to be generic in the type constructors used for code
generation. This enables targeting different hardware platforms (e.g., GPUs) without changes to
the DSL. Higher-kinded types allow framework implementers to abstract from concrete type
constructors, enabling more code re-use.

Analogous to the above language features we provide a qualitative comparison according to the level
of Scala experience required to use, extend, and architect each framework, respectively, summarized in
Table 1.

Using all of the introduced frameworks requires only basic knowledge of Scala, thanks to clear, readable
APIs which don’t expose users to complex features. The original architecture of Menthor as well as its
extension requires intermediate Scala experience, given the use of by-name parameters, syntactic short-
hands, and trait composition. The architecture of Scala’s parallel collections is based on several advanced
features, such as implicits and higher-kinded types. However, only an intermediate level of experience
is needed to extend the framework with custom collection types, thanks to its flexible trait hierarchy
designed for user extensions.

Implementing the OptiML DSL is feasible with only an intermediate level of Scala experience, thanks to
the predefined building blocks of the Delite DSL framework. However, the facilities for code generation
and scheduling that Delite provides require an expert in parallelism to build.

4 Conclusion

There is a lot of activity on leveraging Scala’s expressiveness and ecosystem for large-scale learning tasks.
This paper introduces three projects that are conducted in the context of the Scala team. By focusing on the
used language features, we attempt to distill commonalities among the discussed tools and frameworks;
at the same time, this allows us to differentiate the tools and frameworks based on their implementation
approach. We hope that a categorization of language features according to the level of required Scala
experience helps end users, ML experts, and system builders to find features and tools that satisfy their
particular needs. We hope that this exposition contributes to a rich exchange among existing and potential
users on how to make—and how others have made—best use of Scala for Big Learning.
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Framework Use Extension Architecture

Menthor [1] Basic Intermediate  Intermediate
Parallel Collections [2] Basic Intermediate Expert
OptiML [3] Basic Intermediate  Intermediate
Delite [16] Intermediate Expert Expert

Table 1: Scala experience required to use, extend, and architect frameworks for large-scale learning.



