
Presented at the 2010 Scala Workshop

Lightweight Language Support for
Type-Based, Concurrent Event Processing

Philipp Haller
EPFL, Switzerland

firstname.lastname@epfl.ch

Abstract
Many concurrent applications are structured around type-
based event handling. Scala provides a library for event-
based actors, which allows common idioms to be expressed
in a concise and intuitive way. However, innocent-looking
programs can exhibit catastrophic performance under certain
conditions. In this paper, we introduce translucent functions,
a type-based refinement of Scala’s pattern-matching func-
tions. Translucent functions additionally provide the run-
time types of classes that identify disjoint cases in a pattern.
We show how this additional type information can be used
to optimize actors as well as a form of join-style synchro-
nization.

1. Introduction
Concurrent applications are often structured as concurrent
components processing synchronous or asynchronous mes-
sages or events. These events are processed depending on
their value, their type [7], or both.

Scala contains an actor library [12] for event-based pro-
gramming. Actors [2, 14] are concurrent processes exchang-
ing asynchronous messages. Every actor has a mailbox,
which buffers incoming messages that have not been pro-
cessed, yet. Event-based handling of messages is done using
the react primitive [13], which tries to remove the earliest
message from the current actor’s mailbox that matches one
of a provided set of patterns. It has the following form:

react {
case msgpat1 => action1

...
case msgpatn => actionn

}

[Copyright notice will appear here once ’preprint’ option is removed.]

loop {
react {
case Put(x) =>

react {
case Get(from) =>

from ! x
}

}
}

Figure 1. The logic of a simple buffer using nested reacts

The first message that matches any of the patterns msgpati
is removed from the mailbox, and the corresponding actioni

is executed. If no pattern matches, the current actor sus-
pends.

react expressions can be nested to express protocols
that depend on the state of the receiver. Figure 1 shows
the behavior of an actor that loops trying to receive a Put
message; after that the actor receives a Get message, which
carries a reference to the sender (from). A Get message
is handled by sending the argument of the previous Put
message back to the from actor (from ! x).

Nested reacts can express a number of protocols in an
intuitive way [4]. However, they may incur a very high over-
head, which is not directly visible from the source code. The
example in Figure 1 may perform very badly if the producer
of Put messages is much faster than the actor that sends
Get requests. Assume there are lots of Put messages in the
buffer’s mailbox, but no Get message; this means that when
the buffer waits for a Get message it has to go through the
entire mailbox searching in vain for a Get message. When
the next Get messages has been served, the following react
finishes quickly, since a Put message can be found immedi-
ately. However, since the consumer is slow it is likely that
no Get message has arrived, yet. Again, this means that the
entire mailbox is searched in vain. Even when the producer
stops sending Put messages, receiving a Get remains slow
until “enough” Put messages have been removed from the
mailbox.

Translucent Functions 1 2010/3/15

In this paper we propose a lightweight, type-based refine-
ment of pattern-matching functions, called translucent func-
tions. A translucent function provides additional informa-
tion about the types used in pattern matching clauses. The
basic idea is that the compiler computes a conservative ap-
proximation of the (disjoint) types of possibly matching ob-
jects and makes this information available at run-time. An
important application is type-based event handling. Translu-
cent functions enable clients, like the actors library, to imple-
ment more efficient event matching logic by discriminating
events according to the type partitions of those translucent
functions that are used as filters. Using an implementation in
Scala we show how examples like the above can be executed
almost as efficiently as more complicated, hand-optimized
variations without any changes to their code.

Related Work. Our approach is related to systems that al-
low pattern matching on run-time type information in func-
tional languages [1, 17]. However, our goal is not to provide
a run-time type representation of function values, but rather
a type-based summary of the patterns used to define a partial
function. This means that the run-time type information pro-
vided for two translucent function values with the same do-
main type can be different. The type information made avail-
able through translucent functions corresponds in some ways
to a disjoint sum type [18]. However, our approach integrates
with open type hierarchies in a modular way, where not all
subtyping relationships are known at compile time. Translu-
cent functions leverage the concept of case classes [6] in a
novel way to ensure type disjointness in the presence of sub-
typing. The idea to split message queues according to the
message type for optimizing pattern matching has been ex-
ploited in several implementations of join calculus-style syn-
chronization [9], such as Comega [5] and JoCaml [8, 10].
However, in these implementations the hierarchy of join-
type messages is closed. Moreover, since in our approach
the disjointness information is part of the type of translu-
cent functions, our optimizations can also be applied in the
context of separate compilation. We believe that join imple-
mentations based on extensible pattern matching [11] could
be optimized using translucent functions; however, the ad-
ditional type information would likely have to be more de-
tailed (i.e., trees of class types instead of class types), but the
general idea would be the same.

The rest of this paper is organized as follows. The fol-
lowing section reviews partial functions in Scala and their
relationship to pattern matching. In Section 3 we introduce
translucent functions as a refinement of partial functions.
Section 4 explains how translucent functions can be used
to optimize event handling in the context of Scala’s actors.
We discuss join-style synchronization as another application
in Section 4.1. We outline our implementation in Section 5,
and discuss preliminary experimental results in Section 6.
Section 7 concludes.

2. Partial Functions
The react primitive we have seen above is not built into the
language; instead, it is a method defined in the actors library.

The pattern matching expression inside braces is treated
as a first-class value that is passed as an argument to
the react method. The argument’s type is an instance of
PartialFunction, which is a subtrait of Function1, the
trait of unary functions. The two traits are defined as fol-
lows.1

trait Function1[A, B] {
def apply(x: A): B

}
trait PartialFunction[A, B]

extends Function1[A, B] {
def isDefinedAt(x: A): Boolean

}

Functions are objects which have an apply method. Par-
tial functions are objects which additionally have a method
isDefinedAt, which tests whether the function is defined
for a given argument. Both traits are parametrized; the first
type parameter A indicates the function’s argument type and
the second type parameter B indicates its result type.

In Scala, each pattern matching expression

{ case p1 => e1; ...; case pn => en }

is compiled into a partial function whose methods are de-
fined as follows.

• The isDefinedAt method returns true if one of the
patterns pi matches the argument, false otherwise.

• The apply method returns the value ei for the first pat-
tern pi that matches its argument. If none of the patterns
match, a MatchError exception is thrown.

3. Translucent Functions
We propose a refinement of partial functions that we call
translucent functions. Translucent functions are first-class
objects with the following type:

trait TranslucentFunction[A, B]
extends PartialFunction[A, B] {

def definedFor: Array[Class[_]]
}

The idea is that a TranslucentFunction provides more
information about the types of the patterns than just some
upper bound A like a PartialFunction[A, B]. The
definedFor method returns an array of Class instances
that more precisely describe the patterns occurring in the
list of cases.2 Each Class instance is the run-time type

1 For simplicity we ignore annotations for co- and contravariance.
2 The type Class[] is a shorthand for the type Class[T] forSome {
type T }, which expresses the fact that T is existentially quantified.

Translucent Functions 2 2010/3/15

representation of a case class that is a supertype of the type
of a pattern.

For example, consider the following class definitions.

abstract class A
case class B(x: Int) extends A
case class C(y: String) extends A

Then, the translucent function f defined as

val f = { case B(u) => u
case C(v) => v.length }

has type TranslucentFunction[A, Int] and
f.definedFor = Array(classOf[B], classOf[C]).

In general, we require that definedFor satisfies certain
properties:

1. The types in definedFor should be precise.

2. The types in definedFor should be non-overlapping.

3. definedFor should be stable under separate compila-
tion.

The first property ensures that the type information cannot be
approximated arbitrarily. The second property is motivated
by (a) our applications and (b) limitations of Java reflection.
By passing information about type disjointness from com-
pile time to run time, clients do not have to re-discover this
information through reflection, which may not provide all
the necessary information. The third property is motivated
by the desire to provide a modular, type-based specification.

In the following we introduce a precise correspondence
between the isDefinedAt and definedFor methods of the
TranslucentFunction trait.

DEFINITION 1 (Invariant of Translucent Functions).
If f : TranslucentFunction[A, B] and
f.definedFor 6= Array(), then

f.isDefinedAt(o)⇒ typeof(o) <: C for some
case class C such that classOf[C] ∈ f.definedFor

The above definition says that if f.definedFor 6= Array(),
then all objects for which the translucent function f is de-
fined must have a subtype of a case class; the run-time
representation of this (unique) case class is contained in
f.definedFor. We assume that case classes do not inherit
from each other. (Currently, this is possible but deprecated
in Scala 2.8; it should be easy to adapt our approach to
using sealed classes instead.) This means that the types in
definedFor do not overlap. The types are precise, since
it is impossible to return arbitrary supertypes. For example,
given the above class definitions, definedFor of the func-
tion { case B(x) => ... } must return
Array(classOf[B]) or Array(). The scheme supports
separate compilation, since adding classes to a system never
requires extending the set of types in definedFor.

The above definition enables to determine whether an
object is guaranteed not to be matched by a translucent
function:

(f.definedFor 6= Array() ∧
(∀ classOf[C] ∈ definedFor . ¬typeof(o) <: C)) ⇒
¬ f.isDefinedAt(o)
This enables us to optimize filtering through a potentially

large number of objects by organizing the objects according
to the case classes returned by the definedFor methods of
the translucent functions that are used. In the following we
show concretely how to use this idea to optimize type-based
event-handling in Scala.

4. Optimizing Type-Based Event Handling
The goal of our optimization is to avoid searching the entire
mailbox when only a much smaller number of messages is
type-compatible with the pattern that we are looking for. The
idea of our approach is as follows. Basically, we split up
the mailbox into several subqueues; each of those subqueues
contains messages whose types are in a certain partition of
the (global) type space. Concretely, there is a subqueue per
“interesting” case class. In addition there is a shared queue
for messages whose type is incompatible with the other
subqueues. This allows us to handle open type hierarchies
by adding more subqueues on demand, depending on the
patterns used to filter messages. To preserve the ordering
among messages in different queues, we augment queue
nodes with time stamps (simple integer counters).

The filtering of the mailbox is triggered by invoking
react. To get access to the additional information provided
by translucent functions, we demand that all partial functions
passed to react be translucent. However, we want to main-
tain the possibility to pass partial function literals (blocks
of pattern matching cases) as we have seen above to meth-
ods expecting translucent functions. For this, we extend the
compiler to generate the additional meta information avail-
able through the translucent function’s definedFor method
(see Section 5). The definedFor method is generated such
that it enumerates all those case classes C, for which there is
a pattern with a subtype of C; if the type of a pattern is not a
subtype of a case class, definedFor = Array().

Filtering of the mailbox using a translucent function f
proceeds as follows:

1. Make sure that for each class in f.definedFor there
exists a corresponding subqueue. If a subqueue has to be
created, we traverse the shared queue to move compatible
messages to the new subqueue.

2. Traverse all queues corresponding to classes in
f.definedFor keeping track of the time stamp of the
earliest matching message.

3. Remove the matching message with the earliest time
stamp (if any), or report failure.

In this way, we are skipping subqueues containing messages
that are guaranteed to be type-incompatible with any mes-
sage for which the translucent function is defined. Note that
f.definedFor may be empty, which means that the type

Translucent Functions 3 2010/3/15

pattern {
case Excl(from) => join {
case Shar(0) => action { from ! OK() }

}
case RelExcl(from: Reactor) =>

action { self ! Shar(0); from ! OK() }
case Shared(from: Reactor) => join {
case Shar(n) =>

action { self ! Shar(n+1); from ! OK() }
}
case RelShared(from) => join {
case Shar(n) if n > 0 =>

action { self ! Shar(n-1); from ! OK() }
}

}

Figure 2. A concurrent reader-writer lock using Polyphonic
Scala Actors

of some pattern is not a subtype of a case class. However,
it could be a case clause with a supertype S of a case class,
matching arbitrary instances of subtypes of S. Therefore, we
have to be conservative in this case and search all subqueues,
as well as the shared queue.

Inserting a message into the mailbox proceeds as follows:

1. We acquire a time stamp for the new message.

2. We look up the message’s class to find a subqueue corre-
sponding to a case superclass.

3. If no subqueue could be found in the previous step, we
append the message to the shared queue.

To speed up both the filtering and insertion algorithms,
two kinds of mappings are cached. First, when creating a
new subqueue, we cache the mapping between the case class
and the subqueue. Second, when inserting a message into
a subqueue, we cache the mapping between the message’s
class and the target subqueue.

4.1 Optimizing Join-Style Actors
We also integrated translucent functions into a library that
provides join calculus-style synchronization for actors. A
detailed description of join patterns is beyond the scope of
this paper. In the following we restrict ourselves to giving
a short overview of the join library; after that we explain
how its implementation can be optimized using translucent
functions.

The join library we use, originally developed by Arnold
deVos, is freely available on the web [19]. Figure 2 shows
a concurrent reader-writer lock implemented using the li-
brary’s join combinators. The pattern combinator intro-
duces a new set of join patterns. The patterns start just like
in a react as explained above. However, join patterns can
be extended to multiple messages using the join combina-
tor in the body of the case clause. The operational effect of

a join pattern is as follows. Assume the current actor is sent
an Excl message (requesting to acquire the lock in exclusive
write mode). In contrast to a normal react, this message will
not match the first pattern, since it is joined with a Shar pat-
tern. This means the first join pattern only matches if both
Excl and Shar(0) are present in the actor’s mailbox. Im-
portantly, if the actor has already received Excl, it remains
reactive to other join patterns as long as there is no complete,
matching join pattern. Join patterns are terminated using the
action combinator, defining the action to be executed once
the complete pattern matches.

The basic idea of the library’s implementation is to use
the react method unchanged, using nesting to receive mul-
tiple messages in sequence. As mentioned above, partially
matching join patterns do not prevent other join patterns
from matching. For this, the implementation keeps track of
partial matches, which contain the (indices of) messages
matched so far, as well as the partial function that follows
in the join pattern. For instance, the partial match for the
first join pattern would contain the index of a matching Excl
message as well as the following partial function:

{ case Shar(0) => action { from ! OK() } }

When waiting for the next message, the partial functions of
all partial matches are combined into a single partial function
that is passed to react.

The matching logic is simple, but brute-force. Whenever
a partial match could be extended by a newly received mes-
sage, all messages received so far are tested against the next
pattern (i.e., partial function).

Using translucent functions instead of partial functions
in the join patterns, we can optimize the matching logic.
First, we split the mailbox into subqueues according to the
types used in pattern matches. We can do the splitting in-
crementally, as explained above for the case of simple ac-
tors. Second, when computing the new set of partial matches
we skip messages in subqueues corresponding to types that
are guaranteed to be disjoint from the types matched by the
next translucent function. Our implementation of translucent
functions (see Section 5) contains a version of the join li-
brary that implements this optimization. Initial experiments
are encouraging. A join-based implementation of the un-
bounded buffer in Figure 1 shows a performance improve-
ment of over 24x for an input of 1000 insertions/removals.

5. Implementation
We implemented translucent functions in Scala based on a
recent candidate for version 2.8-Beta1. Our implementation
including all benchmarks used in the following section is
available in the Scala SVN repository in the translucent
branch.

The implementation consists of two parts: first, we re-
fined the transformation of function literals in positions
where a type of the form TranslucentFunction[A, B] is

Translucent Functions 4 2010/3/15

Nested receives Time [ms]
Scala 2.8 Yes 11151
ActorFoundry Yes 9435
Akka No 8065
translucent Yes 13731

Table 1. Worst-case overhead of translucent functions in the
chameneos-redux benchmark [21]

expected. Based on the existing logic for PartialFunctions,
the type checker ensures that only function literals with
case definitions conform to TranslucentFunctions. The
generation of a concrete TranslucentFunction instance
proceeds like in the case of a PartialFunction, which
results in an anonymous class definition that includes the
isDefinedAt and apply methods as explained above.
For translucent functions we additionally create a private
field that holds an Array[Class[_]] together with a pub-
lic accessor method definedFor, which returns the value
of this field. The array is populated using invocations of
classOf[C] for each case class C such that the type of a
pattern is a subtype of C.

The second part of our implementation consists of a drop-
in replacement for the message queue class used in ac-
tors. Our implementation follows closely the algorithms de-
scribed in Section 4. To reduce overheads, it contains spe-
cialized methods for moving messages from shared queues
to subqueues, which manipulate queue nodes directly in-
stead of the contained message objects; thereby, we avoid
superfluous time stamps and extra object creations.

6. Experimental Results
In this Section we present preliminary results based on our
implementation described in Section 5. We evaluate the pro-
posed optimizations in the context of the Scala actors li-
brary [12]. All experiments were run on a dual-core Intel(R)
Core 2 at 2.4GHz using Sun’s Java HotSpot Server VM
1.6.0 14 under Ubuntu 8.10 (Linux kernel 2.6.27).

As our first benchmark we ran the chameneos-redux
program from the popular Computer Language Benchmarks
Game [21]. We use this benchmark for two reasons: first, it
allows us to evaluate our baseline performance; second, it
allows us to quantify the overhead of translucent functions
and mailbox splitting in a worst-case scenario. Importantly,
the chameneos-redux benchmark cannot benefit from the
optimizations based on translucent functions proposed in
Section 4, since it never uses receive in sequence or nested.
We ran the benchmark on an input of 2,000,000 measuring
wall-clock execution time; in each case we took the median
of 5 runs.

Table 1 compares the baseline performance of Scala ac-
tors with ActorFoundry 1.0 [15], Akka 0.6 [3] by Jonas
Boner et al., and Scala actors enhanced with translucent
functions and split mailboxes. ActorFoundry is a new Java-

20,000 200,000 2,000,000
Scala 2.8, default 3102 387669 -
Scala 2.8, explicit 166 1693 16894
translucent 262 1931 16461
translucent-explicit 305 1745 18241

Table 2. Performance on producer-consumer benchmark

based actor implementation that compares favorably to Er-
lang in the chameneos-redux benchmark [15]. It uses the
byte-code weaver of Kilim [20] to support very lightweight
coroutine-style processes. Akka is a new Scala-based imple-
mentation of actors, which provides a different programming
model, since it does not provide nested receives; this allows
for a simpler and significantly cheaper execution model. The
second column indicates whether the respective implemen-
tation supports nested receive expressions like Erlang-style
actors [4]. This is important for two reasons: first, actors
without nested receives can be implemented using a signif-
icantly cheaper model. Second, the optimizations described
in Section 4 are based on nested receives.3 The third column
contains the benchmark execution time in milliseconds.

Actors in Scala 2.8 4 are only around 18% slower than
actors in ActorFoundry. Akka is about 17% faster than Ac-
torFoundry, thanks to its simpler execution model without
nested receives. Scala actors enhanced with translucent func-
tions (“translucent”) add an overhead of about 23% to plain
actors in Scala 2.8. We use the following heuristic to decide
whether subqueues should be created: if mailbox filtering
fails on more than 1,000 messages in the mailbox, subqueues
will be created subsequently. This check never succeeds in
the case of the chameneos-redux benchmark, since mes-
sages can usually be served quickly; translucent functions
only incur additional overhead.

In the second benchmark we evaluate the benefits of
mailbox splitting using translucent functions in a typical
producer-consumer scenario. There are three actors in-
volved: a producer actor sends Put messages to a buffer
actor; a consumer actor sends Get messages to the buffer,
awaiting the contents of a Put message. Figure 1 shows the
logic of the buffer actor. Since the producer’s Put messages
are sent asynchronously, the buffer is quickly filled with Put
messages waiting for matching Get messages.

Table 2 shows our results. We ran the benchmark using
four different configurations. The default configuration uses
our Scala 2.8 baseline implementation using the buffer logic
of Figure 1 unchanged. In Section 1 we explain the poor per-
formance caused by buffering Put and Get messages in the
same queue. All of the “non-translucent” systems compared
in the chameneos-redux benchmark are expected to per-

3 It is, however, possible to optimize non-nested receives by explicitly
multiplexing among different translucent function values.
4 Our measurements are based on Scala 2.8-Beta1-RC8 using Reactors
configured to use Doug Lea’s fork/join pool [16] implementation for JDK7.

Translucent Functions 5 2010/3/15

form similarly badly. In the “explicit” configuration we im-
plement the buffer using two explicitly managed queues for
Put and Get messages, respectively, running on our base-
line. This makes the code significantly more complicated
while undermining the mailbox, but, as expected, this results
in dramatic performance improvements. The “translucent”
configuration uses again the intuitive code of “default” ver-
batim; the overhead over explicitly managed queues shrinks
from about 58% (20,000 messages) to about 14% (200,000
messages); at 2,000,000 messages the overhead has van-
ished completely. The “translucent-explicit” configuration
runs the code of “explicit” on our “translucent” implemen-
tation that always creates subqueues. In this case, translu-
cent functions and mailbox splitting only incur overhead;
the overheads compared to “explicit” range from about 3%
(200,000 messages) to about 8% (2,000,000).

Code size. Translucent function objects do not add any
overhead when used in place of partial functions. Therefore,
it is interesting to consider extending all partial functions
to include the extra information computed for translucent
functions. However, doing so increases the size of the gener-
ated JVM class files, which negatively impacts class loading
time (among others). However, the change in code size is
very small for large, sequential Scala programs: the size of
the generated class files for the Scala compiler and standard
library increases by only 0.26% or 140 KB (from 54’796
KB to 54’936 KB). The impact on code size is significantly
higher for our actor-based benchmark programs, since every
receive operation with in-line pattern matching requires an
expanded partial function class. For the chameneos-redux
benchmark we measured an increase in code size of 3.7%.
For the producer-consumer benchmark the code size in-
creases by 8.9%. This is as expected, since almost all of the
interesting logic is expressed in terms of partial functions in
these programs.

7. Conclusion
In this paper we have proposed a minimal language exten-
sion of Scala called translucent functions. Translucent func-
tions refine Scala’s partial functions by providing the results
of a well-defined static approximation of the types of match-
ing objects at run-time. This type information can be used
to dramatically improve the performance of abstractions for
type-based event handling. We expect that translucent func-
tions also enable novel ways to efficiently implement high-
level abstractions for join-style synchronization.

Acknowledgments
Thanks to Martin Odersky for discussions that initiated
this project, and for insisting on a type-based definition of
translucent functions.

References
[1] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic

typing in a statically typed language. ACM Transactions on
Programming Languages and Systems, 13(2):237–268, Apr.
1991.

[2] G. A. Agha. ACTORS: A Model of Concurrent Computation in
Distributed Systems. MIT Press, Cambridge, Massachusetts,
1986.

[3] Akka Project 0.6. http://akkasource.org/. Jan. 2010.

[4] J. Armstrong, R. Virding, C. Wikström, and M. Williams.
Concurrent Programming in Erlang, Second Edition.
Prentice-Hall, 1996.

[5] N. Benton, L. Cardelli, and C. Fournet. Mod-
ern concurrency abstractions for C#. ACM Trans.
Program. Lang. Syst, 26(5):769–804, 2004. URL
http://doi.acm.org/10.1145/1018203.1018205.

[6] B. Emir, M. Odersky, and J. Williams. Matching objects with
patterns. In E. Ernst, editor, Proc. ECOOP, volume 4609
of LNCS, pages 273–298. Springer, 2007. ISBN 978-3-540-
73588-5.

[7] P. Eugster. Type-based publish/subscribe: Concepts and expe-
riences. ACM Trans. Program. Lang. Syst, 29(1), 2007.

[8] F. L. Fessant and L. Maranget. Compiling join-patterns.
Electr. Notes Theor. Comput. Sci, 16(3), 1998.

[9] C. Fournet and G. Gonthier. The reflexive chemical abstract
machine and the join-calculus. In Proc. POPL, pages 372–
385. ACM, Jan. 1996.

[10] C. Fournet, F. L. Fessant, L. Maranget, and A. Schmitt. Jo-
Caml: A language for concurrent distributed and mobile pro-
gramming. In Advanced Functional Programming, volume
2638 of LNCS, pages 129–158. Springer, 2002. ISBN 3-540-
40132-6.

[11] P. Haller and T. V. Cutsem. Implementing joins using extensi-
ble pattern matching. In D. Lea and G. Zavattaro, editors, CO-
ORDINATION, volume 5052 of Lecture Notes in Computer
Science, pages 135–152. Springer, 2008. ISBN 978-3-540-
68264-6.

[12] P. Haller and M. Odersky. Scala actors: Unifying thread-based
and event-based programming. Theor. Comput. Sci, 410(2-3):
202–220, 2009.

[13] P. Haller and M. Odersky. Event-based programming without
inversion of control. In D. E. Lightfoot and C. A. Szyperski,
editors, JMLC, volume 4228 of Lecture Notes in Computer
Science, pages 4–22. Springer, 2006. ISBN 3-540-40927-0.

[14] C. Hewitt, P. Bishop, and R. Steiger. A universal modular
ACTOR formalism for artificial intelligence. In IJCAI, pages
235–245, 1973.

[15] R. K. Karmani, A. Shali, and G. Agha. Actor frameworks for
the JVM platform: A comparative analysis. In Proc. PPPJ.
ACM, Aug. 2009.

[16] D. Lea. A java fork/join framework. In Java Grande, pages
36–43, 2000.

[17] X. Leroy and M. Mauny. Dynamics in ML. Journal of
Functional Programming, 3(4):431–463, Oct. 1993.

Translucent Functions 6 2010/3/15

[18] B. C. Pierce. Types and Programming Languages. MIT Press,
2002.

[19] Polyphonic Scala Actors. http://gist.github.com/234907.
Nov. 2009.

[20] S. Srinivasan and A. Mycroft. Kilim: Isolation-typed actors
for java. In ECOOP, pages 104–128. Springer, 2008.

[21] The Computer Language Benchmarks Game.
http://shootout.alioth.debian.org/. Jan. 2010.

Translucent Functions 7 2010/3/15

