
Higher-Order Symb Comput
DOI 10.1007/s10990-013-9096-9

Scala-Virtualized: linguistic reuse for deep embeddings

Tiark Rompf · Nada Amin · Adriaan Moors ·
Philipp Haller · Martin Odersky

© Springer Science+Business Media New York 2013

Abstract Scala-Virtualized extends the Scala language to better support hosting embedded
DSLs. Scala is an expressive language that provides a flexible syntax, type-level computa-
tion using implicits, and other features that facilitate the development of embedded DSLs.
However, many of these features work well only for shallow embeddings, i.e. DSLs which
are implemented as plain libraries. Shallow embeddings automatically profit from features
of the host language through linguistic reuse: any DSL expression is just as a regular Scala
expression. But in many cases, directly executing DSL programs within the host language is
not enough and deep embeddings are needed, which reify DSL programs into a data structure
representation that can be analyzed, optimized, or further translated. For deep embeddings,
linguistic reuse is no longer automatic.

Scala-Virtualized defines many of the language’s built-in constructs as method calls,
which enables DSLs to redefine the built-in semantics using familiar language mechanisms
like overloading and overriding. This in turn enables an easier progression from shallow to
deep embeddings, as core language constructs such as conditionals or pattern matching can
be redefined to build a reified representation of the operation itself.

While this facility brings shallow, syntactic, reuse to deep embeddings, we also present
examples of what we call deep linguistic reuse: combining shallow and deep components
in a single DSL in such a way that certain features are fully implemented in the shallow
embedding part and do not need to be reified at the deep embedding level.

Keywords Code generation · Domain-specific languages · Linguistic reuse · Language
virtualization

This research was sponsored by the European Research Council (ERC) under grant 587327
“DOPPLER”.

T. Rompf (B) · N. Amin · A. Moors · P. Haller · M. Odersky
EPFL IC IFF LAMP, École Polytechnique Fédérale de Lausanne (EPFL), Station 14, 1015 Lausanne,
Switzerland
e-mail: tiark.rompf@epfl.ch

mailto:tiark.rompf@epfl.ch

Higher-Order Symb Comput

1 Introduction

The necessity of general purpose languages to serve as meta languages for hosting embed-
ded languages or domain-specific extensions is widely recognized [21, 22, 27, 51]. However,
when it comes to assessing the meta language capabilities of existing languages, the con-
sensus seems to be that “Our current languages are OK but not great” [48]. Are there some
simple tweaks we can apply to our current languages to improve their DSL capabilities?

Embedded language developers need to balance diverse criteria such as expressiveness,
performance, safety and implementation effort. The main difficulty in building embedded
languages is to select suitable host language mappings, as different implementation strate-
gies come with very different trade-offs. For example, a shallow embedding that implements
the embedded language as a host language library profits greatly from linguistic reuse [26]:
it is easy to implement and blends well with the host language ecosystem. The downside
is that it will be limited in the achievable performance. By contrast, a deep embedding that
reifies all expressions as host-language data structures is amenable to symbolic analysis,
optimization and code generation, but also significantly harder to build and quite likely less
pleasant to use and debug because of syntactic and semantic gaps between the host language
and the embedded language.

The concept of language virtualization [9] is an attempt to capture the goal of reducing
this trade-off in an analogy to the hardware world: Like in a data center, where one wants to
virtualize costly “big iron” server resources and run many logical machines on top of them,
it is desirable to leverage the engineering effort that went into a general-purpose language
to support many small embedded languages, each of which should behave more or less like
a real language, ideally according to all the different criteria given above.

Hardware virtualization solutions that are correct, safe, and performant, can be realized
by intercepting privileged processor instructions and direct communication with hardware
resources, overriding the default implementation with one that redirects to a virtualized re-
source manager [37]. Can we draw an analogy for programming languages again? We can
think of “virtualizing” a host language feature by adding a facility to intercept this construct
and reinterpret it in the context of a DSL. In that sense, many modern languages support
virtualization of a certain set of features. For example, we could say that C++ has virtual-
ized infix operators because classes are free to add their own implementations for the given
set of operators. Similarly, we could say that Haskell has virtualized statement composition
because its ‘do’ notation can be used with any monad.

This ability to customize otherwise built-in language features is very powerful. In C++,
operator overloading is a key enabler of expression templates [61]; in Haskell, all kinds
of powerful abstractions are implemented using monads and ‘do’-notation. However, most
programming languages (maybe with the exception of Lisp and Scheme) come with a cer-
tain, limited set of features they allow programmers to customize. Only rarely is it possible
to redefine the meaning of core constructs like conditionals and pattern matching. If this
mechanism is so powerful, then the question bears asking: Why stop half way through?

In this paper, we present Scala-Virtualized, the result of our efforts to further virtualize
the Scala language and extend its DSL hosting capabilities. Scala is a mature language that
is seeing widespread adoption in industry. Scala-Virtualized is a suite of binary-compatible
minimal extensions, based on the same codebase and undergoing the same rigorous testing
as the main Scala distribution. Scala-Virtualized tries to take the idea of redefining language
features as method calls all the way. Hence, there is an immediate correspondence between
virtualized language features and their implementation using virtual (overloadable and over-
ridable) methods in the object-oriented sense.

Higher-Order Symb Comput

A key use for virtualization in Scala is to achieve reification of program expressions
with a shallow embedding: On the surface, a DSL program consists just of method calls,
but behind the scenes, this shallow embedding may create a data type representation that
can be further analyzed, optimized and translated. We thus make the key benefit of shallow
embeddings, linguistic reuse of host language constructs, in a systematic way available for
deep embeddings.

Moreover, the shallow embedding can perform non-trivial computation while building
up the data structures that constitute the deep embedding, a setup reminiscent of multi-stage
programming [56]. The main benefit of such a staged embedding is to keep the deep em-
bedding part simple. For example, many embedded languages rely on closures, higher-order
functions or generic types, but often, it is possible to resolve these abstractions within the
shallowly embedded parts. In this case, we speak of deep linguistic reuse: An embedded
language with a deep embedding component reuses a host language feature without imple-
menting dedicated support on the deep embedding level.

A number of DSL projects are using Scala-Virtualized and associated techniques such
as Lightweight Modular Staging (LMS) [43], resulting in embedded DSL programs that
outperform handwritten C code [45, 52], that compile to GPUs [6, 28], that query databases
using generated SQL [62], or that generate JavaScript for running in web browsers [25].

The purpose of this paper is twofold. The first aim is to serve as a reference for DSL
developers in Scala. The second aim is to describe the techniques we applied to Scala in
such a way as to make them accessible to other language implementors.

1.1 Organization

The rest of this paper is structured as follows.
Section 2 provides an introduction to DSLs in Scala. Section 2.1 introduces a small ex-

ample DSL for probabilistic programming. This section walks through an initial shallow
embedding, a shallow monadic embedding, and finally a deep embedding, discussing the
different aspects of each; for example the ability to symbolically reason about probability
distribution in the deep embedding. As we go along, we highlight the required changes to
DSL programs in plain Scala and features of Scala-Virtualized which facilitates a smoother
progression from shallow to deep embeddings—without significant changes to the original
DSL program.

Section 3 presents the overall methodology of defining language constructs as method
calls and discusses the virtualization of control structures (Sect. 3.1) and method calls
(Sect. 3.2).

Section 4 describes virtualized pattern matching. It discusses both reification of pattern
match expressions (Sect. 4.1) and replacing the default option monad with a probabilistic
monad, yielding an interesting embedding of a rule-based logic programming DSL in Scala
(Sect. 4.2).

Section 5 introduces virtualized record types, as well as record construction and access.
The example here is an embedding of SQL-like query expressions (Sect. 5.1).

Section 6 is about integrative concerns. Section 6.1 discusses statements and bind-
ings. Section 6.4 presents DSL scopes, a syntactically lightweight mechanism to interface
DSL programs with the DSL definition. Examples comprise an embedding of JavaScript
(Sect. 6.2) and staged array computations (Sect. 6.5).

Section 7 is about DSL debugging support. It discusses lifting static information
about types and source locations (Sect. 7.2), and producing DSL specific error messages
(Sect. 7.3).

Higher-Order Symb Comput

Section 8 discusses related work and Sect. 9 concludes.
An earlier version of this paper appeared as a “tool demo” short paper at PEPM’12

[31]. The present version adds much additional material, for example on virtualized pattern
matching (Sect. 4) and DSL scopes (Sect. 6.4), as well as many more examples, including
on probabilistic (Sect. 2.1) and logic programming (Sect. 4.2). The accompanying source
code is available online.1

2 Scala and embedded DSLs

Scala [33] is a general-purpose language that originated in academia, but is seeing
widespread adoption in industry and open-source projects. One of Scala’s success factors
is its tight interoperability with the Java and JVM ecosystem. A second factor is that Scala
combines features from the object-oriented and functional programming paradigms in new
and interesting ways.

Since its early days, Scala has been used successfully as an environment for pure library-
based DSLs, such as parser combinators [30], actors [19] and testing frameworks. DSLs
typically leverage the following three axes of flexibility that Scala provides:

– Exploiting flexible syntax. Parser combinators mimic BNF syntax, actor DSLs provide
concise message passing syntax similar to Erlang [2], and testing frameworks such as
Specs [59] express executable test cases similar to human-readable specifications:

// generate 500 different mail addresses
mailAddresses must pass { address =>
address must be matching(companyPattern)

}

Although Scala does not provide real, arbitrarily extensible syntax (such as Racket
[58], for example), Scala can still be seen as an extensible language. In many cases
libraries can be made to look like built-ins. Conceptually, every value is an object in
Scala, and every operation a method call. Method call syntax can either follow the
traditional receiver.method(argument) pattern, or use the infix invocation syntax
receiver method argument that is used pervasively in the snippet above.

– Redefining the run-time semantics of for-comprehensions. An expression such as

for (i <- foo) yield 2 * i

is desugared to the following method call:

foo.map(i => 2 * i)

The class of foo defines the implementation and type signature of the methods (such as
map andflatMap) that define the semantics of a for-comprehension. For comprehensions
fit very well with monadic encodings and can be seen as the Scala analogue of Haskell’s
‘do’-notation.

– Customizing the type system and reifying types at run time. Domain-specific typing rules
can be implemented using implicit resolution, which provides a limited form of logic
programming at the type level [11], comparable to type classes in Haskell [64]. Phantom
types and other classic tricks are also commonly used. Finally, manifests [13] can be used
to reify types at run time, e.g., to aid type-directed code generation.

1https://github.com/tiarkrompf/scala-virtualized.

https://github.com/tiarkrompf/scala-virtualized

Higher-Order Symb Comput

For DSLs as pure libraries, these features are often all that is needed. But when non-standard
semantics are needed, when better performance is required, when additional program prop-
erties must be verified for safety, or when code is to be generated for different platforms,
then the situation is more complicated. In many cases, a deep embedding, i.e., an accessible
representation of embedded programs that can be analyzed and transformed, is called for.
Section 2.1 highlights the issues that arise when moving from a shallow to a deep embedding
in Scala by way of an example.

To better support DSLs that need to go beyond simple shallow embeddings, Scala-
Virtualized extends the ideas from regular Scala as follows:

– Not only for-comprehensions are expressed in terms of methods calls, but many other
control structures as well: conditionals, while loops and variable assignment (Sect. 3.1),
pattern matching (Sect. 4), certain kinds of object construction (Sect. 5).

– Infix functions provide additional syntactic freedom, and enable overriding existing
method implementations in a lexically-scoped way (Sect. 3.2).

– DSL scopes enable access to customized DSL method implementations within a lexical
block (Sect. 6.4).

– Implicit source contexts supply static source information at run time (Sect. 7.2). Static
source information can be used to improve DSL debugging and runtime error messages.

We present a walk-through of a small example DSL implementation in Sect. 2.1 and con-
tinue with a more in-depth description of particular features in Sect. 3 and beyond.

2.1 Example: a probabilistic programming DSL

We discuss embedding a small language within Scala, contrasting three implementations,
from very shallow to deep. With Scala-Virtualized, the deeper embeddings can maintain the
illusion of a very shallow embedding which is easy to use and well-integrated in the host
language.

Our running example is a DSL for probabilistic programming that sports a probabilistic
choice operator. Probabilistic choice can be used, for example, to simulate rolling of a die:

val die = choice(1 -> 1/6, 2 -> 1/6, 3 -> 1/6, 4 -> 1/6, 5 -> 1/6, 6 -> 1/6)

Using this basic choice operator, it is straightforward to define a number of higher-level
operators:

def uniform[A](xs: A*) = choice(xs.map((_,1.0)):_*)
def flip(p: Prob) = choice(true -> p, false -> (1-p))
def always[A](x: A) = choice(x -> 1.0)
def never = choice()
def rand(a: Int, b: Int) = uniform((a to b):_*)

whereProb is just a type alias forDouble. Rolling a die or throwing a fair coin can now be
expressed as:

val die = rand(1,6)
val coin = flip(0.5)

2.1.1 A pure, shallow embedding

In the simplest and shallowest possible embedding, the probabilistic choice operator returns
a random sample, computed according to the distribution. A probabilistic model, such as

Higher-Order Symb Comput

// 1. Model traffic light
abstract class Light
case object Red extends Light
case object Yellow extends Light
case object Green extends Light
val trafficLight = choice(
Red -> 0.5, Yellow -> 0.1, Green -> 0.4)

// 3. Model crash
abstract class Result
case object Crash extends Result
case object NoCrash extends Result

def otherLight(light: Light) = light match {
case Red => Green
case Yellow => Red
case Green => Red

}

// 2. Model drivers
abstract class Action
case object Stop extends Action
case object Drive extends Action
type Driver = Light => Action

def cautiousDriver(light: Light) = light match {
case Red => always(Stop)
case Yellow => choice(Stop -> 0.9, Drive -> 0.1)
case Green => always(Drive)

}
def aggressiveDriver(light: Light) = light match {
case Red => choice(Stop -> 0.9, Drive -> 0.1)
case Yellow => choice(Stop -> 0.1, Drive -> 0.9)
case Green => always(Drive)

}

def crash(driver1: Driver, driver2: Driver, light: Light): Result = {
if (driver1(light) == Drive && driver2(otherLight(light)) == Drive)
choice(Crash -> 0.9, NoCrash -> 0.1)

else
NoCrash

}

// 4. Model different scenarios
val trafficModel1 = crash(cautiousDriver, aggressiveDriver, trafficLight)
val trafficModel2 = crash(aggressiveDriver, aggressiveDriver, trafficLight)

Fig. 1 Traffic modeling (source: [38] via [54])

the traffic example presented in Fig. 1, is run many times to obtain an approximate posterior
distribution. This approximate probabilistic inference can be achieved by a small piece of
driver code, which takes the model argument as a by-name parameter (indicated by the arrow
=> in the “model: => A” notation):

type Dist[A] = List[(A,Prob)]
def evaluate[A](model: => A): Dist[A] = {
// run model 5000 times, group by result and sum up probabilities

}

Despite its obvious drawbacks, a key benefit of this very shallow embedding is linguistic
reuse! The result of a choice over an integer distribution is just an integer, so no lifting
is necessary. As we move to deeper embeddings, we would like to keep the intuitive and
lightweight feel of this very shallow embedding.

2.1.2 A shallow monadic embedding

What if we want to perform exact inference? One approach, exemplified by the language
Hansei [24], embedded in OCaml, uses continuations to explore more than one path: the
embedding remains very shallow (e.g. a roll of a die still has type Int), but the choice
operator now has a control effect. Here, we explicitly model the paths by introducing a type
constructorRand so that rolling a die has typeRand[Int].

We first define some data types to model search trees:

abstract class Path[+A] { def x: A; def append[B](that: Path[B]): Path[B] }
case object Root extends Path[Nothing]

Higher-Order Symb Comput

case class Choice[+A](id: Int, x: A, p: Prob, parent: Path[Any]) extends Path[A]
type Model[+A] = List[Path[A]]

A model is a list of paths, and a path a list of choices. This is not a very efficient representa-
tion but it will do for our purposes.

TheRandmonad just wraps a model:

case class Rand[+A](model: Model[A]) {
def map[B](f: A => B): Rand[B] = flatMap(x => always(f(x)))
def orElse[B >: A](that: Rand[B]): Rand[B] = Rand(model ++ that.model)
def flatMap[B](f: A => Rand[B]): Rand[B] =
Rand(model.flatMap(path => f(path.x).model.map(post => path.append(post))))

}

TheflatMap operator (monadic bind) concatenates the paths that constitute the underlying
models.

The choice operator creates a new monadic value and assigns a fresh identifier to keep
track of the choice:

def choice[A](xs: (A,Prob)*): Rand[A] = {
val id = freshChoiceId()
Rand[A](xs.toList.map { case (x,p) => Choice(id,x,p, Root) })

}

It is crucial to note that our probability monad models search trees, not just collapsed
distributions (like most other probability monads in the literature). To preserve the by-value
semantics of the choice operator from the shallow embedding, it is necessary to distinguish
individual random choices. Otherwise, dependencies between random variables would get
lost. Paths on which a single random variable is assumed to take on different values need to
be identified and assigned probability zero.

From this model-as-paths representation, we can easily compute the exact posterior dis-
tribution. Here is the sketch of an (straightforward but inefficient) evaluation algorithm:

def evaluate[A](r: Rand[A]): Dist[A] = {
// multiply probabilities along each path (with incompatible choices yielding p=0)
// group paths by their bottom item and sum up probabilities

}

With this monadic embedding, we get exact inference on the traffic modeling example:

trafficModel1
NoCrash : 0.9631
Crash : 0.0369
trafficModel2
NoCrash : 0.9109
Crash : 0.0891

However, without further improvements to our embedding, we must adapt the modeling
code to fit this monadic style:

type Driver = Light => Random[Action]
def crash(driver1D: Driver, driver2D: Driver, lightD: Random[Light]) =
lightD.flatMap(light =>
driver1D(light).flatMap(driver1 =>
driver2D(otherLight(light)).flatMap(driver2 =>
(driver1, driver2) match {

Higher-Order Symb Comput

case (Drive,Drive) => choice(Crash -> 0.9, NoCrash -> 0.1)
case _ => always(NoCrash)

})))

Explicit monadic style everywhere is cumbersome. Scala’s for-comprehension, like
Haskell’s ‘do’-notation, provides only some relief:

def crash(driver1D: Driver, driver2D: Driver, lightD: Random[Light]) =
for {
light <- lightD
driver1 <- driver1D(light)
driver2 <- driver2D(otherLight(light))

} yield (driver1,driver2) match {
case (Drive,Drive) => choice(Crash -> 0.9, NoCrash -> 0.1)
case _ => always(NoCrash)

}

We still have to be very explicit and extract values from the monadic domain before using
them. To regain some readability and convenience, we would like to program on a higher
level, by lifting more operations to the Rand[T] domain. For example, we would like to be
able to add twoRandom[Int] values.

We first define a generic lifting function for binary operations, which can lift any func-
tion with signature (A,B) => C to the domain of random values (Rand[A],Rand[B]) =>
Rand[C]:

def liftOp2[A,B,C](x: Rand[A], y: Rand[B])(f: (A,B) => C): Rand[C] =
for (a <- x; b <- y) yield f(a,b)

We then use Scala’s implicit classes to add arithmetic toRand[Int] as follows:

implicit class RandArithOps(x: Rand[Int]) {
def +(y: Rand[Int]) = liftOp2(x,y)(_ + _)
def *(y: Rand[Int]) = liftOp2(x,y)(_ * _) ...

}

We are now able to express, e.g., the sum of two dice rolls without explicit monadic
operations:

val sumOfDice = rand(1,6) + rand(1,6)

It is also handy to define an implicit conversion from T to Rand[T], which enables us to
treat all values as random values (e.g. to expressrand(1,6) * 10):

implicit def liftVal[T](x: T) = always(s)

Similarly, we may want to define an operatora pair b that takes expressionsa:Rand[T]
and b:Rand[U] to typeRand[(T,U)]. We use an implicit class again:

implicit class RandUtilsOps[T](x: Rand[T]) {
def pair(y: Rand[Int]) = liftOp2(x,y)((_,_))

}

We can already see that adding individual methods to Rand[T] values using implicit
classes incurs a fair bit of syntactic boilerplate. Since this situation is so common, Scala-
Virtualized adds another facility, infix methods. In Scala-Virtualized, we can write:

Higher-Order Symb Comput

def infix_pair[A,B](x: Rand[A], y: Rand[B]) = liftOp2(x,y)((_,_))

to extend Rand[A] with a method pair. The semantics are slightly different from implicit
classes; a detailed description is given in Sect. 3.2.

We turn our attention back to the traffic example. Drivers now take a Random[Light]
argument and perform the pattern matching inside a call toflatMap:

type Driver = Random[Light] => Random[Action]
def cautiousDriver(light: Random[Light]) = light flatMap { /* pattern match */ }
def aggressiveDriver(light: Random[Light]) = light flatMap { /* pattern match */ }

Now we can write the crash model like this (using the tuple lifting operationpair):

def crash(driver1: Driver, driver2: Driver, light: Rand[Light]) =
(driver1(light) pair driver2(otherLight(light))) flatMap {
case (Drive,Drive) => choice(Crash -> 0.9, NoCrash -> 0.1)
case _ => NoCrash

}

If we prefer, we can also write it like this (we need to introduce=== and &&methods):

def crash(driver1: Driver, driver2: Driver, light: Rand[Light]) = {
(driver1(light) === Drive && (driver2(otherLight(light)) === Drive)) flatMap {
case true => choice(Crash -> 0.9, NoCrash -> 0.1)
case _ => NoCrash

}
}

In standard Scala, we cannot use if-then-else or ==. Here we are hitting the limits of
Scala’s DSL capabilities: if-then-else is a built-in construct, and implicits can only define
new methods, not redefine pre-existing methods like==. In Scala-Virtualized, we can recover
the exact syntax of the very shallow embedding by overloading if-then-else and the equality
operator == to operate onRand[Boolean] (Sect. 3.1).

This monadic embedding is still arguably shallow, because we are just lifting regular
operations into the monad.

2.1.3 A deep embedding

A deep embedding reifies the DSL program into a data structure, enabling analyses and
optimizations. As a motivating example, suppose we would like to evaluate the following
DSL program, which computes the sums of a series of coin tosses:

val coins = for (i <- 0 until 10) yield flip(0.5)
val sum = coins.map(c => if (c) always(1) else always(0)).sum
val fiveHeads = sum == always(5)

Depending on the strength of our probabilistic intuition, we may or may not realize that we
could have written the same program as follows:

val sum = binomial(0.5, 10)
val fiveHeads = sum == always(5)

The second implementation enables much cheaper inference: Instead of evaluating all 210

paths defined by the 10 coin tosses, we can compute probabilities for the outcome of the
binomial distribution directly using the well-known formula

Pr(X = k) =
(

n

k

)
pk(1 − p)n−k.

Higher-Order Symb Comput

In the following, we show how to recognize a sum of coin tosses as a binomial distribu-
tion automatically and transform the program accordingly. In other words, we automatically
rewrite the first snippet into the second, optimized, one.

We define the actual probabilistic operations as data types:

abstract class Exp[T]
case class Flip(id: Int, p: Prob) extends Exp[Boolean]
case class Binomial(id: Int, p: Prob, n: Int) extends Exp[Int]
case class Always[A](e: A) extends Exp[A]

case class Plus(x: Exp[Int], y: Exp[Int]) extends Exp[Int]
case class Equals[A](x: Exp[A], y: Exp[A]) extends Exp[Boolean]
case class IfThenElse[T](x: Exp[Boolean], y: Exp[T], z: Exp[T]) extends Exp[T]

We express the operations from the very shallow embedding in terms of these data types,
so that the clients of the DSL just use the same intuitive syntax.

def flip(p: Prob) = Flip(freshId(), p)
def binomial(p: Prob, n: Int) = Binomial(freshId(), p, n)
def always[A](e: A) = Always(e)

def infix_+(x: Exp[Int], y: Exp[Int]): Exp[Int] = Plus(x, y)
def __equals[A](x: Exp[A], y: Exp[A]): Exp[Boolean] = Equals(x, y)
def __ifThenElse[T](x: Exp[Boolean], y: => Exp[T], z: => Exp[T]) = IfThenElse(x,y,z)

The last two methods, __equals and __ifThenElse, implement the == and if (x) y
else z constructs in Scala-Virtualized. We will introduce more details about this mecha-
nism in Sect. 3.

We define transformations that capture that the two fiveHeads snippets are equiva-
lent. For soundness, these rewritings are subject to a linearity condition: All choice ids on
the left hand side of a rewrite rule must be unique and not appear anywhere else in the
program. An expression like val r = binomial(p, 5); r+r should not be rewritten to
binomial(p, 10).

IfThenElse(Flip(id, p), Always(1), Always(0)) −→ Binomial(id, p, 1)
Plus(Binomial(id1, p, n1), Binomial(id2, p, n2)) −→ Binomial(freshId(), p, n1 + n2)
Plus(Always(0), r) −→ r

After transforming our model, we can either interpret it or generate code. The evaluation
procedure is free to make probabilistic choices in any order, and use any kind of inference
algorithm that respects the model semantics.

Finally, notice that the deep embedding does not model lists or functions, but our example
readily used a list of coin flips. This is a case of deep linguistic reuse: We are able to keep
the deep embedding simple, because the feature of lists is translated away in the shallow
embedding part of the language. Of course the limitation is that we are only working with
lists of random values, not with actual random distributions over lists.

3 Everything is a method call

The overarching idea of embedded languages is that user-defined abstractions should have
the same rights and privileges as built-in abstractions. Scala-Virtualized redefines many
built-in abstractions as method calls, so that the corresponding method definitions may be
redefined by a DSL, just like any other method.

The essential difference between Scala-Virtualized and regular Scala is that more Scala
language constructs are expressed in terms of method calls. The aim is to cover the full

Higher-Order Symb Comput

expression sub-language, removing any special forms so that all expressions are either con-
stants, references or method calls. This fits nicely with the “finally tagless” [8] or poly-
morphic DSL embedding [20] approach, which goes back to an old idea of Reynolds [39],
namely representing object programs using method calls rather than data constructors. By
overriding or overloading the default implementations appropriately, the embedding can be
configured to generate an explicit program representation. Note that we do not in general
redefine “non-executable” terms like types, class definitions, etc. (but see Sect. 5 for our
treatment of record types).

3.1 Virtualizing control structures

In Scala-Virtualized, an expression such as if (c) a else b is defined as the method
call __ifThenElse(c,a,b). By providing its own implementation of a method with
this name, a DSL is free to define the meaning of conditional expressions within the DSL.
Among other options, the DSL can have the method generate an AST for this part of the
domain program, which can then be further analyzed and optimized by the DSL imple-
mentation. When no alternative implementation is provided, the if-then-else has the usual
semantics.

This approach fits well with the overall Scala philosophy: for-comprehensions and parser
combinators were implemented like this from the beginning, and the Scala language already
has similar definitions for certain types of expressions, for example:

matrix(i,j) // defined as matrix.apply(i,j)
matrix(i,j) = x // defined as matrix.update(i,j,x)

Unlike approaches that lift host language expression trees 1:1 using a fixed set of data
types, the DSL implementor has tight control over which language constructs are lifted and
which are not.

To return to the probability DSL from Sect. 2.1, we can define versions ofif for both the
monadic embedding

def __ifThenElse[T](cond: Rand[Boolean], thenp: => Rand[T], elsep: => Rand[T]):
Rand[T] = cond.flatMap(c => if (c) thenp else elsep)

and also for the deep embedding:

def __ifThenElse[T](cond: Exp[Boolean], thenp: => Exp[T], elsep: => Exp[T]): Exp[T] =
IfThenElse(cond, thenp, elsep)

These definitions enable us to use conditionals with Rand[Boolean] and Exp[Boolean]
values as if they were regularBooleans:

val bias = flip(0.3)
val coin = if (bias) flip(0.6) else flip(0.5)

In addition to if, the following control structures and built-ins (left column) are virtual-
ized into method calls (right column):

if (c) a else b __ifThenElse(c, a, b)
while(c) b __whileDo(c, b)
do b while(c) __doWhile(b, c)
var x = i val x = __newVar(i)
x = a __assign(x, a)
return a __return(a)
a == b __equal(a, b)

Higher-Order Symb Comput

While it should be evident that DSLs can implement any of these methods to their choos-
ing, there also needs to be a default implementation that is used by regular, non-DSL Scala
code. This default implementation is defined in a trait2 EmbeddedControls, in the top-level
scala package:

package scala
trait EmbeddedControls {
def __ifThenElse[T](cond: Boolean, thenp: => T, elsep: => T): T
def __whileDo(cond: => Boolean, body: => Unit): Unit
def __doWhile(body: => Unit, cond: => Boolean): Unit
def __newVar[T](init: T): T
def __assign[T](lhs: T, rhs: T): Unit
def __return(expr: Any): Nothing
def __equal(expr1: Any, expr2: Any): Boolean
// (other definitions elided)

}

Trait EmbeddedControls is mixed into scala.Predef, which is implicitly im-
ported in every compilation unit. Thus, the default virtualization hooks are available at
the top-level in any Scala program and the methods are visible everywhere. If the Scala-
Virtualized compiler resolves a particular invocation of __ifThenElse to the method de-
fined inEmbeddedControls, this means that there was no DSL-defined implementation that
took precedence. Thus, the compiler will perform the usual non-virtualized translation of
conditionals that the regular Scala compiler would do.

Embedded languages can use the standard language mechanisms of overloading, overrid-
ing or shadowing to control how DSL definitions interact with the default implementations.
For example, programmers can shadow the default implementation by importing a different
one into a lexical scope:

// import scala.Predef._ (implicit)
object DSL {
def __ifThenElse[T](cond: Exp[Boolean], thenp: => Exp[T], elsep: => Exp[T]):
Exp[T] = · · ·

}
import DSL._
if (c) a else b // always resolves to the DSL version

If this is not the desired behavior, a DSL implementation can inherit fromEmbeddedControls
to put its own method definitions into an object-oriented overloading relation with the de-
fault ones:

// import scala.Predef._ (implicit)
object DSL extends EmbeddedControls {
// may override the default implementation
def __ifThenElse[T](cond: Boolean, thenp: => T, elsep: => T): T = · · ·
// may overload method with a DSL specific signature
def __ifThenElse[T](cond: Exp[Boolean], thenp: => Exp[T], elsep: => Exp[T]):
Exp[T] = · · ·

}
import DSL._
if (c) a else b // resolved according to overloading resolution

2In Scala, traits are similar to classes, but they can take part in mixin-composition, a restricted form of
multiple inheritance [34].

Higher-Order Symb Comput

The conditional resolves to the most specific method in objectDSL. If c,a,b are plain Scala
types, this may now be the default implementation fromEmbeddedControls, if it is not over-
ridden by the DSL. In summary, all the usual ways of structuring object oriented programs
apply. It is worth pointing out that in general, these mechanisms are hygienic in the sense
that it is not possible to remotely introduce new bindings into a distant lexical scope. In some
cases more relaxed conditions are desirable, which is why Scala-Virtualized introduces the
notion of DSL scopes (see Sect. 6.4).

Some readers may wonder why variable definitions (var x = ..) are virtualized, but not
value bindings (val x = ..). The short answer is that we can reuse the binding structure of
the host language for ordinary value bindings (see Sect. 6.1).

3.2 Virtualizing method calls

Ordinarily, there are two ways to customize the meaning of an expression such as x a y,
which is short for x.a(y). Obviously, if we control the type of x, we can simply introduce
the appropriate method in its class. Otherwise an implicit class can be used—if (and only
if) x’s type does not already provide an (appropriately typed) member a. While very useful,
this technique requires a fair bit of boilerplate code. Most importantly, it cannot be used to
override existing methods, such as the ubiquitous methodtoString, which is defined at the
top of the type hierarchy.

Overriding existing behavior is necessary in a number of cases for embedded DSLs.
Let us assume that we are working with a deeply embedded DSL and want to write a pro-
gram that iteratively computes some values. We would like to write those values into an
ArrayBuffer that is defined outside the DSL world, i.e. it is a constant in the deep embed-
ding representation:

val buffer = new ArrayBuffer[String]
import DSL._
OptimizeAndRun {
while (!done()) {
val res = computeResult()
buffer += "----------"
buffer += res

}
}

We take OptimizeAndRun to be a DSL scope (see Sect. 6.4) that enables virtualization for
the enclosed code, compiles and executes it. The issue is now that class ArrayBuffer al-
ready has a += method but we need to override the behavior within the DSL to correctly
represent all buffer writes in the deep embedding of the program. If we do not, the line of
dashes will be added to the buffer while the deep embedding is constructed, but it will not
become part of the reified program representation, as would be expected. This is due to the
fact that both the buffer and the constant string have plain Scala types, not types correspond-
ing to the deep embedding.

Scala-Virtualized introduces infix functions that are able to selectively and externally
introduce new methods on existing types, as well as override existing ones, without any
run-time overhead. The idea is simple: We redefine x.a(y) asinfix_a(x,y). If the type of
x has any members with name a, we insert corresponding sentinel methods of the form
def infix_a(x,y) into EmbeddedControls. If overloading resolution picks one of the
sentinels, the regular invocation x.a(y) is chosen. Otherwise a user-defined method takes
precedence.

Higher-Order Symb Comput

In the buffer example above, our DSL can define a methodinfix_+= that will take prece-
dence over the method defined in class ArrayBuffer. Thus, all buffer writes are correctly
reified into the deep embedding.

3.2.1 Example: DSLs with a restricted grammar

Even in cases where implicit classes can be used, infix functions can sometimes greatly re-
duce boilerplate. We consider a simple case of a DSL that requires a fixed sentence structure.

Complementary to Scala’s syntactic flexibility, Scala’s type system also enables enforc-
ing certain restrictions. For example, it may be desirable to restrict DSL expressions to a
given grammar. Here is an example of how adherence of DSL expressions to a context-free
grammar (anbn) can be enforced using phantom types and infix functions:

object Grammar {
type ::[A,B] = (A,B)
class WantAB[Stack] extends WantB[Stack]
class WantB[Stack]
class Done
def start() = new WantAB[Unit]
def infix_a[Stack](s: WantAB[Stack]) = new WantAB[Unit::Stack]
def infix_b[Rest](s: WantB[Unit::Rest]) = new WantB[Rest]
def infix_end(s: WantB[Unit]) = new Done
def phrase(x: => Done): String = "parsed"

}
import Grammar._
phrase { start () a () a () b () b () end () } // "parsed"
phrase { start () a () a () b () b () b () end () } // error
phrase { start () a () a () b () end () } // error

The same behavior can be encoded in vanilla Scala using implicit classes but in a more
verbose way:

object Grammar {
type ::[A,B] = (A,B)
class WantB[Stack]
class Done
class WantAB[Stack] extends WantB[Stack] {
def a() = new WantAB[Unit::Stack]

}
implicit class W2[Rest](s: WantB[Unit::Rest]) {
def b() = new WantB[Rest]

}
implicit class W3[Rest](s: WantB[Unit]) {
def end() = new Done

}
def start() = new WantAB[Unit]
def phrase(x: => Done): String = "parsed"

}

Higher-Order Symb Comput

4 Virtualizing pattern matching

We explain how Scala’s standard pattern matching can be redefined as operations on a zero-
plus monad. We then present custom pattern matchers: a reifier of pattern matching ex-
pressions for a deep embedding (Sect. 4.1), and a DSL for probabilistic logic programming
(Sect. 4.2).

Scala supports pattern matching in a way similar to ML and Haskell but with case classes
playing the role of data constructors. A case class is a convenient way of defining a class
whose instances can be deconstructed using pattern matching. Scala provides extractors
to decouple the internal data representation of an object and how it is deconstructed [14].
Patterns are to constructors as extractors are to factory methods: they provide an abstraction
layer for pattern matching just like factory methods allow customizing what it means to con-
struct a new object. If a factory method for a data type U is a function (T1, . . . ,TN) => U,
the corresponding most general extractor is a function Any=> Option[(T1, . . . ,TN)]
where Any is the top of the subtype lattice and Option is Scala’s Maybe monad.

Consider the following example of a case class P with two integer fields, a and b:

case class P(a: Int, b: Int)

The Scala compiler expands this class definition as follows:

object P {
def apply(a: Int, b: Int): P = new P(a, b)
def unapply(p: P): Some[(Int, Int)] = Some((p.a, p.b))

}
class P(val a: Int, val b: Int)

Note that the signature of P’s unapply method indicates that it is only applicable to a P
and that it always succeeds (since Some[T] is the subtype of Option[T] that indicates
success). Concretely, the stricter type P for the unapply’s argument gives rise to a type test
that ensures that the extractor can be called. Similarly, its return type tells the pattern match-
ing analyses that the extractor is irrefutable. A Scala programmer may define these apply
and unapply methods explicitly, thus performing arbitrary validation during construction
and transparent rewriting of the internal representation during deconstruction. Programmers
can also implement extractor objects that are not tied to particular case classes at all. For
instance, we can define an extractor on integers that succeeds only if a number is even,
returning its half if so:

object Twice {
def unapply(x: Int): Option[Int] = if (x%2 == 0) Some(x/2) else None

}

To see how an unapply method customizes pattern matching, we formulate the follow-
ing match expression in terms of extractor calls:

P(1, 2) match { case P(x, y) => x + y }

Conceptually, this match expression corresponds to:

val px = P.unapply(P.apply(1, 2))
if (px.isEmpty) throw new MatchError
else px.get._1 + px.get._2

Higher-Order Symb Comput

A pattern match is virtualized by interpreting it as a computation in a (user-defined)
zero-plus monad. Extractors need to be adapted accordingly: A single pattern corresponds
to a computation that fails (it returns the monad’s zero) when the pattern does not match
the input, and that succeeds with a tuple of the values to be matched by its sub-patterns.
Pattern nesting gives rise to sequencing of these computations (usually called the bind or
flatMap operator). Cases (and alternative patterns) are combined into a match using the
alternative combinator (the plus or orElse operator). Finally, a guard preserves a com-
putation if the conditional succeeds and fails otherwise. The body of a case is a computation
that always succeeds.

Consider virtualizing the match x match { case P(a, b) => a + b} in
Scala’s standard zero-plus monad, Option, where computations are sequenced using
flatMap, and alternatives combined using orElse. A successful computation’s result is
stored in a Some and failure yields a None. In this monad the above snippet is virtualized as
P.unapply(x).flatMap{ o => Some(o._1 + o._2) }. The successful result
is passed to the function that is bound to (or “flatMapped over”) the result of P’s unapply
method.

A nested match, such as

x match { case Q(R(x), S(y)) => x + y }

is virtualized as follows:

Q.unapply(x).flatMap(x1 =>
R.unapply(x1._1).flatMap(x2 =>
S.unapply(x1._2).flatMap(x3 =>
Some(x2 + x3))))

In general, a case is flattened using a depth-first traversal of the translations of its patterns,
with the individual computations combined using flatMap.

A match with alternatives, such as

x match { case P(x, y) => x; case Q(x, y) => y }

is virtualized as follows:

P.unapply(x).flatMap(x1 => Some(x1._1)).orElse(
Q.unapply(x).flatMap(x2 => Some(x2._2)))

Besides data constructor patterns that give rise to unapply extractor calls, Scala’s pat-
tern language includes literals, types and sequences. The translation of these patterns does
not introduce any new insights.

Finally, match virtualization is triggered by introducing the appropriate __match object
into scope. It must define four methods—zero, one, guard, runOrElse—that specify
the semantics of a match. The signature of the one method determines the type constructor
of the monad.

The above examples assumed the following __match object:

object __match {
def zero = None
def one[T](x: T): Option[T] = Some(x)
def guard[T](cond: Boolean, then: => T): Option[T] =
if (cond) Some(then) else None

Higher-Order Symb Comput

abstract class Maybe[+T]
type M[+T] = Exp[Maybe[T]]

case object Zero extends M[Nothing]
case class One[T](x: Exp[T]) extends M[T]
case class OrElse[T](x: M[T], y: M[T]) extends M[T]
case class FlatMap[T,U](x: Exp[T], y: Exp[T], z: M[U]) extends M[U]
case class ResultOrMatchError[T](x: M[T]) extends Exp[T]
case class IfThenElse[T](x: Exp[Boolean], y: M[T], z: M[T]) extends M[T]

implicit class MaybeOps[A](self: M[A]) {
def flatMap[B](f: Exp[A] => M[B]): M[B] = { val x = freshSym[A]; FlatMap(self, x, f(x)) }
def map[B](f: Exp[A] => Exp[B]) = flatMap(x => One(f(x)))
def orElse[B >: A](alt: => M[B]): M[B] = OrElse(self, alt)
}

object __match {
def zero: M[Nothing] = Zero
def one[T](x: Exp[T]): M[T] = One(x)
def guard[T](cond: Exp[Boolean], then: => Exp[T]): M[T] = IfThenElse(cond, one(then),

zero)
def runOrElse[T, U](in: Exp[T])(matcher: Exp[T] => M[U]): Exp[U] = ResultOrMatchError(matcher(in))
}

println(7 match { case _ => "bar" })
// ResultOrMatchError(One(bar))

println(7 match { case 5 => "foo"; case _ => "bar" })
// ResultOrMatchError(OrElse(FlatMap(IfThenElse(7==5, One(7), Zero), x,
One(foo)), One(bar)))

Fig. 2 Reifying pattern match expressions

def runOrElse[T, U](in: T)(matcher: T => Option[U]): U =
matcher(in).getOrElse(throw new MatchError(in))

}

The full expansion of x match { case P(a, b) => a + b } is:

__match.runOrElse(x)(x1 =>
P.unapply(x1).flatMap(x2 =>
__match.one(x2._1 + x2._2)))

Internally, the Scala-Virtualized compiler will apply all the usual optimizations if the
(non-virtualized) default case is detected, such as translating match expressions to condi-
tionals and generating jumps instead of method calls. Since the virtualization of a match
and, say, an if-then-else, is fundamentally the same, we can use the techniques for obtain-
ing a deep embedding of match expressions with the same techniques used for other control
structures. Furthermore, other interesting monads can be plugged in to allow matches to back
track, or express parsers and automata as pattern matches (see Sect. 4.2 for an example).

4.1 Example: reifying match expressions

Figure 2 sketches a deep embedding of pattern matching. First, we define a deep embed-
ding of the option monad. To distinguish it from the actual ScalaOption type we introduce
a phantom type Maybe. Values of the lifted monad have types M[T] = Exp[Maybe[T]].
Most operations directly create a data structure representation using the corresponding case
classes. The flatMap operation unfolds its argument function with a fresh symbol as argu-
ment to obtain a flat algebraic representation.

Higher-Order Symb Comput

The pattern matching operations are then defined using the lifted monad. Thus, match
expressions will be reified into an intermediate representation. For example, the expression

7 match { case 5 => "foo"; case _ => "bar" }

is desugared into

7 match { case x if x == 5 => "foo"; case _ => "bar" }

which expands to

__match.runOrElse(7)(x =>
__match.guard(x == 5, "foo").orElse(__match.one("bar")))

and evaluates to

ResultOrMatchError(
OrElse(
FlatMap(IfThenElse(7 == 5, One(7), Zero), x, One("foo")),
One("bar")))

assuming proper lifting of constants and ==.
Currently, case class extractors are not lifted automatically, because the option monad is

hard-coded in their specification. Though we are planning improvements to generalize case
class extractors, custom extractors readily provide a work-around. For example, we can reify
pattern-matching against reified lists by defining lifted extractors manually:

case class Unapply[T, U](kind: String, x: Exp[T]) extends M[U]
object Nil {
def unapply(x: Exp[List[_]]): M[Unit] = Unapply("Nil", x)

}
object Cons {
def unapply[T](x: Exp[List[T]]): M[(T, List[T])] = Unapply("Cons", x)

}

Then, the match expression

List(1, 2, 3) match { case Nil() => "default"; case Cons(hd, tl) => hd }

evaluates to

ResultOrMatchError(
OrElse(
FlatMap(Unapply(Nil,List(1, 2, 3)),x,One(default)),
FlatMap(Unapply(Cons,List(1, 2, 3)),x,One(x._1))))

assuming proper lifting of tuples and the type test methods isInstanceOf and
asInstanceOf.

4.2 Example: logic programming

Since alternatives in pattern matching are combined using orElse, we can create a non-
deterministic pattern matcher by swapping the default Option monad for a more sophisti-
cated one that explores more than one alternative. As an example, we customize the pattern
matcher with the underlying Rand monad described in Sect. 2.1.2. The definition of the
match logic as well as examples that define rules and exercise the logic programming capa-
bilities are shown in Fig. 3.

Higher-Order Symb Comput

object __match {
def zero = never
def one[T](x: T): Rand[T] = always(x)
def guard[T](cond: Boolean, result: => T): Rand[T] = if (cond) one(result) else zero
def runOrElse[T, U](in: T)(matcher: T => Rand[U]): Rand[U] = matcher(in)

}

implicit class Rule(f: String => Rand[String]) {
def unapply(x: String): Rand[String] = f(x)

}
val && : Rule = { x: String => x match {
case x => (x,x)

}}
val Likes: Rule = { x: String => x match {
case "A" => "Coffee"
case "B" => "Coffee"
case "D" => "Coffee"
case "D" => "Coffee" // likes coffee very much!
case "E" => "Coffee"

}}
val Friend: Rule = { x: String => x match {
case "A" => "C"
case "A" => "C" // are really good friends!
case "C" => "D"
case "B" => "D"
case "A" => "E"

}}
val Knows: Rule = { x: String => x match {
case Friend(Knows(y)) => y
case x => x

}}
val ShouldGrabCoffee: Rule = { x: String => x match {
case Likes("Coffee") && Knows(y @ Likes("Coffee")) if x != y =>
x + " and " + y + " should grab coffee"

}}

val coffeeModel1 = uniform("A","B","C","D","E") flatMap { case ShouldGrabCoffee(y) => y }

Result:

A and D should grab coffee : 0.5714285714285714
B and D should grab coffee : 0.2857142857142857
A and E should grab coffee : 0.14285714285714285

Fig. 3 Logic programming: using virtualized pattern matching with the probability monad

In this probabilistic pattern matcher, an extractor’s unapply method returns a Rand[T]
instead of an Option[T]. We define an implicit class Rule to lift any function from
String => Rand[String] into an extractor:

implicit class Rule(f: String => Rand[String]) {
def unapply(x: String): Rand[String] = f(x)

}

Et voilà! We have embedded a simple rule-based logic programming into the pattern
matcher.

The first thing to notice is that pattern matching no longer follows a first-match-wins
policy but may explore multiple branches. In the definition of ruleFriend, for example, the
pattern “A” occurs three times on the left-hand side. Probabilities are implicit, and a certain
case can be given more weight by repeating it. This is why the double occurrence of the pair
“A”, “C” will count with twice its weight, denoting a strong friendship. Rule Knows is the
reflexive transitive closure ofFriend and illustrates recursive rules.

Higher-Order Symb Comput

Rules expressed as extractors compose intuitively. The definition ofShouldGrabCoffee
can be almost read out loud: if x likes coffee, and x knows someone else, y, who also likes
coffee, then they should grab coffee together:

lazy val ShouldGrabCoffee: Rule = { x: String => x match {
case Likes("Coffee") && Knows(y @ Likes("Coffee")) if x != y =>
x + " and " + y + " should grab coffee"

}}

Since probabilities are always carried along with the computation, the final results not
only produces a list of coffee matchings, but assigns a weight to each of them, which can be
interpreted in an application-specific way.

5 Virtualizing type information and object construction

We have seen how we can virtualize control structures and method calls. How can we virtual-
ize working with objects, classes and types? The general idea is to make object construction
and field accesses overridable in a way that preserves the type structure. But let us go step
by step.

For any given class, we readily can build up a lifting manually, defining virtualized fac-
tory and accessor methods. For example, given a class such asItem:

class Item(val itemName: String, val customerName: String)
val a = new Item("undisclosed_item", "John Doe")
println(a.customerName)

we can define a lifted interface:

def NewItem(itemName: Exp[String], customerName: Exp[String]): Exp[Item]
def infix_itemName(x: Exp[Item]): Exp[String]
def infix_customerName(x: Exp[Item]): Exp[String]

and use it in (almost) the same way:

val a = NewItem("undisclosed_item", "John Doe")
println(a.customerName)

However, defining an embedding for each class separately is tedious and it only covers
the case of a fixed universe of classes. This is not a very realistic assumption. We want to
enable DSL users to define new types in their programs, too. As an example, we present a
deep embedding of a small statically-typed query language that can generate SQL statements
to be run in a relational database.

5.1 Example: embedding SQL

Our small query DSL understands table definitions, such as

type Item = Record {
val itemName: String
val customerName: String

}
val items = Table[Item]("items")

and queries, such as

Higher-Order Symb Comput

items Select (e => new Record {
val name = e.customerName

})

from which SQL can be generated:

SELECT customerName AS name FROM items

Our DSL is statically typed, so that it would be an error to refer to a non-existing field.
Our DSL is deeply embedded, with the following data-type representation:

trait Exp[T]
case class Const[T](x: T) extends Exp[T]
implicit def liftString(x: String): Exp[String] = Const(x)
case class ResultRecord[R](fields: Map[String, Exp[_]]) extends Exp[R]
case class Select[T, U](tgt: Exp[U], field: String) extends Exp[T]
case class Table[R <: Record](name: String) extends Exp[List[R]]
case class ListSelect[R <: Record, T](t: Exp[List[R]], f: Exp[R] =>
Exp[T]) extends Exp[List[R]] {
def projectedNames: Iterable[String] = f(null) match {
case ResultRecord(fields) => fields.keys

}
}
...

TheConst class defines a constant that is lifted into the DSL representation. The implicit
liftString automatically represents string literals, such as "hello", as expression trees,
such as Const("hello").

An expression object of type ResultRecord describes the shape of results returned
by an SQL Select clause. It contains a mapping from column names to expression trees
that describes how each column value of the result is computed. The Select case class
represents expressions that select a field on a target record, e.g., item.customerName.
To represent database tables we use the Table case class. It takes a type parameter R that
abstracts over the type of records stored in the table. R extends the Record class, introduced
below. Essentially, Record is used to create result records in queries. The Table class
extends Exp[List[R]], i.e., it represents an expression returning a list of R elements.
This enables us to treat a table literal (which only contains the name of the corresponding
database table) as a list of records, for which the standard Select clauses are defined.

To represent Select clauses we use the ListSelect case class. Like Table, it ex-
tends Exp[List[R]] where R is a type parameter for the type of the returned records.
A ListSelect expression node points to a list expression of type Exp[List[R]],
which is the list that we are selecting elements from, and a selector function of type
Exp[R] => Exp[T], which is used for determining (a) how to select elements from
the list, and (b) how to transform a selected element to a result record. For example, the
following DSL expression is represented as a ListSelect node:

items Select (e => new Record {
val customerName = e.customerName

})

In this case, items is lifted to an expression tree of type Exp[List[R]], and the func-
tion literal is lifted to an expression tree constructor function of type Exp[R] => Exp[T].

Higher-Order Symb Comput

Section 5.2 explains how the selector function works: How can it use all of the fields de-
fined in R type to select columns to be included in the result? How is the result lifted to an
expression tree?

Finally, we add an implicit conversion that lifts generic lists into expression trees:

implicit def liftList[T](x: List[T]): Exp[List[T]] = Const(x)

Let us now define the methods that are concerned with the actual embedding of query
expressions in Scala. The first method we will add provides Select clauses on lists of
records:

implicit def listSelectOps[R <: Record](l: Exp[List[R]]) = new {
def Select[T](f: Exp[R] => Exp[T]): Exp[List[R]] = ListSelect(l, f)

}

This method relies on Scala’s standard implicit conversion mechanism: since an expres-
sion of type Exp[List[R]] does not provide a method called Select, the compiler will
turn an expression such as

table Select { f => ... }

where table : Exp[List[R]], into

listSelectOps(table).Select{ f => ... }

The Select method call will in turn create a representation of the DSL’s Select expres-
sion, an expression node of type Exp[List[R]].

5.2 Virtualizing record types

As we have seen in the previous example, result records are created using:

new Record { val column_i = ... }

To represent such an expression in the AST of our DSL, we therefore need to lift instance
creation using new (see Sect. 5.3). We use the Struct type constructor, which is part of the
Scala-Virtualized library, as a marker to indicate when an instance creation new T should
be virtualized. This reification will take place whenever T<: Struct[R], for some type
constructor R. For convenience, we declare the following class:

class Record extends Struct

The actual lifting relies on the __new method, which is defined as follows for our em-
bedding:

def __new[T](args: (String, Boolean, Exp[T] => Exp[_])*): Exp[T] =
new ResultRecord(args map { case (n, _, rhs) => (n, rhs(null)) } toMap)

The __new method takes a variable number of triples as arguments. Each triple contains
the name of a field in our record type, whether it was declared as mutable or immutable (i.e.
var or val in Scala), and a function which creates an expression tree for the field initializer
in terms of an expression representing the “self” instance. Since SQL does not support self-
referential rows, we simply pass null as the representation of the self reference. A more
robust implementation could inject an ErrorExpresion so that code generation can emit
a suitable error message. In any case, we simply create an instance of ResultRecord,
using the arguments to fill its map.

Higher-Order Symb Comput

To support projections in queries, we need to be able to select fields of records. Therefore,
we need to have a way to create expression trees for field selections. In Scala-Virtualized
we can lift such selections by defining the special selectDynamic method for the types
of objects on which we would like to select fields. We can provide this method through the
following implicit conversion:

implicit def selectOps(self: Exp[_ <: Record]) = new {
def selectDynamic[T](n: String): Exp[T] = Select(self, n)

}

When a field selection does not type check according to the normal typing rules, as would
be the case for, e.g., the selection e.customerName since e’s type Exp[R] does not
define a field customerName, the Scala-Virtualized compiler will generate an invocation
of the selectDynamic method on e—because R relates to the special markerStruct as
explained in Sect. 5.3. Since it knows from the record type that the selection is supposed
to produce an expression that evaluates to a String, it will pass this information along to
selectDynamic as a type argument.

Due to the above implicit conversion, objects of type Exp[_<: Record], i.e., expres-
sion trees whose result type is a subtype of Record, have a selectDynamic method
that creates a Select node that contains the expression tree of the target of the selection
(self), the name of the selected field (n), and that statically specifies the result type of the
expression.

5.3 Translation in detail

The Scala-Virtualized compiler can turn an expression new C{val/var x_i: T_i =
v_i} into a method call __new(("x_i", false/true, (self_i: R) =>
v’_i)). Virtualization relies on a marker trait Struct defined in EmbeddedControls:

trait Struct

Virtualization is not performed, unless C is a subtype of Struct.
Furthermore, for all i,

– there must be some T’_i so that T_i = Rep[T’_i]—or, if that previous equality is
not unifiable, T_i = T’_i

– v’_i results from retyping v_i with expected type Rep[T’_i], after replacing this
by a fresh variable self_i (with type Rep[C{ val x_i: T’_i }], abbreviated
as R)

– mut_i is true if x_i is mutable (declared with a var) and false if it’s immutable
(declared wtih a val)

Finally, the call __new(("x_i", mut_i, (self_i: R) => v’_i)) must type
check with expected type R. If this is the case, the new expression is replaced by this method
call. This assumes a method in scope whose definition conforms to:

def __new[T](args: (String, Boolean, Rep[T] => Rep[_])*): Rep[T].

In addition to virtualizing object creation, Scala-Virtualized provides a facility for type-
safe access of record fields. When e refers to a representation of a record, e.x_i is turned
into e.selectDynamic[T_i]("x_i") as follows. When a selection e.x_i does not
type check according to the normal typing rules, and e has type Rep[C{ val x_i:
T_i }] (for some Rep and where C and the refinement meet the criteria outlined above),

Higher-Order Symb Comput

e.x_i is turned into e.selectDynamic[T_i]("x_i"). Note the T_i type argu-
ment: by defining selectDynamic appropriately, the DSL can provide type safe selection
on records.

5.4 Example: probabilistic profiles

The virtualization of __new provisions for self-references in the field definitions. We now
illustrate a general technique to reify new structures with self-references by extending our
deep embedding of the probabilistic programming DSL with “profiles” to bundle related
random values. For example:

val person = new Profile {
val happy = good + healthy
val good = binomial(0.5, 3)
val healthy = binomial(0.5, 3)

}

Our goal is for person.happy to reify to:

Select(ProfileDef(List(("happy", Plus(Binomial(id1,0.5,3),Binomial(id2,0.5,3))),
("good", Binomial(id1,0.5,3)),
("healthy", Binomial(id2,0.5,3))))

"happy")

while person.happi should result in a compile-time error. The first argument to a
Binomial node is an integer id that uniquely identifies the random variable. This is to ex-
press thathappy is dependent on the choice of bothgood andhealthy.

First, we create our marker trait Profile, and extend our intermediate representation
with ProfileDef, which represents the reification of a profile definition, new Profile
{ ... }, and Select, which represents a field selection from a profile, such as
person.happy.

trait Profile extends Struct
case class ProfileDef[R <: Profile](fields: List[(String, Exp[_])]) extends Exp[R]
case class Select[T, U](tgt: Exp[U], field: String) extends Exp[T]

Now, we want __new to evaluate each right-hand side exactly once. For this, we use a
Selfhelper instance, which takes a map from each field name to its evaluation function, and
caches all requests to evaluate a right-hand side.

def __new[T](args: (String, Boolean, Exp[T] => Exp[_])*): Exp[T] = {
val self = new Self[T](args map{case (n, _, e) => (n -> e)} toMap)
ProfileDef(args map {case (n, _, _) => (n -> self(n))} toList)

}
class Self[T](members: Map[String, Exp[T] => Exp[_]]) extends Exp[T] {
private val cache = scala.collection.mutable.Map.empty[String, Exp[_]]
def apply(name: String): Exp[_] = cache.getOrElseUpdate(name, members(name)(this))

}

Finally, we use an implicit class to intercept the selectDynamic calls generated by the
Scala-Virtualized compiler. For those on a self instance (e.g. the good on the right-hand
side of the happy definition of person), we call the self evaluator, and for those on a
reified instance (e.g. the happy of person.happy), we reify the field selection.

Higher-Order Symb Comput

implicit class ProfileOps[U <: Profile](receiver: Exp[U]) {
def selectDynamic[T](field: String): Exp[T] = receiver match {
case self: Self[_] => self(field).asInstanceOf[Exp[T]]
case _ => Select(receiver, field)

}
}

6 Putting it all together

In the preceding sections, we have seen virtualization of control structures, pattern matching
and user-defined types. For all of these features, we followed the “everything is a method
call” pattern more or less closely. In this section, we will first discuss bindings and state-
ment sequencing, which are not virtualized explicitly (Sects. 6.1, 6.2). We will continue by
looking at ways to structure DSL implementations effectively (Sect. 6.3) and introduce the
concept of DSL scopes (Sect. 6.4). Finally we will review an end-to-end example of com-
bining shallow and deep embedding components for performance optimization (Sect. 6.5).

6.1 Deep reuse of bindings and statement order

In Sect. 3.1, we virtualized variable definitions var x = y by defining them as method
calls __newVar(y), but we did not treat value bindings like val x = y in any special way.
If we have an expression like val x = compute(); x + x and use a simple expression-
oriented deep embedding, this may lead to unexpected results because the expression will
be represented as Plus(Compute(),Compute()). In other words, we seem to have lost the
sharing information inherent in the original expression and we can no longer distinguish it
fromcompute() + compute(), which, when evaluated, may yield a very different result if
the embedded language has side effects. Even if the language is pure, evaluation will likely
be less efficient.

When modeling the probability DSL embedding in Sect. 2.1, we resorted to a trick to
distinguish val x = flip(0.5); x && x from flip(0.5) && flip(0.5): Each proba-
bilistic choice was assigned a unique id when the corresponding expression was created.

def flip(p: Prob) = Flip(freshId(), p)

This simple mechanism illustrates an important principle: Since Scala is an impure lan-
guage, we can easily observe the evaluation order of method calls that constitute a shallow
DSL embedding. If these methods create a deep embedding representation and we design
the corresponding data structures in such a way that the order of creation of the individ-
ual nodes is preserved, we can play back the computation in the original order without any
further work. In essence, we achieve deep linguistic reuse of the host language evaluation
order.

A simple way to force a certain evaluation order in the deep embedding is to create
explicit val bindings for intermediate results (let-insertion). If bindings are inserted sys-
tematically, we obtain a representation where all intermediate results are named. Having
bindings for all intermediate results implies that we also have bindings for everything that
had a binding in the original program. Therefore, overapproximation enables us to reuse the
binding structure of the host language.

Performing let-insertion manually is of course tedious for the DSL developer, so we
would like to automate and better encapsulate this process. One avenue would be to use

Higher-Order Symb Comput

a let-insertion monad [53], but imposing a monadic style might be overly restrictive. For-
tunately, we can map the let-insertion monad into direct style using Filinski’s monadic re-
flection [17, 18]. Implementing the corresponding reflect and reify operators would be
straightforward using Scala’s support for delimited continuations [41]. But it turns out we
do not even need delimited control, since we can model the desired behavior directly using
mutable state and a by-name parameter forreify (see Sect. 6.2).

To substantiate this intuition, the key idea is to treat DSL program fragments as context-
sensitive statements, not context-free expressions. Statements need to be explicitly per-
formed (reflected), inserting a val binding and generating a fresh identifier to refer to the
result of the statement. The counterpart to performing a statement is accumulating (reify-
ing) the statements performed by a block expression. We can give the operators reflect
andreify the following context-sensitive semantics:

reify { E[reflect(stm)] } −→ val fresh = stm; reify { E[fresh] }
reify { x } −→ x

Here, we assume E to be a reify-free evaluation context and fresh a fresh identifier. An
implementation is shown below in Sect. 6.2.

With respect to extensional equality (≡) of the represented code, reify is a left inverse
ofreflect:

reify { reflect(stm) } −→∗ val fresh = stm; fresh ≡ stm

If intensional (structural) equality is desired, a simple special case can be added to the above
definition to directly translatereify(reflect(stm)) to stm.

Within a suitable context, reflect is also a left inverse of reify: Reflecting a set of
accumulated statements together is the same as just reflecting the statements individually.

In the following, we will present an implementation of an effectful embedded language
that uses this mechanism to represent statements. We consider an embedding of JavaScript,
which is a stripped-down variant of the one presented in [25].

6.2 Example: embedding JavaScript

Consider the following JavaScript program:

var kim = { "name" : "kim", "age" : 20 }
kim.age = 21
if (kim.age >= 21) {
var allowedDrink = "beer"

} else {
var allowedDrink = "milk"

}

This section will show how to set up the DSL so that we can embed this program in
Scala-Virtualized as follows:

var kim = new JSObj { val name = "kim"; val age = 20 }
kim.age = 21
var allowedDrink = if (kim.age >= 21) {
"beer"

} else {
"milk"

}

Higher-Order Symb Comput

As mentioned above, Scala-Virtualized does not provide explicit support for reifying
(or virtualizing) the sequencing of statements but instead relies on a shallow embedding
using mutable state and the native run-time semantics of Scala statements to capture the
sequencing of statements in embedded domain programs. To see how this works, let us
consider the following fragment of our running example.

var kim = ...
kim.age = 21

The Scala-Virtualized compiler rewrites this to:

val kim = __newVar(...)
__assign(selectOps(kim).selectDynamic("age"), liftInt(21))

Since kim is a struct type (see Sect. 5), the field selection kim.age will be rewritten
as a method call kim.selectDynamic("age"). No method selectDynamic ex-
ists on kim, though, so the receiver will be wrapped in an instance of the implicit class
selectOps, which provides a suitable implementation.

This is the definition of Select and selectOps:

case class Select[T, U](tgt: Exp[U], field: String) extends Exp[T] {
implicit class selectOps(self: Exp[_ <: JSObj]) {
def selectDynamic[T](n: String): Exp[T] = Select(self, n)

}

The variable definition and assignment are rewritten as __newVar and __assign,
respectively. These methods are defined as follows:

def __newVar[T](x: Exp[T]): Exp[T] = VarInit(x)
def __assign[T](lhs: Exp[T], rhs: Exp[T]): Exp[Unit] = VarAssign(lhs, rhs)

In contrast to previous examples, VarInit and VarAssign are not expressions
(Exp[T]); they are statements (Def[T]):

case class VarInit[T](x: Exp[T]) extends Def[T]
case class VarAssign[T](v: Exp[T], x: Exp[T]) extends Def[Unit]

The infrastructure for dealing with statements provides the crucial missing ingredient,
namely the reflect operator above, which we implement as an implicit conversion from
Def[T] to Exp[T]. Let us first make the conversion explicit:

def __newVar[T](x: Exp[T]): Exp[T] = = reflect(VarInit(x))
def __assign[T](lhs: Exp[T], rhs: Exp[T]): Exp[Unit] = reflect(VarAssign(lhs, rhs))

The crucial insight is that the order in which the reflect calls are executed corresponds
to the order in which the statements occur in the embedded JavaScript program above. This
tells us all we need to know about sequencing of statements in the embedded program.

To drive the point home, inlining __newVar and __assign peels off the last layer of
syntactic sugar and indirection from our initial fragment:

val kim = reflect(VarInit(...))
reflect(VarAssign(selectOps(kim).selectDynamic("age"), liftInt(21)))

Why does this work, and why isselectDynamic not translated as a separate statement?
The answer is in the types: Select extends Exp, whereas VarInit and VarAssign extend
Def.

Higher-Order Symb Comput

Running this Scala program creates an accurate representation of the embedded
JavaScript program, as the DSL implementation keeps track of the current scope of the
domain program, and reflect populates this scope in the order in which it is called. On
each invocation, reflect creates a fresh symbol and enters it into the current scope. The
symbol links the new entry in the current scope to the original expression.

The bookkeeping for DSL scopes uses lists of Scopes, themselves lists of Scope-
Entrys to correlate a definition and the unique symbol, an expression, that is used to refer
to it:

case class ScopeEntry[T](sym: Sym[T], rhs: Def[T])
type Scope = List[ScopeEntry[_]]
var scopeDefs: List[Scope] = Nil

We are now ready to present the implementation of thereflect andreifyoperator pair.
The method reifyBlock creates a block by accumulating the definitions that are en-

tered in scope during the evaluation of the argument “e”. This operation increases the nesting
level by creating a new nested scope; it should be called when entering a block in the DSL
program.

The method reflect performs a statement by appending a new definition to the current
scope. This reifies the sequencing of definitions.

case class Block[T](stms: Scope, e: Exp[T])
implicit def reifyBlock[T](e: => Exp[T]): Block[T] = {
// push a new nested scope onto the stack
scopeDefs = Nil::scopeDefs
// evaluate e after going to a new nesting level
val r = e
// reflect calls will now populate the current scope
val stms = scopeDefs.head // save the populated scope
scopeDefs = scopeDefs.tail // pop it
Block(stms, r) // wrap it up in a block

}
implicit def reflect[T](d: Def[T]): Exp[T] = {
// make a fresh symbol (: Exp[T]) to refer to the def
val sym = freshSym[T]()
// append it to the current scope
scopeDefs = (scopeDefs.head :+ ScopeEntry(sym, d)) :: scopeDefs.tail
sym // the expression-representation of the definition

}

With this machinery in place, we can explain the implementation of if-then-else state-
ments for imperative DSLs, such as our JavaScript example. The representation is de-
fined as follows, and the virtualization hook looks simple enough: it simply creates an
IfThenElse node.

case class IfThenElse[T](c: Exp[Boolean], a: Block[T], b: Block[T]) extends Def[T]
def __ifThenElse[T](cond: Exp[Boolean], thenp: => Exp[T], => elsep: Exp[T]): Exp[T] =
IfThenElse(cond, thenp, elsep)

However, looks can be deceiving. Behind the scenes, implicit conversions are taking care
of reifying the sequencing. Making the implicit conversions explicit, we see what is really
going on:

reflect(IfThenElse(cond, reifyBlock(thenp), reifyBlock(elsep)))

Higher-Order Symb Comput

The details of code generation for JavaScript do not provide any further insights. For
completeness, the generated code looks as follows:

var x1 = {"name" : "kim","age" : 20}
var x2 = (x1.age = 21)
if (x1.age >= 21) {
var x3 = "beer"

} else {
var x3 = "milk"

}

It is easy to complete the example by generating an HTML page that can be used to
run the code in a web browser. A more sophisticated JavaScript embedding with additional
features was studied by Kossakowski et al. [25].

6.3 Structuring DSL implementations

Since embedded languages are just libraries, we can use all Scala modularity facilities
(classes, traits, objects) to structure DSLs as components. Often it makes sense to encap-
sulate implementation details of a DSL embedding. For example, we may want to keep
functionality like reflect/reify internal to the DSL implementation and invisible from
actual DSL programs. Moreover, we may want to keep the deep embedding representation
inaccessible from the DSL programs, too: If a program can observe its own representation,
on-the-fly optimizations while building up the deep embedding may no longer be sound
because the program could base its computation on a particular term representation [55].

Thus, a common approach for structuring DSL embeddings (as popularized by the LMS
[42] and Delite frameworks [45], and inspired by earlier work on finally tagless [8] or poly-
morphic embedding of DSLs [20]) is to separate the DSL interface from its implementation.

We will consider our probabilistic DSL from Sect. 2.1 as example. We first define the
DSL interface as traitProbDSL that extends a traitBase, which we may take to contain some
infrastructure common to multiple embedded DSLs:

trait Base extends EmbeddedControls {
type Rep[T]

}
trait ProbDSL extends Base {
type Prob = Double
def flip(p: Prob): Rep[Boolean]
def binomial(p: Prob, n: Rep[Int]): Rep[Int]
def always[A](e: Rep[A]): Rep[A]

}

TraitProbDSLcontains only abstract methods, and instead of fixing a concrete representation
for DSL expressions, we use the abstract type constructorRep, which is defined in traitBase.
Trait Base also inherits from EmbeddedControls to make the usual virtualization hooks
available to its subclasses.

We go on to define a trait BaseExp, which will contain the core support for our deep
embedding:

trait BaseExp extends Base {
type Rep[T] = Exp[T]
abstract class Exp[T]

Higher-Order Symb Comput

abstract class Def[T]
abstract class Block[T]
def reflect[T](d: Def[T]): Exp[T] = · · ·
def reifyBlock[T](e: => Exp[T]): Block[T] = · · ·

}

WithBaseExp at hand, we are ready to defineProbDSLExp, which contains the deep embed-
ding of our probabilistic DSL expressions:

trait ProbDSLExp extends BaseExp with ProbDSL {
case class Flip(p: Prob) extends Exp[Boolean]
case class Binomial(p: Prob, n: Exp[Int]) extends Exp[Int]
case class Always[A](e: Exp[A]) extends Exp[A]
def flip(p: Prob): Exp[Boolean] = reflect(Flip(p))
def binomial(p: Prob, n: Exp[Int]): Exp[Int] = reflect(Binomial(p, n))
def always[A](e: Exp[A]) = reflect(Always(e))
def apply: Exp[Any]

}

Within the implementation hierarchy,Rep[T] is fixed toExp[T], but this fact is not observ-
able from DSL programs that have no knowledge aboutProbDSLExp.

To write and run an actual DSL programs, we first extend the DSL interfaceProbDSL

trait MyProgram extends ProbDSL {
def apply = {
val bias = flip(0.3)
if (bias) flip(0.6) else flip(0.5)

}
}

and then create an object that mixes in the DSL program with the DSL implementation
ProbDSLExp:

new MyProgram with ProbDSLExp

This way, all bindings from ProbDSL, but not those from ProbDSLExp, are available to the
program insideapply.

Finally, on this object we can invoke a DSL specific method (e.g. result) that will run
the apply method defined on the DSL program to obtain a deep embedding, and perform
DSL specific interpretation or compilation of the deep representation.

6.4 DSL scopes: reducing boilerplate by relaxing hygiene

The approach of structuring DSLs into interface and implementation components comes
with a number of benefits but also with a drawback: it imposes some boilerplate not only
on the DSL developer but also on the DSL user. Extending traits and creating objects in a
certain way just to define a little DSL program may be asking too much.

Scala-Virtualized therefore introduces the concept of DSL scopes: Instead of defining
traits and objects explicitly, DSL users can just write

ProbDSL {
flip(0.5) && flip(0.5)

}

Higher-Order Symb Comput

and the compiler will desugar this expression into

class DSLprog extends ProbDSL {
def apply = {
flip(0.5) && flip(0.5)

}
}
(new DSLprog with ProbDSLExp).result

It is instructive to compare DSL scopes with regular block scopes in Scala. In plain Scala,
if we define a function with a by-name argument

def MyBlock[A](body: => A): A

We can invoke it like this:

MyBlock {
...

}

The same approach also works for functions with multiple parameter lists, and general func-
tion arguments (a by-name argument is conceptually a zero-argument function). For exam-
ple, we can define a function using to close a file handler or other managed resource after
using:

def using[A](x: Closeable[A])(body: x => A): A = try body(x) finally x.close

A possible use could look like this:

using(new File("output.txt")) { f =>
f.write("hello")

}

We might be tempted to try and use this mechanism to implement our desired DSL syn-
tax:

ProbDSL {
flip(0.5) && flip(0.5)

}

However, in plain Scala this would not work because scopes, in general, are hygienic. If
we define ProbDSL as a method with a by-name parameter, there is no way for ProbDSL to
modify the bindings available at the call-site. We thus need a facility with relaxed hygiene
conditions.

Scala-Virtualized recognizes and translates method calls that return an object of a marker
classScope, defined inEmbeddedControls:

class Scope[Interface, Implementation, Result](body: => Result)

To implement a DSL scope facility for a given DSL, DSL authors just need to provide a
method with an appropriate name and a Scope return type. The type parameters to Scope
determine the traits used as interface and implementation, and the result type of the scope,
respectively.

def ProbDSL[R](b: => R) = new Scope[ProbDSL, ProbDSLExp, R](b)

This definition enables the desugaring of ProbDSL { .. } blocks as shown above.

Higher-Order Symb Comput

6.5 Example: compiling and running embedded code (staging)

As a final example, we show a small embedded language that does not add any new func-
tionality on top of Scala, but just implements existing Scala functionality in a more efficient
way. More precisely, it removes abstraction overhead by constructing a deep embedding
that is simpler than the original program, relying on deep linguistic reuse to translate away
features such as first class functions or generic types. This is an example of multi-stage pro-
gramming (staging) [56], but without the usual quasi-quotation syntax and with a restricted
object language.

High-level numeric algorithms such as generic matrix multiplication are quite slow in
Scala because primitive values passed to generic methods are boxed unless all generic type
parameters on the call path are annotated as @specialized. Furthermore, for compre-
hensions are translated into method calls, which entails allocating and garbage collecting a
significant amount of closures. In the same vein,Range objects are allocated simply to hold
the start and end of the iteration range.

Consider the following naive implementation of matrix multiplication:

def multGeneric[T:Numeric:Manifest](m: Matrix[T], n: Matrix[T]) = {
val p = new Matrix[T](m.rows, n.cols)
for (i <- 0 until m.rows) {
for (j <- 0 until n.cols) {
for (k <- 0 until n.rows) {
p(i, j) += m(i, k) * n(k, j)

}}}
p

}

By implementing Matrix in terms of Exp[Array[A]] internally, the deep embed-
ding does not contain any trace of a matrix abstraction, just low-level operations on arrays.

class Matrix[A: Manifest](val rows: Exp[Int], val cols: Exp[Int]) {
private val arr: Exp[Array[A]] = ArrayNew[A](rows * cols)
def apply(i: Exp[Int], j: Exp[Int]): Exp[A] = arr(i*cols + j)
def update(i: Exp[Int], j: Exp[Int], e: Exp[A]) = { arr(i*cols + j) = e }

}

Similarly, we provide an implementation of for loops that strips away the abstraction
overhead of range objects and higher-order functions:

def infix_until(x: Exp[Int], y: Exp[Int]) = RangeExp(x,y)
case class RangeExp(val start: Exp[Int], val end: Exp[Int]) {
def foreach(f: Exp[Int] => Exp[Unit]): Exp[Unit] = {
var i = start
while (i < end) { // generates deep embedding of while loop
f(i)
i += 1

}}}

A for comprehension like for (k <- 0 until n.rows) will be interpreted as method
calls infix_until(0,n.rows).foreach(k = >· · ·). The implementation of foreach
given above takes a function parameter of type Exp[Int] => Exp[Unit], which means
that the call inside the while loop will always be inlined. The deep embedding will not con-
tain any trace of closures or higher-order functions, just plain and simple while loops. It is
important to notice, however, that we can leverage the full expressive power of higher-order

Higher-Order Symb Comput

functions while composing the deep embedding representation. For example, we could eas-
ily define other higher-order functions like map or count that can use foreach internally.
Thus, we obtain deep linguistic reuse of higher-order functions: we profit from their expres-
sive power but do not need to pay the price on the deep embedding level.

By splicing in matrices and ranges that perform reification, in addition to intercepting
array update, multiplication, and addition in the usual way, our naive program now generates
a representation of itself.

The reification of array creation provides a nice use case for type manifests (see
Sect. 7.1). From our representation that uses generic types, we can emit code that is in-
stantiated to concrete types:

def ArrayNew[T: Manifest](n: Exp[Int]): Exp[Array[T]] = ArrayNewOp[T](n, manifest[T])
case class ArrayNewOp[T](n: Exp[Int], tp: Manifest[T]) extends Def[Array[T]]
def emitNode[T](s: Sym[T], d: Def[T]): Unit = d match {
case ArrayNewOp(n, tp) =>
emitValDef(s, "new Array[" + tp + "](" + n + ")")

...

Here, the standard library’s manifest[T] function provides easy access to the implicit
manifest that is in scope due to the Manifest context bound on T. The net effect is that
we remove generic dispatch and instantiate all generic types, another case of deep linguistic
reuse. We get all of these optimizations essentially for free due to the way the embedding is
set up. Our minimal “optimizer” yields the following program:

var x27 = 500 * 500
var x28 = new Array[Double](x27)
var x29: Int = 0
while (x29 < 500) {
var x30: Int = 0
while (x30 < 500) {
var x31: Int = 0
while (x31 < 100) {
...
x31 += 1

}
var x46 = ()
x46
x30 += 1

}
var x47 = ()
x47
x29 += 1

}

Finally, we simply instantiate a Scala compiler instance and use its API to generate bytecode
for the optimized Scala code that we generated, and run the resulting program. Informal
benchmarks indicate these simple optimizations result in a 20× speedup for multiplying
two random 500 × 100 and 100 × 500 matrices of doubles: the polymorphic multiplication
takes 1.4 s, when specializing to matrices of primitive doubles the run time is reduced to
1 s, and the staged implementation reduces this time further by a factor of 20:

Higher-Order Symb Comput

generic: specialized: staged:
2.691 s 1.062 s 0.088 s
1.400 s 1.228 s 0.058 s
1.464 s 1.076 s 0.055 s
1.359 s 1.030 s 0.054 s
1.244 s 1.076 s 0.056 s

This is just the tip of the iceberg of the optimizations enabled by our approach. Using
Lightweight Modular Staging [43] and Delite [6, 28] we can add parallelism, loop fusion,
code motion and other advanced optimizations. We have a full program representation, so
we can do any analysis or transformation a regular compiler can do. In addition, we profit
from the fact that the deep embedding is simpler than the original program, because lots
of abstraction overhead has already been removed while the deep representation was con-
structed [40, 44].

7 Debugging support for DSLs

Debugging is an important concern for developing DSLs beyond proof-of-concepts. The
main difficulty is issuing error messages in terms of the DSL, not in terms of its host lan-
guage embedding. This section surveys the debugging support in Scala-Virtualized, in par-
ticular an extension of Scala’s implicit parameters that enables DSLs to access source file
and line number information (Sect. 7.2). Section 7.1 sets the stage by reviewing Scala’s
implicits and the use of manifests to access static type information at runtime, after which
the source info facility was modeled. To complete the debugging subject, Sect. 7.3 reviews
Scala’s support for influencing type error messages at compile time.

7.1 Virtualizing static type information

Scala’s implicits [11] provide a convenient way of deriving run-time information from static
types. When the last argument list of a method is marked asimplicit, a call to this method
need not specify its actual arguments. For each missing implicit argument, the compiler will
(statically) determine the (unique) implicit value of the correct type in order to complete the
method call. The implicit keyword is used to mark regular value definitions as potential
implicit arguments. By overriding a virtualized language feature to include certain implicit
parameters we can require additional static information or predicate virtualization on some
static condition.

Certain types of implicit values are treated specially by the compiler: when no user-
defined implicit value of the expected type can be found, the compiler synthesizes the value
itself. In standard Scala, manifests, which provide a run-time representation of static types,
are the only implicit values that are treated this way [13].

As an example of manifests, consider the following polymorphic method that requires a
manifest for its type parameter T:

def m[T](x: T)(implicit m: Manifest[T]) = ...

When this method is called at type String, and assuming there is no implicit value of
typeManifest[String] in scope, the compiler will synthesize a factory call that generates
a run-time representation of the classString, like this:

reflect.Manifest.classType(classOf[String])

Higher-Order Symb Comput

The main use of manifests in the context of embedded DSLs is to preserve information
necessary for generating efficient specialized code in those cases where polymorphic types
are unknown at compile time (e.g., to generate code that is specialized to arrays of a primitive
type, even though the object program is constructed using generic types).

7.2 Virtualizing static source information

Scala-Virtualized extends the idea of Manifest and introduces SourceContext to provide
run-time information about the static source code context. Implicit source contexts reify
static source information, such as the current file and line number, which is otherwise lost
after the program is compiled. The idea is for a method to declare an implicit parameter of
type SourceContext:

def m[T](x: T)(implicit pos: SourceContext) = ...

Inside the method m, the source context of its invocation, i.e., the file name, line number,
character offset, etc., is available as pos. Like manifests, source contexts are generated by
the compiler on demand.

Implicit SourceContext objects are chained to reflect the static call path. Thus they
can provide source information that is impossible to recover from exception stack traces,
say. Consider the following example:

def m()(implicit pos: SourceContext) = ...
def outer()(implicit outerPos: SourceContext) =
() => m()

val fun = outer()
fun() // invoke closure

Here, the method outer returns a closure which invokes method m. Since m has an im-
plicit SourceContext parameter, the compiler generates an object containing source in-
formation for the invocation of m inside the closure. The compiler will not only pass the
SourceContext corresponding to the current invocation but also the outerPos con-
text as the parent of the current SourceContext. As a result, when invoking the closure
inside m the chain of source contexts remains available. Both inside m as well as inside the
closure, the static source context of the closure is known. This means that even if the closure
escapes its static creation site, when the closure is invoked, the source context of its creation
site can be recovered. Stack traces would not be able to expose this information since it can
not be recovered from the dynamic call stack.

When lifting DSL constructs, we typically lose source information; expression trees no
longer contain line numbers and variable names that correspond to the original source. This
can be problematic if the DSL performs checks on the deep embedding. In that case, failing
checks should produce meaningful error messages that refer back to the location in the
source that contains the error. To fix this, methods used in the embedding of a DSL can be
augmented as follows:

implicit class selectOps(self: Exp[_ <: Record])(implicit loc: SourceContext) {
def selectDynamic[T](n: String): Exp[T] =
Select(self, n)(loc)

}

The above method can be used to provide a Select operation on expression trees (e.g.,
for generating SQL expressions). The implicit is applied whenever a field is selected on

Higher-Order Symb Comput

an expression tree whose result type extends Record. To improve debugging of problem-
atic field selections we add an implicit SourceContext parameter. As a result, whenever
the selectOps method is called, the loc argument describes the invocation site. The
compiler automatically generates this loc object for each invocation; it contains source in-
formation specific to the static invocation site. This source information is accessible through
methods such as fileName, line, and charOffset.

The SourceContext object can then be passed to the data constructors of the embed-
ding. In the above example, we are passing loc to the constructor of Select. This way,
each Select node is equipped with source location information which can be used when
processing the IR subsequently.

For example, when processing erroneous SQL queries, the DSL generator can output
error messages that contain precise source location information. Consider what happens if
an invalid query expression is submitted to a database. For example, a query might try to
access a column that doesn’t exists in a database table. This typically leads to an exception,
such that the stack trace points to the expression which submitted the query to the database.
Moreover, the information about which elements of the DSL program were involved in the
problematic situation is lost. However, in the above case what the user would really like to
know is where the queried table was declared in the DSL program; this would allow pin-
pointing the error much easier, by giving the user a chance to check the correctness of their
declarations.

Using implicit SourceContext parameters this information can be provided in DSL-
specific error messages. To that purpose, we extend the DSL constructs for which we would
like to have source information, in this case, the table constructor:

case class Table[R <: Record](name: String)(implicit val loc: SourceContext)
extends Exp[List[R]]

Subsequently, we can make use of this source information when handling run-time excep-
tions, and provide DSL-specific error messages pointing to the precise source location of
elements of our DSL, in this case, table declarations:

case e: Exception => expr match {
case ListSelect(table @ Table(name), _) =>

println("error in query on table " + name +
" declared at " + table.loc.line + ": " + e)

7.3 Static error checking

Simple annotations placed on types and constructs of the library that should not be visible
to the user can be used for adapting error messages of the compiler. Such annotations can
already improve the user experience substantially; at the same time the approach places only
a small burden on the library author.

In fact, this approach is already finding its way into Scala’s standard collections library.
Scala’s collections [32] use implicit parameters to support operations on collections that are
polymorphic in the type of the resulting collection. These implicit parameters should not
be visible to the application developer. However, in previous Scala versions, error messages
when using collections incorrectly could refer to these implicits. In recent versions of Scala,
a lightweight mechanism has been added to adapt error messages involving implicits: by
adding an annotation to the type of the implicit parameter, a custom error message is emitted
when no implicit value of that type can be found.

Higher-Order Symb Comput

For instance, immutable maps define a transform method that applies a function to
the key/value pairs stored in the map resulting in a collection containing the transformed
values:

def transform[C, That](f: (A, B) => C)(implicit bf:
CanBuildFrom[This, (A, C), That]): That

This function transforms all the values of mappings contained in the current map with func-
tion f. Here, This is the type of the actual map implementation and That, the type of the
updated map. The implicit parameter ensures that there is a builder factory that can be used
to construct a collection of type That given a collection of type This and elements of type
(A, C).

Actual implicit arguments passed to transform should not be visible to the application
developer. However, wrong uses of maps may result in the compiler not finding concrete
implicit arguments; this would result in confusing error messages. Error messages involving
type CanBuildFrom are improved using a type annotation:

@implicitNotFound(msg = "Cannot construct a collection of
type ${To} with elements of type ${Elem} based on a
collection of type ${From}.")

trait CanBuildFrom[-From, -Elem, +To] { ... }

The implicitNotFound annotation is understood by the implicit search mechanism in
Scala’s type checker. Whenever the type checker is unable to determine an implicit argument
of type CanBuildFrom, the compiler emits the (interpolated) error message specified as
the argument of the implicitNotFound annotation. Thereby, a low-level implicit-not-
found error message is transformed to only mention the types From, Elem, and To, which
correspond to types occurring in user programs.

8 Related work

Embedded languages have a long history. Early work by Landin recognized that “most pro-
gramming languages are partly a way of expressing things in terms of other things and partly
a basic set of given things” and proposed to have many different languages, i.e. sets of primi-
tive operations for different problem domains, in one general-purpose language [27]. Hudak
introduced the concept of embedding DSLs as pure libraries [21, 22]. Steele proposed the
idea of “growing” a language by adding domain specific language extensions, again in the
form of libraries [51]. The concept of linguistic reuse goes back to Krishnamurthi [26].
Language virtualization was introduced by Chafi et al. [9]. The idea of representing an em-
bedded language abstractly as a set of available methods was introduced as finally tagless
embedding by Carette et al. [8] and as polymorphic embedding by Hofer et al. [20], going
back to much earlier work by Reynolds [39].

In contrast to virtualization, there are many other language extension mechanisms. Some
are external, like preprocessors or generators, and some use built-in meta-language facili-
ties, such as Template Haskell [47], Metaborg [5] and SugarJ [16]. We refer to [15] for an
overview.

8.1 Existing cases of virtualization in other languages

Many languages virtualize a certain set of features using patterns that are similar to the
“everything is a method call” approach we applied in Scala-Virtualized. We review some of
these cases next.

Higher-Order Symb Comput

C++: Expression templates [61] are a way of reifying program expressions in C++. Mak-
ing crucial use of operator overloading, templates are used to represent high-level opera-
tions. An extensive range of libraries has been built using expression templates to represent
complex computations and perform symbolic optimizations at compile time, during tem-
plate specialization. Operator overloading enables expression templates to look like regular
arithmetic operations, the approach is thus very similar to the pattern followed in Scala-
Virtualized. In C++, just like in plain Scala, it is not possible to override built-ins like if-
then-else, therefore expression templates need to use different and less natural syntax to
implement conditionals or, in general, expressions that are composed out of multiple state-
ments. Therefore, in many cases only isolated arithmetic expressions are reified as templates
which limits the extent and power of applicable optimizations. Bassetti et al. review these
and other challenges in obtaining performance on par with low-level C or Fortran code from
expression template approaches [4]. Examples of successful expression template packages
are the Matrix Template Library [49], POOMA [23], ROSE [12] and the portable expression
template engine PETE [10]. Many of these packages contain reusable generic components
that are applicable beyond the immediate use-case of the particular library.

Haskell: Since monads [29, 63] are a ubiquitous pattern in Haskell programming [36],
Haskell provides syntactic support for monadic composition in form of its ‘do’-notation.
The ‘do’-notation can be used with any type that implements the monadic return and
>>= operations. In our view, this is a case of virtualizing Haskell’s imperative sub-language,
which consists of variable binding and sequential statement composition, by defining syntax
that desugars into method calls. Haskell is a popular host language for embedded DSLs.
To give just one example that uses techniques related to this paper, the Feldspar DSL [3]
combines a shallow front-end with a deep embedding back-end and makes clever use of
deep linguistic reuse. In particular, functions in the shallow embedding provide automatic
fusion of array/vector operations without any further work on the deep embedding level.

F#: Like Haskell’s ‘do’-notation, computation expressions [54] in F# can be seen as a
general monadic syntax for F#. Just like Scala’s for-comprehensions, a computation ex-
pression is translated to method calls on objects. In contrast to Scala, in F# a computation
expression is required to identify one particular object/monad (the “builder” object) which
needs to provide a well-defined set of methods that are used as invocation targets of the trans-
lation. Like for-comprehensions, computation expressions are restricted to a small sublan-
guage. Scala-Virtualized is more expressive, since it virtualizes also expressions like pattern
matching. Compared to Haskell, F# generalizes monadic computations and monadic con-
tainers using delayed computations [35]. This generalization enables expressions of impure
languages like F# , such as while-loops and try-with exception-handling, inside computation
expressions.

Racket: Racket is a dialect of Scheme that allows programmers to change almost all as-
pects of the language using a carefully designed revision of a Scheme-style macro system.
Rackets enables “languages as libraries” [58], i.e. individual modules of a program can be
implemented in different languages, and language implementations have full control over
the syntax and semantics of the module, including lexicographic and parsed notation, static
semantics, module linking, and optimizations. Typed Scheme [57] can be implemented en-
tirely as macros in Racket. This flexibility goes considerably beyond what Scala-Virtualized
offers, but the starting point is very different as well (Scheme vs Scala).

Higher-Order Symb Comput

8.2 Virtualization and reflection

The ability of a programming language to represent its (meta) programs as object programs
is called reflection [50]. In other words, reflection enables a program to inspect and reason
about itself.

Virtualization can be seen as a (static) dual of (dynamic) reflection: Where a reflective
language allows programs to inspect language elements they are composed of, a virtual-
izable language allows programs to give language elements new meaning. In a reflective
language programs can use information obtained by reflection to trigger a certain behavior.
In a virtualizable language the language elements can be customized to trigger the behavior
directly within programs.

Using virtualization to create expression trees is a mechanism to achieve reification of
programs, and reification is an important mechanism in reflective languages. On the other
hand, an accessible program representation alone, such as provided by a lifting mechanism
that reifies expression trees, is not always sufficient. First, reified expression trees can con-
tain arbitrary host language expressions, not just those that are also part of the embedded
DSL. Second, in many cases it is desirable to freely mix lifted DSL code and non-lifted host
language code. We give an example in the section on Scala macros below (Sect. 8.3).

8.3 Scala macros

Recent versions of Scala have added a macro facility to the language [7]. We view macros
and virtualization as complementary technologies with many possible synergies. A key ben-
efit of macros is the ability to raise domain specific error messages at compile time, which
means, for example, that these error message can show up in an IDE as squiggly under-
lines just like regular Scala errors. Virtualized methods could be implemented as macros,
and thus perform extended domain-specific checking at compile time. Conceptually, entire
domain-specific transformations could be done at compile time, although there are certain
limits posed by separate compilation requirements and related open-world assumptions of
the Scala compiler.

Macros can be used to reify expression trees directly, and macros receive reified expres-
sion trees as their arguments. Compared to deep embeddings constructed using virtualiza-
tion, which have fine-grained control over which parts of a DSL programs are reified into a
deep embedding and which parts are not, the macro approach is more coarse-grained. For ex-
ample, macros that take functions as their arguments will receive these functions as values of
typeExp[A=>B], which may represent a closure literal but might also represent an identifier
if the function is defined elsewhere. It is instructive to compare this to Sect. 6.5, where we
represented DSL functions as values of typeExp[A]=>Exp[B], i.e. as regular Scala functions
that compute a reified representation given a reified argument, without reifying functions in
the deep embedding. The first (macro) version will need to be interpreted fully, the second
one may directly perform arbitrary computations while building the expression tree of the
result. Essentially, the difference is in shallow vs. deep reuse of functions. Scala macros
also have no special support for maintaining evaluation order (see Sect. 6.1) when splicing
program fragments but use customary, context-free expansion (similar to quasi-quotation).

It would be highly desirable to implement some of the virtualization logic itself as
macros, for example DSL scopes (Sect. 6.4). However, in the current implementation, Scala
macros require macro invocations to type check before macro expansion. Thus, we could
not easily express the semantics of DSL scopes, which rely on relaxed hygiene to introduce
bindings for DSL methods into the argument block. Support for untyped macros is planned
for some future Scala release but the design has not been finalized.

Higher-Order Symb Comput

8.4 Built with Scala-Virtualized

Scala-Virtualized has been in used successfully in several DSL projects. Lightweight Modu-
lar Staging (LMS) [42–44] is a set of techniques and a core compiler framework for building
embedded DSLs in Scala-Virtualized. The key idea of LMS is to use combinations of shal-
low and deep embeddings for explicit multi-stage programming [56], but without the usual
syntactic quasi-quotations (similar to the example in Sect. 6.5). When building DSLs us-
ing LMS, developers can rely on modules of core functionality that mirror parts of the Scala
language and standard library. Deep embeddings can be built by extending a common graph-
based IR (intermediate representation) that captures dependencies and effect information in
a generic way. LMS also provides a wide range of generic compiler optimizations on the
IR level, including common subexpression elimination, algebraic rewrites, code motion, or
loop fusion.

Delite [6, 28, 45] is a research project from Stanford University’s Pervasive Parallelism
Laboratory (PPL) that makes key use of Scala-Virtualized and LMS to build a framework
and runtime for parallel embedded DSLs. To simplify the construction of high-performance,
highly productive DSLs, Delite provides:

– code generators for Scala, C++ and CUDA,
– built-in parallel execution patterns,
– optimizers for parallel code,
– scheduling and runtime support for heterogeneous hardware.

OptiML [52] is a DSL for machine learning developed using Scala-Virtualized, LMS
and Delite. OptiML programs can be compiled for a variety of parallel hardware platforms,
including CMPs (chip multi-processors), GPUs (by automatically generating CUDA code),
and eventually even FPGAs and other specialized accelerators. Cluster support is a topic
of ongoing work. Furthermore, compilation employs aggressive domain-specific optimiza-
tions, resulting in high-performance generated code which outperforms parallel MATLAB
on many common ML kernels.

OptiML makes it easy to express iterative statistical inference problems. Most of these
problems are expressed using dense or sparse linear algebra operations which can be paral-
lelized using a large number of fine-grained map-reduce operators. OptiML programs make
use of three fundamental data types, Vector, Matrix, and Graph, which support all of the
standard linear algebra operations used in most ML algorithms. These data types are poly-
morphic and are compiled to efficient code leveraging BLAS or GPU support if they are
used with scalar values.

Other DSLs build using Scala-Virtualized and LMS include SIQ, StagedSAC and Jet.
Scala Integrated Query (SIQ) [62] compiles an embedded subset of Scala into SQL for exe-
cution in a DBMS. Advantages of SIQ over SQL are type safety, familiar syntax, and better
performance for complex queries by avoiding avalanches of SQL queries. StagedSAC [60]
is an embedded DSL for functional programming with multidimensional arrays, modeled
after the language SAC [46]. A key feature is a domain-specific type inference pass that
pre-computes array shapes. Jet [1] is a DSL that provides a collection-like interface for
“BigData” processing on clusters and can generate code to run on a variety of cluster pro-
gramming frameworks.

9 Conclusion

In this paper, we have presented Scala-Virtualized, a set of small extensions to the Scala
language to provide even better support for hosting embedded DSLs. Scala-Virtualized ex-

Higher-Order Symb Comput

tends concepts already present in Scala and in many other languages; most importantly the
idea of virtualizing certain language features by defining them as method calls, so that they
can be redefined within the language. Scala-Virtualized redefines most of Scala’s expression
sub-language in this way, enabling DSL implementations to give domain-specific meaning
to core language constructs such as conditionals, pattern matching, etc. A key use for this
facility is in reifying DSL expressions into a data structure representation, i.e. a deep em-
bedding. By redefining e.g. conditionals to construct an expression tree, a deeply embedded
DSL can still use the familiar Scala syntax for conditionals: On the surface, an if in the
DSL is just a Scala if, although it may have a different type and do something different.
This means that using virtualization, deep embeddings can benefit from linguistic reuse in
much the same way as shallow embeddings, for which linguistic reuse is automatic.

In addition to the obvious syntactic, shallow, reuse, we have also presented examples of
what we call deep linguistic reuse. By combining shallow and deep components, DSLs can
often implement certain features such as higher order functions or generic types completely
at the shallow embedding level, resulting in a deep embedding that is simpler to analyze and
faster to execute.

Scala-Virtualized has been used successfully in several projects to build DSLs which
combine the lightweight appearance of a shallow embedding with the performance char-
acteristics and flexibility of a deep embedding. We believe that the techniques we applied
in the context of the Scala language are generic, and could be applied to other expressive
languages as well.

Acknowledgements The authors would like to thank Arvind Sujeeth, Hassan Chafi, Kevin Brown, Hy-
oukJoong Lee, Zach DeVito, Kunle Olukotun, Christopher Vogt, Vlad Ureche, Grzegorz Kossakowski, Ste-
fan Ackermann, Vojin Jovanovic, Manohar Jonnalagedda, Sandro Stucki and Julien Richard-Foy. The authors
would also like to thank the anonymous PEPM’12 and HOSC reviewers.

References

1. Ackermann, S., Jovanovic, V., Rompf, T., Odersky, M.: Jet: an embedded DSL for high performance big
data processing. BigData (2012). http://infoscience.epfl.ch/record/181673/files/paper.pdf

2. Armstrong, J.: Erlang. Commun. ACM 53(9), 68–75 (2010)
3. Axelsson, E., Claessen, K., Sheeran, M., Svenningsson, J., Engdal, D., Persson, A.: The design and

implementation of feldspar an embedded language for digital signal processing. In: Proceedings of the
22nd International Conference on Implementation and Application of Functional Languages, IFL’10,
pp. 121–136. Springer, Berlin (2011)

4. Bassetti, F., Davis, K., Quinlan, D.J.: C++ expression templates performance issues in scientific comput-
ing. In: IPPS/SPDP, pp. 635–639 (1998)

5. Bravenboer, M., Visser, E.: Concrete syntax for objects: domain-specific language embedding and as-
similation without restrictions. In: Vlissides, J.M., Schmidt, D.C. (eds.) OOPSLA, pp. 365–383. ACM,
New York (2004)

6. Brown, K.J., Sujeeth, A.K., Lee, H., Rompf, T., Chafi, H., Odersky, M., Olukotun, K.: A heterogeneous
parallel framework for domain-specific languages. In: PACT, October (2011)

7. Burmako, E., Odersky, M.: Scala Macros, a Technical Report. In: Third International Valentin Turchin
Workshop on Metacomputation (2012)

8. Carette, J., Kiselyov, O., Shan, C.-c.: Finally tagless, partially evaluated: tagless staged interpreters for
simpler typed languages. J. Funct. Program. 19(5), 509–543 (2009)

9. Chafi, H., DeVito, Z., Moors, A., Rompf, T., Sujeeth, A.K., Hanrahan, P., Odersky, M., Olukotun, K.:
Language virtualization for heterogeneous parallel computing. Onward! (2010)

10. Crotinger, J., Haney, S., Smith, S., Karmesin, S.: PETE: The portable expression template engine. Dr.
Dobb’s J. (Oct. 1999)

11. Oliveira, B.C.d.S., Moors, A., Odersky, M.: Type classes as objects and implicits. In: Cook, W.R., Clarke,
S., Rinard, M.C. (eds.) OOPSLA, pp. 341–360. ACM, New York (2010)

http://infoscience.epfl.ch/record/181673/files/paper.pdf

Higher-Order Symb Comput

12. Davis, K., Rose, D.J.Q.: An optimizing transformation system for C++ array-class libraries. In: ECOOP
Workshops, pp. 452–453 (1998)

13. Dubochet, G.: Embedded domain-specific languages using libraries and dynamic metaprogramming.
PhD thesis, Lausanne (2011)

14. Emir, B., Odersky, M., Williams, J.: Matching objects with patterns. In: ECOOP, pp. 273–298 (2007)
15. Erdweg, S., Giarrusso, P.G., Rendel, T.: Language composition untangled. In: Proceedings of the 12th

Workshop on Language Descriptions, Tools and Applications (LDTA) (2012)
16. Erdweg, S., Rendel, T., Kästner, C., Ostermann, K.: SugarJ: library-based syntactic language extensibil-

ity. In: Lopes, C.V., Fisher, K. (eds.) OOPSLA, pp. 391–406. ACM, New York (2011)
17. Filinski, A.: Representing monads. In: POPL, pp. 446–457 (1994)
18. Filinski, A.: Monads in action. In: POPL, pp. 483–494 (2010)
19. Haller, P., Odersky, M.: Scala actors: unifying thread-based and event-based programming. Theor. Com-

put. Sci. 410(2–3), 202–220 (2009)
20. Hofer, C., Ostermann, K., Rendel, T., Moors, A.: Polymorphic embedding of DSLs. In: GPCE (2008)
21. Hudak, P.: Building domain-specific embedded languages. ACM Comput. Surv. 28, 196 (1996)
22. Hudak, P.: Modular domain specific languages and tools. In: Proceedings. Fifth International Conference

on Software Reuse, 1998, pp. 134–142 (1998)
23. Karmesin, S., Crotinger, J., Cummings, J., Haney, S., Humphrey, W., Reynders, J., Smith, S., Williams,

T.J.: Array design and expression evaluation in POOMA II. In: ISCOPE, pp. 231–238 (1998)
24. Kiselyov, O., chieh Shan, C.: Embedded probabilistic programming. In: Taha, W.M. (ed.) DSL. Lecture

Notes in Computer Science, vol. 5658, pp. 360–384. Springer, Berlin (2009)
25. Kossakowski, G., Amin, N., Rompf, T., Odersky, M.: Javascript as an embedded DSL. In: ECOOP

(2012)
26. Krishnamurthi, S.: Linguistic reuse. PhD thesis, Computer Science, Rice University, Houston (2001)
27. Landin, P.J.: The next 700 programming languages. Commun. ACM 9(3), 157–166 (1966)
28. Lee, H., Brown, K.J., Sujeeth, A.K., Chafi, H., Rompf, T., Odersky, M., Olukotun, K.: Implementing

domain-specific languages for heterogeneous parallel computing. IEEE MICRO 31(5), 42–53 (2011)
29. Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55–92 (1991)
30. Moors, A., Piessens, F., Odersky, M.: Parser combinators in Scala. Technical Report CW491,

Department of Computer Science, K.U. Leuven (2008). http://www.cs.kuleuven.be/publicaties/
rapporten/cw/CW491.abs.html

31. Moors, A., Rompf, T., Haller, P., Odersky, M.: Scala-Virtualized. In: PEPM, pp. 117–120 (2012)
32. Odersky, M., Moors, A.: Fighting bit rot with types (experience report: Scala collections). In: IARCS An-

nual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS
2009, December 15–17, 2009, IIT Kanpur, India, vol. 4, pp. 427–451 (2009)

33. Odersky, M., Spoon, L., Venners, B.: Programming in Scala, 2nd edn. Artima Press (2010)
34. Odersky, M., Zenger, M.: Scalable component abstractions. In: Johnson, R.E., Gabriel, R.P. (eds.) OOP-

SLA, pp. 41–57. ACM, New York (2005)
35. Petricek, T., Syme, D.: Syntax matters: writing abstract computations in F#. In: TFP (2012)
36. Peyton Jones, S. [editor], Hughes, J. [editor], Augustsson, L., Barton, D., Boutel, B., Burton, W., Fraser,

S., Fasel, J., Hammond, K., Hinze, R., Hudak, P., Johnsson, T., Jones, M., Launchbury, J., Meijer, E.,
Peterson, J., Reid, A., Runciman, C., Wadler, P.: Haskell 98—A non-strict, purely functional language.
http://www.haskell.org/definition/ (February 1999)

37. Popek, G.J., Goldberg, R.P.: Formal requirements for virtualizable third generation architectures. Com-
mun. ACM 17(7), 412–421 (1974)

38. Ramsey, N., Pfeffer, A.: Stochastic lambda calculus and monads of probability distributions. In: POPL,
pp. 154–165 (2002)

39. Reynolds, J.: User-defined types and procedural data structures as complementary approaches to data
abstraction (1975)

40. Rompf, T.: Lightweight modular staging and embedded compilers. PhD thesis, IC, Lausanne (2012)
41. Rompf, T., Maier, I., Odersky, M.: Implementing first-class polymorphic delimited continuations by a

type-directed selective CPS-transform. In: Hutton, G., Tolmach, A.P. (eds.) ICFP, pp. 317–328. ACM,
New York (2009)

42. Rompf, T., Odersky, M.: Lightweight modular staging: a pragmatic approach to runtime code generation
and compiled DSLS. In: Visser, E., Järvi, J. (eds.) GPCE, pp. 127–136. ACM, New York (2010)

43. Rompf, T., Odersky, M.: Lightweight modular staging: a pragmatic approach to runtime code generation
and compiled DSLS. Commun. ACM 55(6), 121–130 (2012)

44. Rompf, T., Sujeeth, A.K., Amin, N., Brown, K., Jovanovic, V., Lee, H., Jonnalagedda, M., Olukotun, K.,
Odersky, M.: Optimizing data structures in high-level programs. In: POPL (2013)

45. Rompf, T., Sujeeth, A.K., Lee, H., Brown, K.J., Chafi, H., Odersky, M., Olukotun, K.: Building-blocks
for performance oriented DSLS. In: DSL, pp. 93–117 (2011)

http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW491.abs.html
http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW491.abs.html
http://www.haskell.org/definition/

Higher-Order Symb Comput

46. Scholz, S.-B.: Single assignment C: efficient support for high-level array operations in a functional set-
ting. J. Funct. Program. 13(6), 1005–1059 (2003)

47. Sheard, T., Jones, S.L.P.: Template meta-programming for Haskell. SIGPLAN Not. 37(12), 60–75
(2002)

48. Siek, J.G.: General purpose languages should be metalanguages. In: Proceedings of the 2010 ACM
SIGPLAN Workshop on Partial Evaluation and Program Manipulation, PEPM ’10, pp. 3–4. ACM, New
York (2010)

49. Siek, J.G., Lumsdaine, A.: The Matrix Template Library: a generic programming approach to high per-
formance numerical linear algebra. In: International Symposium on Computing in Object-Oriented Par-
allel Environments. Lecture Notes in Computer Science, vol. 1505, pp. 59–70 (1998)

50. Smith, B.C.: Procedural reflection in programming languages. PhD thesis, MIT (1982)
51. Steele, G.: Growing a language. High.-Order Symb. Comput. 12(3), 221–236 (1999)
52. Sujeeth, A.K., Lee, H., Brown, K.J., Rompf, T., Wu, M., Atreya, A.R., Odersky, M., Olukotun, K.:

OptiML: an implicitly parallel domain-specific language for machine learning. In: Proceedings of the
28th International Conference on Machine Learning, ICML (2011)

53. Swadi, K.N., Taha, W., Kiselyov, O., Pasalic, E.: A monadic approach for avoiding code duplication
when staging memoized functions. In: PEPM, pp. 160–169 (2006)

54. Syme, D., Granicz, A., Cisternino, A.: Expert F#. Apress (2007)
55. Taha, W.: A sound reduction semantics for untyped CBN multi-stage computation. or, the theory of

MetaML is non-trivial (extended abstract). In: PEPM, pp. 34–43 (2000)
56. Taha, W., Sheard, T.: MetaML and multi-stage programming with explicit annotations. Theor. Comput.

Sci. 248(1–2), 211–242 (2000)
57. Tobin-Hochstadt, S., Felleisen, M.: The design and implementation of typed scheme. In: Necula, G.C.,

Wadler, P. (eds.) POPL, pp. 395–406. ACM, New York (2008)
58. Tobin-Hochstadt, S., St-Amour, V., Culpepper, R., Flatt, M., Felleisen, M.: Languages as libraries. In:

Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI ’11, pp. 132–141. ACM, New York (2011)

59. Torreborre, E.: Specs: software specifications for Scala (2011)
60. Ureche, V., Rompf, T., Sujeeth, A.K., Chafi, H., Odersky, M.: Stagedsac: a case study in performance-

oriented DSL development. In: PEPM, pp. 73–82 (2012)
61. Veldhuizen, T.L.: Expression templates. C++ Rep. 7(5), 26–31 (1995). Reprinted in C++ Gems, ed.

S. Lippman
62. Vogt, J.C.: Type safe integration of query languages into Scala. Diplomarbeit, RWTH Aachen, Germany

(2011)
63. Wadler, P.: Comprehending monads. Math. Struct. Comput. Sci. 2(4), 461–493 (1992)
64. Wadler, P., Blott, S.: How to make ad-hoc polymorphism less ad-hoc. In: POPL, pp. 60–76 (1989)

	Scala-Virtualized: linguistic reuse for deep embeddings
	Abstract
	Introduction
	Organization

	Scala and embedded DSLs
	Example: a probabilistic programming DSL
	A pure, shallow embedding
	A shallow monadic embedding
	A deep embedding

	Everything is a method call
	Virtualizing control structures
	Virtualizing method calls
	Example: DSLs with a restricted grammar

	Virtualizing pattern matching
	Example: reifying match expressions
	Example: logic programming

	Virtualizing type information and object construction
	Example: embedding SQL
	Virtualizing record types
	Translation in detail
	Example: probabilistic proﬁles

	Putting it all together
	Deep reuse of bindings and statement order
	Example: embedding JavaScript
	Structuring DSL implementations
	DSL scopes: reducing boilerplate by relaxing hygiene
	Example: compiling and running embedded code (staging)

	Debugging support for DSLs
	Virtualizing static type information
	Virtualizing static source information
	Static error checking

	Related work
	Existing cases of virtualization in other languages
	Virtualization and reﬂection
	Scala macros
	Built with Scala-Virtualized

	Conclusion
	Acknowledgements
	References

