
On the Integration of the Actor Model
into Mainstream Technologies

A Scala Perspective

Philipp Haller
Typesafe, Inc.

philipp.haller@typesafe.com

Abstract
Integrating the actor model into mainstream software platforms is
challenging because typical runtime environments, such as the Java
Virtual Machine, have been designed for very different concurrency
models. Moreover, to enable integration with existing infrastruc-
tures, execution modes and constructs foreign to the pure actor
model have to be supported. This paper provides an overview of
past and current efforts to address these challenges in the context
of the Scala programming language.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming— Distributed and parallel pro-
gramming; D.2.13 [Software Engineering]: Reusable Software—
Reusable libraries

Keywords Concurrent programming, distributed programming,
actors, threads

1. Introduction
Actors are a powerful abstraction for structuring highly concurrent
software systems which scale up to many-core processors, as well
as scale out to clusters and the cloud. The Scala community is well-
known for its effort to bring the actor model to mainstream software
engineering. The first actors implementation was released as part of
the Scala standard library in 2006 [6, 15]. Since then, there has been
a steady stream of both research results and industrial development,
contributing to a renewed interest in actors in academia, as well
as innovations powering state-of-the-art frameworks like the Akka
event-driven middleware [16].

Integrating the actor model into mainstream software platforms
is a formidable challenge. On the one hand, industrial-strength im-
plementations have to make optimal use of underlying runtime en-
vironments which typically have not been designed to support ac-
tors. On the other hand, in order to integrate with existing infras-
tructures, it is necessary to support execution modes and constructs
that are rather foreign to a pure notion of actors, such as blocking
operations, and interoperability with native platform threads.

This paper provides an overview of the challenges of provid-
ing an industrial-strength actor implementation on the Java Vir-
tual Machine (JVM), in the context of the Scala programming lan-
guage [13]. It aims to serve as an experience report on addressing
these challenges through a combination of research and engineer-
ing advances.

We’re going to focus on the two main actor implementations for
Scala: Scala Actors [7] and Akka [16]. The former has been part of
Scala’s standard library since Scala version 2.1.7. Beginning with

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page.
AGERE! October 21-22, 2012.

Scala version 2.10.0, Scala Actors are deprecated in favor of Akka’s
actor implementation, a new member of the Scala distribution. One
goal of this paper is to motivate this transition, and to examine
which ideas of Scala Actors are adopted in Akka, and what has
changed in the design and implementation.

1.1 Overview
The design and implementation of industrial-strength actor imple-
mentations on mainstream platforms, such as the JVM, is driven
by numerous requirements. Some requirements guided the design
and implementation of Scala’s first actors framework; these “early
requirements” were:

• Library-based implementation (R1). It is unclear which con-
currency abstraction is going to “win”. Real-world concurrency
tasks might even benefit from a combination of several differ-
ent abstractions. Rather than betting on a single candidate and
providing built-in language support, Scala’s approach has been
to enable flexible concurrency libraries.

• High-level domain-specific language (R2). While actors are
provided using library abstractions in Scala, it is important that
their programming interface is “competitive” with languages
with specialized concurrency support.

• Event-driven implementation (R3). Actors should be mapped to
lightweight tasks triggered by messaging events. Spending an
entire virtual machine thread per actor does not scale to large
numbers of actors. At the same time, the benefits of thread-
based programming should remain accessible in cases where
a purely event-driven model would be too restrictive.

In retrospect, these requirements are still valid, however, other
requirements turned out to be more important in the context of
industrial software development. With the growing use of actors in
production Scala applications, it became clear that satisfying only
these early requirements was not sufficient to meet all demands.
Other requirements had to be added, and existing ones turned out
to be useful beyond their initial goals. These “later requirements”
were:

• High performance (R4). The majority of industrial applica-
tions where actors provide most benefits are highly perfor-
mance sensitive. Past experience with industrial Erlang appli-
cations [1, 12] suggests that scalability is more important than
raw performance. On the other hand, it is known that a high-
performance virtual machine such as the JVM can enable ap-
plications to scale out much more gracefully than other runtime
environments. In addition, benchmarking offers a simple evalu-
ation strategy if the compared benchmark programs are of sim-
ilar complexity.



• Flexible remote actors (R5). Many medium-sized and large ap-
plications can benefit from remote actors, i.e., actors that com-
municate transparently over the network. In many cases, flexi-
ble deployment mechanisms, e.g., using external configuration,
are very important.

The early requirement of a library-based implementation turned
out to provide additional benefits: first, it enables existing tools,
such as IDEs and debuggers, to be readily supported. Second, it is
possible to provide APIs for several languages. For example, the
Akka framework has both a Scala and a Java API.

In the following we are going to “tackle” these requirements,
in two groups: the first group is concerned with the programming
interface (see Section 2) which addresses requirements R1 and
R2. The second group is concerned with the actor runtime (see
Section 3) which addresses requirements R3 and R4. Remote actors
(R5) are beyond the scope of this paper.

2. The Programming Interface
This section provides an overview of the programming interface of
both Akka and Scala Actors, and how the interface is realized as a
library in Scala.

An actor is a process that communicates with other actors by
exchanging messages. The principal message send operation is
asynchronous. Therefore, an actor buffers incoming messages in
a message queue, its mailbox. The behavior of an actor determines
how the messages in its mailbox are processed. Since defining an
actor’s behavior is a rather important activity when programming
with actors, it is crucial that an actor programming system has good
support for it. In Scala, the behavior of an actor can be defined by
creating a new class type that extends a predefined Actor trait.1

Figure 1 shows an example using Scala Actors (top) and Akka
Actors (bottom), respectively.

In Scala Actors, the body of the act method (inherited from
Actor) defines an actor’s behavior. In the above example, it repeat-
edly calls the receive operation to try to receive a message. The
receive operation has the following form:

receive {
case msgpat1 => action1

...
case msgpatn => actionn

}

The first message which matches any of the patterns msgpati
is removed from the mailbox, and the corresponding actioni is
executed. If no pattern matches, the actor suspends.

The example in Figure 1 (top) uses receive to wait for two
kinds of messages. The Order(item) message handles an order
for item. An object which represents the order is created and an
acknowledgment containing a reference to the order object is sent
back to the sender. The Cancel(o) message cancels order o if
it is still pending. In this case, an acknowledgment is sent back
to the sender. Otherwise a NoAck message is sent, signaling the
cancellation of a non-pending order.

The API of Akka’s actors is similar to that of Scala Actors. The
principal way of defining a message handler for incoming messages
is the implementation of the receive method, which is inherited
from the Actor trait. The body of the receive method has the
same form as in the case of receive in Scala Actors.

For simplicity, we’re going to refer to the latter as “sreceive”
and to the former as “areceive” (Akka’s receive) in the following.
The main difference between “sreceive” and “areceive” is that the

1 A trait in Scala is an abstract class that can be mixin-composed with other
traits.

class OrderManager extends Actor {
def act() {

while (true) {
receive {
case Order(item) =>
val o = handleOrder(sender, item)
sender ! Ack(o)

case Cancel(o) =>
if (o.pending) {

cancelOrder(o)
sender ! Ack(o)

} else sender ! NoAck
}

}
}

}

class OrderManager extends Actor {
def receive = {
case Order(item) =>

// same as above
case Cancel(o) =>

// same as above
}

}

Figure 1. Example: orders and cancellations.

former operation is blocking, i.e., the current actor is suspended
until a matching message can be removed from its mailbox. On the
other hand, “areceive” is used to define a global message handler,
which, by default, is used for processing all messages that the actor
receives over the course of its life time. Moreover, the message
handler defined by “areceive” only gets activated when a message
can be removed from the mailbox. Another important difference is
that “areceive” will never leave a message in the mailbox if there
is no matching pattern which is different compared to “sreceive”.
Whenever the actor is ready to process the next message, it is
removed from the mailbox; if there is no pattern that matches the
removed message, an event is published to the system, signaling an
unhandled message.

The example in Figure 1 (bottom) defines a global message
handler which handles the same two kinds of messages as the
example at the top.

2.1 Bridging the Gap
The semantics of “sreceive” and “areceive” are quite different.
“sreceive” has the same semantics as “receive” in Erlang [2]. On
the other hand, “areceive” can be implemented more efficiently on
the JVM. Each construct enables a different programming style for
messaging protocols. To support both styles, Akka 2.0 introduces
a Stash trait which an Actor subclass can optionally mix in.
Together with methods to change the global message handler of
an actor (called become and unbecome in Akka), the stash enables
the familiar Erlang style also using Akka.

2.2 Creating Actors
In Scala Actors, creating a new instance of a subclass of Actor
(such as OrderManager in Figure 1) creates an actor with the be-
havior defined by that class. All interaction with the actor (message
sends etc.) is done using references to that instance.

In Akka Actors, an actor is created using one of several factory
methods of an instance of type ActorRefFactory, say factory:



val actor = factory.actorOf(Props[OrderManager])

In many cases, the factory object is the “actor system”, the con-
tainer which provides shared facilities (e.g., task scheduling) to
all actors created in that container. (The factory can also be a
“context” object which is used to create supervision hierarchies for
fault handling.) The expression Props[OrderManager] in Scala
is equivalent to Props.apply[OrderManager], an invocation of
the apply factory method of the Props singleton object. Singleton
objects have exactly one instance at runtime, and their methods are
similar to static methods in Java. The Props.applymethod returns
an instance of the Props class type, which contains all information
necessary for creating new actors.

The main difference between creating an actor in Scala Actors
and in Akka is that the above actorOf method in Akka returns an
instance of type ActorRef instead of an instance of the specific
Actor subclass. One of the main reasons is encapsulation.

2.3 Encapsulation
The actor runtime guarantees thread safety of actor interactions
only if actors communicate only by passing messages. However,
in Scala Actors it is possible for an actor to directly call a (public)
method on a different actor instance. This breaks encapsulation and
can lead to race conditions if the state of the target actor is accessed
concurrently [10].

To prevent such encapsulation breaches, in Akka actors have a
very limited interface, ActorRef, which basically only provides
methods to send or forward messages to its actor. Akka has built-
in checks to ensure that no direct reference to an instance of an
Actor subclass is accessible after an actor is created. This mech-
anism works surprisingly well in practice, although it can be cir-
cumvented. [9]

An alternative approach to ensuring encapsulation of actors is
a typing discipline such as uniqueness types [3]. The capability-
based separate uniqueness type system [8] has been implemented
as a prototype for Scala [5]. However, more research needs to be
done to make such type systems practical.

2.4 Implementation
Looking at the examples shown above, it might seem that Scala is a
language specialized for actor concurrency. In fact, this is not true.
Scala only assumes the basic thread model of the underlying host.
All higher-level operations shown in the examples are defined as
classes and methods of the Scala library. In the rest of this section,
we look “under the covers” to find out how selected constructs are
defined and implemented.

The send operation ! is used to send a message to an actor.
The syntax a ! msg is simply an abbreviation for the method call
a.!(msg), just like x + y in Scala is an abbreviation for x.+(y).
Consequently, ! can be defined as a regular method:

def !(msg: Any): Unit = ...

The receive constructs are more interesting. In Scala, the pattern
matching expression inside braces is treated as a first-class object
that is passed as an argument to “sreceive”, and returned from
“areceive”, respectively. The argument’s type is an instance of
PartialFunction, which is a subtrait of Function1, the type of
unary functions. The two traits are defined as follows.

trait Function1[-A, +B] {
def apply(x: A): B

}
trait PartialFunction[-A, +B]
extends Function1[A, B] {
def isDefinedAt(x: A): Boolean

}

Functions are objects which have an apply method. Partial func-
tions are objects which have in addition a method isDefinedAt
which tests whether a function is defined for a given argument.
Both traits are parameterized; the first type parameter A indicates
the function’s argument type and the second type parameter B indi-
cates its result type2.

A pattern matching expression
{ case p1 => e1; ...; case pn => en } is then a partial
function whose methods are defined as follows.

• The isDefinedAt method returns true if one of the patterns
pi matches the argument, false otherwise.

• The apply method returns the value ei for the first pattern
pi that matches its argument. If none of the patterns match, a
MatchError exception is thrown.

The two methods are used in the implementation of “sreceive”
as follows. First, messages in the mailbox are scanned in the order
they appear. If the argument f of “sreceive” is defined for a mes-
sage, that message is removed from the mailbox and f is applied
to it. On the other hand, if f.isDefinedAt(m) is false for every
message m in the mailbox, the receiving actor is suspended.

The Akka runtime uses partial functions differently: first, the be-
havior of an actor is defined by implementing the receive method;
this method returns a partial function, say, f. The messages in the
actor’s mailbox are processed in FIFO order. The Akka runtime
guarantees that at most one message (per receiving actor) is pro-
cessed at a time. Each message, say msg is removed from the mail-
box regardless of f. If f is defined for msg, f is applied to it. On the
other hand, if f.isDefinedAt(msg) is false, msg is published as
an “unhandled message” event to the system (wrapped in an object
which additionally contains references to the sender and receiver).

3. The Actor Runtime
As motivated in the introduction, the most important features of
the actor runtime are (a) a lightweight execution environment, and
(b) high performance. In the following we will outline how these
features are realized in Akka and which ideas of Scala Actors stood
the test of time.

3.1 Event-Based Actors
Scala Actors [6] introduced a new approach to decouple actors
and threads by providing an event-based operation for receiving
messages, called “react”. In this approach, an actor waiting for a
message that it can process is not modeled by blocking a thread;
instead, it is modeled by a closure which is set up to be scheduled
for execution when a suitable message is received. At that point
a task is created which executes this continuation closure, and
submitted to a thread pool for (asynchronous) execution.

In this approach, the continuation closure is actually an instance
of type PartialFunction[Any, Unit] (see Section 2.4). Akka
has adopted this idea: the continuation of an actor waiting for a
message is an instance of the same type. The main difference is
that when using “react”, this continuation closure is provided per
message to be received; in contrast, in Akka the continuation clo-
sure is defined once, to be used for many (or all) messages. Addi-
tionally, Akka provides methods to change the global continuation
(become/unbecome). The main advantage of Akka’s approach is
that it can be implemented much more efficiently on the JVM. In

2 Parameters can carry + or - variance annotations which specify the re-
lationship between instantiation and subtyping. The -A, +B annotations
indicate that functions are contravariant in their argument and covari-
ant in their result. In other words Function1[X1, Y1] is a subtype of
Function1[X2, Y2] if X2 is a subtype of X1 and Y1 is a subtype of Y2.



the absence of first-class continuations, implementing “react” re-
quires the use of control-flow exceptions to unwind the call stack,
so that each message is handled on a call stack which is basically
empty. Throwing and catching a control exception for each mes-
sage is additional overhead compared to Akka’s execution strategy.

3.2 Lightweight Execution Environment
A key realization of Scala Actors is the fact that for actor programs
a workstealing thread pool with local task queues [11] scales much
better than a thread pool with a global task queue. The main idea
is as follows: when creating a task which executes the message
handler to process a message, that task is submitted to the local
task queue of the current worker thread. This avoids an important
bottleneck of thread pools with a global task submission queue
which can quickly become heavily contended.

Like Scala Actors, Akka uses Lea’s fork/join pool (an evolu-
tion of [11], released as part of JDK 7 [14]). In addition, and un-
like Scala Actors, Akka uses non-blocking algorithms for inserting
messages into actor mailboxes, and scheduling tasks for execution,
which results in a substantial performance boost.

3.3 Integrating Threads and Actors
Integrating (JVM) threads and event-based actors is useful to
enable powerful message-processing operations also for regular
threads. This facilitates interoperability with existing libraries and
frameworks and offers additional convenience, since it enables ac-
tors to be more easily used from Scala’s interactive REPL (read-
eval-print-loop). Besides Scala Actors, there are other approaches
attempting an integration of threads and event-based actors [4].

In Scala Actors, calling receive on a regular thread, which is
not currently executing an actor, establishes an actor identity and
mailbox in thread-local storage. This actor identity can be passed
to other actors in messages, so as to add the thread actor to their set
of acquaintances.

Akka version 2.1 introduces an Inbox abstraction which let’s
one create a first-class actor mailbox as follows:

implicit val i = ActorDSL.inbox()
someActor ! someMsg // replies will go to ‘i‘

val reply = i.receive()
val transformedReply = i.select(5 seconds) {
case x: Int => 2 * x

}

The message send in the second line above implicitly trans-
mits an ActorRef obtained from the Inbox i as the sender
of someMsg. As a result, responses of the receiving actor (via
sender ! someResponse) are enqueued in i. Methods such as
receive and select enable blocking access to one message at
a time. The downside of a first-class mailbox is, of course, that it
does not come with a guarantee that there is only a single thread
receiving from the same mailbox, since it could be shared among
multiple threads. On the other hand, the advantage is that it allows
an efficient implementation, and it is relatively straight-forward to
avoid subtle memory leaks.

3.4 Summary
• Scala’s partial functions are well-suited to represent an actor’s

continuation.
• The overhead of unwinding the call stack through exceptions

can be avoided by using a single, global message message
handler. Loss in flexibility can be recovered through constructs
to replace the global message handler.

• A workstealing thread pool with local task queues is an ideal
execution environment for event-based actors.

• Threads and actors can be integrated in a robust way using first-
class actor mailboxes. On the other hand, it does not guarantee
unique receivers.

4. Conclusion
In this paper we have outlined the requirements and forces of
mainstream software engineering which have influenced past and
present actor implementations for Scala. Based on these require-
ments, principles behind the design and implementation of actors
in Scala are explained, covering (a) the programming interface, and
(b) the actor runtime. It is our hope that the learned lessons will be
helpful in the design of other actor implementations for platforms
sharing at least some features with Scala and/or the Java Virtual
Machine.

References
[1] J. Armstrong. Erlang — a survey of the language and its industrial

applications. In Proc. INAP, pages 16–18, Oct. 1996.
[2] J. Armstrong, R. Virding, C. Wikström, and M. Williams. Concurrent

Programming in Erlang, Second Edition. Prentice-Hall, 1996.
[3] D. Clarke, T. Wrigstad, J. Östlund, and E. B. Johnsen. Minimal owner-

ship for active objects. In Proceedings of the 6th Asian Symposium on
Programming Languages and Systems (APLAS’08), pages 139–154.
Springer, Dec. 2008.

[4] T. V. Cutsem, S. Mostinckx, and W. D. Meuter. Linguistic symbiosis
between event loop actors and threads. Computer Languages, Systems
& Structures, 35(1):80–98, 2009.

[5] P. Haller. Isolated Actors for Race-Free Concurrent Programming.
PhD thesis, EPFL, Switzerland, Nov. 2010.

[6] P. Haller and M. Odersky. Event-based programming without in-
version of control. In D. E. Lightfoot and C. A. Szyperski, editors,
JMLC, volume 4228 of Lecture Notes in Computer Science, pages 4–
22. Springer, 2006. ISBN 3-540-40927-0.

[7] P. Haller and M. Odersky. Scala actors: Unifying thread-based and
event-based programming. Theor. Comput. Sci, 410(2-3):202–220,
2009.

[8] P. Haller and M. Odersky. Capabilities for uniqueness and borrow-
ing. In Proceedings of the 24th European Conference on Object-
Oriented Programming (ECOOP’10), pages 354–378. Springer, June
2010. ISBN 978-3-642-14106-5.

[9] P. Haller and F. Sommers. Actors in Scala. Artima Press, 2012.
[10] R. K. Karmani, A. Shali, and G. Agha. Actor frameworks for the

JVM platform: a comparative analysis. In Proceedings of the 7th
International Conference on Principles and Practice of Programming
in Java (PPPJ’09), pages 11–20. ACM, Aug. 2009. ISBN 978-1-
60558-598-7.

[11] D. Lea. A Java fork/join framework. In Java Grande, pages 36–43,
2000.

[12] J. H. Nyström, P. W. Trinder, and D. J. King. Evaluating distributed
functional languages for telecommunications software. In Proc. Work-
shop on Erlang, pages 1–7. ACM, Aug. 2003. ISBN 1-58113-772-9.

[13] M. Odersky, L. Spoon, and B. Venners. Programming in Scala, Second
Edition. Artima Press, 2010.

[14] Oracle, Inc. Java SE Development Kit 7. http://openjdk.java.
net/.

[15] The Scala Programming Language. Home page. http://www.
scala-lang.org/.

[16] Typesafe, Inc. Akka framework. http://www.akka.io.


