
Research Statement

Philipp Haller

The software industry is undergoing a fundamental shift toward Software-as-a-Service making applications
accessible from anywhere via any device. Web browsers, traditionally “thin” clients, have become powerful
enough to host even standard-bearers like word processors. This shift is radically changing the technologies
and skills needed by software engineers to build this new generation of cloud-hosted applications:

(1) The requirement of applications to scale to high volumes of users or data makes it indispensable to
distribute work loads across large clusters. Practical programming models for this new cluster computing
setting are still at an early stage, and often leave programmers no choice other than solving difficult
concurrency problems using low-level abstractions, resulting in bugs that are hard to diagnose.

(2) The runtime platform for these new applications is fundamentally heterogeneous. While cluster-side code
runs on “traditional” runtimes like the Java Virtual Machine, client-side code typically runs on markedly
different execution engines for dynamic languages like JavaScript. However, enforcing safety and security
properties is very difficult in distributed, multi-language applications.

This new cloud computing setting has been an ideal application area for much of my previous research. I have
contributed to advances in both simpler, scalable concurrency and distribution, and programming languages
for targeting heterogeneous platforms. My work has ranged from theoretical foundations to programming
models and artifacts proven in wide production use. I believe the challenges of engineering reliable, scalable,
and responsive systems and applications have the potential to change future programming technology in
significant ways that will benefit not only cloud-hosted software.

With Scala Actors [7, 8] I integrated the high-level actor concurrency model into the Scala language, through
an embedded domain-specific language (DSL). Besides serving as a basis for subsequent research of my own
(e.g., [3, 4]), the project has supported a substantial body of highly-visible research of others, e.g., on formal
analysis of Scala actor programs. As part of Scala’s standard library Scala Actors have been proven in
numerous production environments such as Twitter’s core messaging system. The rich topic of concurrent
programming gave me an opportunity to revisit foundational questions in type-and-effect systems (e.g., how
to statically reason about object references), resulting in a new uniqueness type system [6] based on static
capabilities. The type system has been a major influence (discussed in [1]) on a variant of C# for systems
programming in development at Microsoft, in particular with respect to side-effect tracking and isolation. At
Typesafe I led the specification of Scala’s futures, a new concurrency package at the core of frameworks like
Play, powering the websites of companies like LinkedIn and the Guardian. I have presented this and further
work on asynchronous programming [9] at leading industrial conferences such as Strange Loop.

Throughout these projects, my research approach has been (a) to identify a problem for which no satisfactory
solution exists in mainstream software development (for example, the problem of statically enforcing the
isolation of concurrent processes); (b) to search for solutions that are simple, elegant, reusable, and widely
applicable; and (c) to try to generalize the problem as much as possible to increase the applicability of its



2 · Philipp Haller

solution. Moreover, I believe that practical, mature research results should be introduced in real programming
languages and systems. Some of my projects have reached a level of maturity where this has been possible
in the context of the mainline distribution of the Scala programming language. Other projects are more
exploratory and require more research until truly practical solutions are discovered. I am also very interested
in empirical studies to guide some of my future research. I believe carefully-designed empirical studies have the
potential to significantly increase our understanding of the role of programming languages in practical software
engineering; they might also help discover new real-world challenges of current programming technology.

Concurrent and Parallel Programming

Actors. As part of my thesis work I created Scala Actors [7, 8]. The system demonstrated for the first
time how the actor model of concurrency can be integrated in mainstream technologies, in particular the Java
Virtual Machine, in a way that scales to a very large number of lightweight concurrent processes. Scala Actors
also demonstrated as one of the first systems how to provide an expressive, high-level programming interface
for concurrency as a DSL embedded in a general-purpose programming language. Scala’s original actor library
has been part of the Scala mainline distribution since September 2006; during that time Scala actors have
influenced a considerable amount of further research on actors, and the framework has also been proven in
production environments such as Twitter’s Kestrel message queue system which comfortably sustained record-
high traffic on its website during Obama’s first inauguration in 20081 amongst many others. From 2009, Jonas
Bonér et al. have been working on a new design for a Scala actor framework, called Akka, as the foundation
of a distributed, event-driven middleware. Akka’s design and implementation have been influenced to a large
extent by Scala Actors. Thus, my research on Scala Actors laid the groundwork for what is today Typesafe’s
main middleware for concurrent, event-driven applications that scale to multicores and clusters.

Joins. While actors provide a versatile concurrency model that scales to multicore processors and distributed
systems, coordinating groups of actors remains a challenge. A certain class of coordination problems can be
simplified using join patterns. Building on Scala’s flexible pattern matching construct, I have devised a new
implementation scheme for join patterns [3] that also integrates with actors.

Data-flow programming. I have also contributed to collection-like data-flow abstractions [10] with effi-
cient, non-blocking implementations that are provably lock-free. This research shows that it is possible to
leverage the high degree of parallelism of an execution model based on data flow while providing a familiar
collection-style interface to the programmer.

Asynchronous programming. At Typesafe I have been co-leading the Scala Async project [9]. It introduces
a way to suspend within a block of Scala code until a future, a placeholder for the result of an asynchronous
computation, has been completed. This form of suspension avoids the drawbacks of programming in an
event-driven style while enabling the use of efficient non-blocking concurrency abstractions under the hood.
The novelty of our design is the fact that it does not require extending the Scala language, thus avoiding an
increased language complexity, while enabling the same expressiveness as similar constructs of C# and F#.
Scala Async has been proposed for inclusion in the Scala standard distribution. Building on Scala Async I
have designed a new programming model [5] that unifies direct-style futures and asynchronous event streams,
avoiding the well-known “callback hell” also in stateful, stream-based applications.

1See http://blog.twitter.com/2009/01/inauguration-day-on-twitter.html



Research Statement · 3

Type and Effect Systems

Concurrent processes, such as actors, as provided by imperative, object-oriented languages typically suffer
from the problem that process isolation is conventional rather than enforced by the programming language.
As a result, even using message-passing concurrency in these languages is not guaranteed to prevent data
races because of unsynchronized access to shared data. This problem has motivated my work on a new type
system for unique references in object-oriented languages [6]. The type system is based on static capabilities
which enable patterns such as ownership transfer of objects between concurrent actors. A prototype of the
type system has been implemented as a pluggable type system in Scala, and it has been used to type-check
substantial programs such as a subset of Scala’s collections library as well as the parallel testing framework
used to test the Scala compiler and standard library. I have also contributed to a framework for polymorphic
effect checking [12]; this framework is particularly lightweight, which significantly reduces the burden of adding
effect annotations on the programmer in order to check properties such as purity.

Data-Centric Programming

I have found that large-scale, parallel machine learning is a fruitful application area for programming language
research [4]. Advances in programming abstractions, optimizations, and DSLs [11] can significantly increase
the flexibility, efficiency, and scalability of machine learning frameworks. I have also contributed to a new
approach for efficient, extensible serialization [2] which is central to frameworks for large-scale data analytics.

FUTURE RESEARCH

I envision two major avenues for my future research: first, I would like to build on my experience in concurrency,
type and effect systems, and data-centric programming. Second, I would like to expand my research to other
areas of programming languages, compilers, and software engineering. More specifically, I am interested in
pursuing research in the following areas:

Concurrency. When talking to users of actors and futures in Scala, an often-voiced concern is concurrency
hazards due to unsafe uses of libraries without static or dynamic checks. I would like to explore new ways to
address this lack of robustness using several approaches that can initially be explored independently; however,
to leverage synergies, ultimately, I’d like to bring them together in one integrated actor-based programming
system. First, I’d like to find practical solutions to enforce correct usage of actors, futures, and combinations
thereof in existing programming languages. To enable comprehensive safety checks, I plan to investigate the
symbiosis of libraries and safe language subsets. In this approach, programs in the safe language subset are
valid programs in the full language; thus, compilers and tooling can be reused. Second, I’d like to explore
new ways to detect concurrency hazards, in particular data races. Encouraged by recent results on dynamic
data race detection for event-driven programs, I plan to devise a new dynamic race detection algorithm for
reactive programs based on actors and futures. Third, to increase programmer productivity, I’m interested
in semi-automatic synthesis of actor programs based on partial implementations. I plan to leverage language
subsetting to identify restricted actor models amenable to model checking. An important open question I’d
like to answer is: what kinds of partial inputs are well-suited for reactive applications?

Type and Effect Systems. Type systems based on static capabilities are effective at tracking disjoint
object graphs in the heap [1]. Among others, such heap partitions support safe concurrency and parallelism,



4 · REFERENCES

thread locality optimization, and security. However, such type systems still require a non-negligible amount
of additional type annotations in programs which typically limits their practical use to experts. I would
like to investigate how far our capability-based type system [6] can be specialized for programming models
that already provide determinacy properties without such capabilities. Such a specialization could result in
significant simplifications and much fewer required type annotations.

Compilers. Scala-Virtualized [11] enables compiler frameworks for embedded DSLs targeting heterogeneous
platforms such as multicores, GPUs, and clusters. While such a language-based framework is well-suited for
high-performance computing DSLs, it does not support general-purpose applications. I would like to develop
a principled approach based on types and effects to identify portable code together with compiler technology
for generating code for heterogeneous platforms including the “glue code” required to communicate between
different runtime environments. One exciting outlook of this work is enabling “full stack” development where
the entire code of a typical cloud application is written in a single programming language.

Programming with Objects and Functions. New computing paradigms, such as cloud computing or
“big data” processing, present new challenges that current programming languages do not always support
satisfactorily. I am very interested in revisiting the foundations of object-oriented and functional languages to
better support these new computing paradigms. Besides a new approach to working with off-heap data [2], I
am currently exploring a variant of closures that provides more safety in concurrent and distributed settings.

References

[1] C. S. Gordon, M. J. Parkinson, J. Parsons, A. Bromfield, and J. Duffy. “Uniqueness and Reference
Immutability for Safe Parallelism”. In: OOPSLA. 2012.

[2] H. Miller, P. Haller, E. Burmako, and M. Odersky. “Instant Pickles: Generating Object-Oriented
Pickler Combinators for Fast and Extensible Serialization”. In: OOPSLA. 2013.

[3] P. Haller and T. Van Cutsem. “Implementing Joins Using Extensible Pattern Matching”. In: COOR-
DINATION. 2008.

[4] P. Haller and H. Miller. “Parallelizing Machine Learning Functionally: A Framework and Abstractions
for Parallel Graph Processing”. In: Scala Workshop. 2011.

[5] P. Haller and H. Miller. “RAY: Integrating Rx and Async for Direct-Style Reactive Streams”. In: ACM
SPLASH REM Workshop. 2013.

[6] P. Haller and M. Odersky. “Capabilities for Uniqueness and Borrowing”. In: ECOOP. 2010.

[7] P. Haller and M. Odersky. “Scala Actors: Unifying Thread-based and Event-based Programming”. In:
Theoretical Computer Science 410 (2-3 Feb. 2009), pp. 202–220.

[8] P. Haller and F. Sommers. Actors in Scala. Artima Press, 2012.

[9] P. Haller and J. Zaugg. SIP-22: Async. http://docs.scala-lang.org/sips/pending/async.html.
Accessed: 2013-12-20. 2013.

[10] A. Prokopec, H. Miller, T. Schlatter, P. Haller, and M. Odersky. “FlowPools: A Lock-Free Deterministic
Concurrent Dataflow Abstraction”. In: LCPC. 2012.

[11] T. Rompf, A. Moors, N. Amin, P. Haller, and M. Odersky. “Scala-Virtualized: Linguistic Reuse for
Deep Embeddings”. In: Higher-Order and Symbolic Computation (Sept. 2013).

[12] L. Rytz, M. Odersky, and P. Haller. “Lightweight Polymorphic Effects”. In: ECOOP. 2012.


