
Philipp HALLER, STANFORD UNIVERSITY AND EPFL

The Many Flavors
PARALLEL PROGRAMMING

Scala
of

in

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Scala’s Toolbox for Parallel
Programming

ACTORS

STM

FUTURES

PARALLEL GRAPH
PROCESSING

COLLECTIONS

PARALLEL DSLS

PARALLEL

DISTRIBUTED

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Scala’s Toolbox for Parallel
Programming

ACTORS

STM

FUTURES

PARALLEL GRAPH
PROCESSING

COLLECTIONS

PARALLEL DSLS

PARALLEL

DISTRIBUTED

Sunday, July 17, 2011

in Scala
ACTORS

3

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Scala Actors.

4

// asynchronous message send
actor ! message

// message receive
receive {
 case msgpat1 => action1
 …
 case msgpatn => actionn
}

Send/receive constructs
adopted from Erlang

Send is asynchronous:
messages are buffered in
actor’s mailbox

Receive picks the first
message in the mailbox
that matches one of the
patterns msgpati

If no pattern matches the
actor suspends

✗✗

✗✗

✗✗

✗✗

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

A Simple Actor.

5

val summer = actor {
 var sum = 0
 loop {
 receive {
 case ints: Array[Int] =>
 sum += ints.reduceLeft((a, b) => (a+b)%7)
 case from: Actor =>
 from ! sum
 }
 }
}

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Erlang-style Actors.

6

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Erlang-style Actors.

6

No inversion of control
Message reception is explicit and blocking

✗✗

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Erlang-style Actors.

6

No inversion of control
Message reception is explicit and blocking

Fine-grained message filtering
Messages are filtered upon reception

✗✗

✗✗

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Erlang-style Actors.

6

No inversion of control
Message reception is explicit and blocking

Fine-grained message filtering
Messages are filtered upon reception

NOT Erlang-style actors: E, Kilim, (Akka)

✗✗

✗✗

✗✗

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Implementing Actors.

7

Thread-based implementation:

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Implementing Actors.

7

Thread-based implementation:
One thread per actor✗✗

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Implementing Actors.

7

Thread-based implementation:
One thread per actor

JVM maps threads to OS processes

✗✗

✗✗

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Implementing Actors.

7

Thread-based implementation:
One thread per actor

JVM maps threads to OS processes

Receive blocks thread while waiting for message

✗✗

✗✗

✗✗

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Implementing Actors.

7

Thread-based implementation:
One thread per actor

JVM maps threads to OS processes

Receive blocks thread while waiting for message

✗✗

✗✗

✗✗

PROS CONS
No inversion of control

Interoperability with threads

High memory consumption

Context switching overhead

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Event-Based Actors.

8

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Event-Based Actors.

8

Actors consume a lot of resources while
waiting for messages.

MAIN PROBLEM of thread-per-actor model:

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Event-Based Actors.

8

Actors consume a lot of resources while
waiting for messages.

Suspend actor by saving continuation
closure and releasing current thread

MAIN PROBLEM of thread-per-actor model:

IDEA:

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Event-Based Actors.

8

def act() {
 react { case Put(x) =>
 react { case Get(from) =>
 from ! x
 act()
 }
 }
}

Actors consume a lot of resources while
waiting for messages.

Suspend actor by saving continuation
closure and releasing current thread

MAIN PROBLEM of thread-per-actor model:

IDEA:

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Thread-based Programming

9

val tasks: List[Task]
tasks foreach { task => worker ! task }
val results = tasks map { task =>
 receive {
 case Done(result) => result
 }
}

Blocks current thread if actor
has to wait for a message

Actors should be able to block their thread temporarily:
When interacting with thread-based code
When it is difficult to provide the continuation

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Thread Pool

task queue

task queue

task queue

task queue

worker threads (few)

Actors (many)

Managing Blocking.

10

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Thread Pool

task queue

task queue

task queue

task queue

worker threads (few)

Actors (many)

Managing Blocking.

10

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Thread Pool

task queue

task queue

task queue

task queue

worker threads (few)

Actors (many)

 Start 3 actors
 Then:
receive {
 case Next =>
}

Actor A:

Managing Blocking.

10

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Thread Pool

task queue

task queue

task queue

task queue

worker threads (few)

Actors (many)

 Start 3 actors
 Then:
receive {
 case Next =>
}

Actor A:

Managing Blocking.

10

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Thread Pool

task queue

task queue

task queue

task queue

worker threads (few)

Actors (many)

 Start 3 actors
 Then:
receive {
 case Next =>
}

Actor A:

Managing Blocking.

10

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Thread Pool

task queue

task queue

task queue

task queue

worker threads (few)

Actors (many)

 Start 3 actors
 Then:
receive {
 case Next =>
}

receive {
 case Put(x) =>
}

Actor A:

Managing Blocking.

10

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Thread Pool

task queue

task queue

task queue

task queue

worker threads (few)

Actors (many)

 Start 3 actors
 Then:
receive {
 case Next =>
}

receive {
 case Put(x) =>
}

Actor A:

Managing Blocking.

10

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Thread Pool

task queue

task queue

task queue

task queue

worker threads (few)

Actors (many)

 Start 3 actors
 Then:
receive {
 case Next =>
}

receive {
 case Put(x) =>
}

Actor A:

Managing Blocking.

10

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Thread Pool

task queue

task queue

task queue

task queue

worker threads (few)

Actors (many)

 Start 3 actors
 Then:
receive {
 case Next =>
}

receive {
 case Put(x) =>
}

receive {
 case Put(x) =>
}

Actor A:

Managing Blocking.

10

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Thread Pool

task queue

task queue

task queue

task queue

worker threads (few)

Actors (many)

 Start 3 actors
 Then:
receive {
 case Next =>
}

receive {
 case Put(x) =>
}

receive {
 case Put(x) =>
}

Actor A:

Managing Blocking.

10

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Thread Pool

task queue

task queue

task queue

task queue

worker threads (few)

Actors (many)

 Start 3 actors
 Then:
receive {
 case Next =>
}

receive {
 case Put(x) =>
}

receive {
 case Put(x) =>
}

actor {
 A ! Next
}
receive {
 case Put(x) =>
}

Actor A:

Managing Blocking.

10

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Thread Pool

task queue

task queue

task queue

task queue

worker threads (few)

Actors (many)

 Start 3 actors
 Then:
receive {
 case Next =>
}

receive {
 case Put(x) =>
}

receive {
 case Put(x) =>
}

actor {
 A ! Next
}
receive {
 case Put(x) =>
}

Actor A:

Managing Blocking.

10

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Thread Pool

task queue

task queue

task queue

task queue

worker threads (few)

Actors (many)

 Start 3 actors
 Then:
receive {
 case Next =>
}

receive {
 case Put(x) =>
}

receive {
 case Put(x) =>
}

actor {
 A ! Next
}
receive {
 case Put(x) =>
}

Actor A:

Managing Blocking.

10

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Thread Pool

task queue

task queue

task queue

task queue

worker threads (few)

Actors (many)

 Start 3 actors
 Then:
receive {
 case Next =>
}

receive {
 case Put(x) =>
}

receive {
 case Put(x) =>
}

actor {
 A ! Next
}
receive {
 case Put(x) =>
}

Actor A:

Managing Blocking.

10

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Thread Pool

task queue

task queue

task queue

task queue

worker threads (few)

Actors (many)

 Start 3 actors
 Then:
receive {
 case Next =>
}

receive {
 case Put(x) =>
}

receive {
 case Put(x) =>
}

actor {
 A ! Next
}
receive {
 case Put(x) =>
}

Actor A:

Managing Blocking.

10

Thread pool locked up!

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Thread Pool

task queue

task queue

task queue

task queue

worker threads (few)

Actors (many)

 Start 3 actors
 Then:
receive {
 case Next =>
}

receive {
 case Put(x) =>
}

receive {
 case Put(x) =>
}

actor {
 A ! Next
}
receive {
 case Put(x) =>
}

Actor A:

Managing Blocking.

10

Thread pool locked up!

MUST AVOID situation where:
all worker threads blocked.
there is a task in some task queue.

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Under the Hood.

11

def receive[R](f: PartialFunction[Any, R]): R = {
 ...
 val elem = mailbox.extractFirst(msg => f.isDefinedAt(msg))
 if (elem == null) {
 synchronized {
 waitingFor = f
 isSuspended = true
 scheduler.managedBlock(blocker)
 }
 }
 else {
 // process message...
 }
 ...
}

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Under the Hood.

11

def receive[R](f: PartialFunction[Any, R]): R = {
 ...
 val elem = mailbox.extractFirst(msg => f.isDefinedAt(msg))
 if (elem == null) {
 synchronized {
 waitingFor = f
 isSuspended = true
 scheduler.managedBlock(blocker)
 }
 }
 else {
 // process message...
 }
 ...
}

object blocker extends ManagedBlocker {
 def block() = {
 Actor.this.suspendActor()
 true
 }
 def isReleasable =
 !Actor.this.isSuspended
}

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

There is more.

• Continuations

• Can use them once the continuations plugin is
enabled by default (probably in Scala 2.10)

• Akka

• Part of the Typesafe stack

• We are working on merging them with scala.actors

12

Sunday, July 17, 2011

The Book.

13

• The definitive guide to actors
in the standard library

• Not (only) an API reference
• Language support for actors
• Principles, patterns
• Covers Akka’s actors

2nd preprint published Mar 2011,
print release (planned for) end of
September

Sunday, July 17, 2011

Parallel
Graph Processing

Joint work with Heather Miller

Sunday, July 17, 2011

Data is growing.
At the same time,

do with that data.
there is a growing desire

to
MORE

15

Sunday, July 17, 2011

Menthor...

16

Sunday, July 17, 2011

Menthor...

is a framework for parallel graph processing.✗✗
(But it is not limited to graphs.)

16

Sunday, July 17, 2011

Menthor...

is a framework for parallel graph processing.

is inspired by BSP.

✗✗

✗✗

(But it is not limited to graphs.)

With functional reduction/aggregation mechanisms.

16

Sunday, July 17, 2011

Menthor...

is a framework for parallel graph processing.

is inspired by BSP.

✗✗

✗✗

(But it is not limited to graphs.)

With functional reduction/aggregation mechanisms.

avoids an inversion of control✗✗
of other BSP-inspired graph-processing frameworks.

16

Sunday, July 17, 2011

Menthor...

is a framework for parallel graph processing.

is inspired by BSP.

✗✗

✗✗

(But it is not limited to graphs.)

With functional reduction/aggregation mechanisms.

avoids an inversion of control✗✗
of other BSP-inspired graph-processing frameworks.

is implemented in Scala,✗✗
and there are preliminary experimental results.

16

Sunday, July 17, 2011

Model of Computation.
Menthor’s

17

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Data.

18

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Data.
Split into data items managed by vertices.
and sizes range from primitives to large matrices

18

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Data.
Split into data items managed by vertices.

Relationships expressed using edges between vertices.

18

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Algorithms.

19

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Algorithms.
Data items stored inside of vertices iteratively updated.✗✗

19

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Algorithms.
Data items stored inside of vertices iteratively updated.
Iterations happen as SYNCHRONIZED SUPERSTEPS.

✗✗

✗✗
(inspired by the BSP model)

19

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Algorithms.
Data items stored inside of vertices iteratively updated.
Iterations happen as SYNCHRONIZED SUPERSTEPS.

✗✗

✗✗

time 19

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Algorithms.
Data items stored inside of vertices iteratively updated.
Iterations happen as SYNCHRONIZED SUPERSTEPS.

✗✗

✗✗

1.

def update

update each vertex in
parallel.

def update

def update

def update

def update

def update

def update

def update

def update

time
superstep #1

19

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Algorithms.
Data items stored inside of vertices iteratively updated.
Iterations happen as SYNCHRONIZED SUPERSTEPS.

✗✗

✗✗

1.
2.

update each vertex in
parallel.

update produces
outgoing messages to
other vertices

time
superstep #1

19

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Algorithms.
Data items stored inside of vertices iteratively updated.
Iterations happen as SYNCHRONIZED SUPERSTEPS.

✗✗

✗✗

1.
2.
3.

update each vertex in
parallel.

update produces
outgoing messages to
other vertices
incoming messages
available at the
beginning of the next
SUPERSTEP.

time
superstep #2

19

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Substeps. (and Messages)
SUBSTEPS are computations that,

20

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Substeps. (and Messages)
SUBSTEPS are computations that,

1. update the value of this Vertex

20

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Substeps. (and Messages)
SUBSTEPS are computations that,

1. update the value of this Vertex

2. return a list of messages:
case class Message[Data](source: Vertex[Data],
 dest: Vertex[Data], value: Data)

20

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Substeps. (and Messages)
SUBSTEPS are computations that,

1. update the value of this Vertex

2. return a list of messages:
case class Message[Data](source: Vertex[Data],
 dest: Vertex[Data], value: Data)

EXAMPLES...
{
 value = ...
 List()
}

20

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Substeps. (and Messages)
SUBSTEPS are computations that,

1. update the value of this Vertex

2. return a list of messages:
case class Message[Data](source: Vertex[Data],
 dest: Vertex[Data], value: Data)

EXAMPLES...
{
 value = ...
 List()
}

{
 ...
 for (nb <- neighbors)
 yield Message(this, nb, value)
}

20

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Substeps. (and Messages)
SUBSTEPS are computations that,

1. update the value of this Vertex

2. return a list of messages:
case class Message[Data](source: Vertex[Data],
 dest: Vertex[Data], value: Data)

EXAMPLES...
{
 value = ...
 List()
}

{
 ...
 for (nb <- neighbors)
 yield Message(this, nb, value)
}

Each is implicitly converted to a Substep[Data]

20

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

PageRank.

class PageRankVertex extends Vertex[Double](0.0d) {
 def update() = {
 var sum = incoming.foldLeft(0)(_ + _.value)
 value = (0.15 / numVertices) + 0.85 * sum

 if (superstep < 30) {
 for (nb <- neighbors) yield
 Message(this, nb, value / neighbors.size)
 } else
 List()
 }
}

21

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Implementation Principles.

22

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Implementation Principles.
A pure Scala library✗✗

No staging and code generation.
No dependency on language virtualization.

22

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Implementation Principles.
A pure Scala library✗✗

No staging and code generation.
No dependency on language virtualization.

Benefits✗✗
Compatible with mainline Scala compiler.
Fast compilation.
Simple debugging and troubleshooting.
Framework developer-friendly.

22

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Implementation Principles.
A pure Scala library✗✗

No staging and code generation.
No dependency on language virtualization.

Benefits✗✗
Compatible with mainline Scala compiler.
Fast compilation.
Simple debugging and troubleshooting.
Framework developer-friendly.

Drawbacks✗✗
No aggressive optimizations.
No support for heterogeneous hardware platforms.

22

Sunday, July 17, 2011

Conclusions

23

Sunday, July 17, 2011

Can avoid inversion of control in vertex-based
BSP using closures.

✗✗

Conclusions

23

Sunday, July 17, 2011

Can avoid inversion of control in vertex-based
BSP using closures.

✗✗

Conclusions

Higher-order functions useful for reductions, in
an imperative model.

✗✗

23

Sunday, July 17, 2011

Can avoid inversion of control in vertex-based
BSP using closures.

✗✗

Conclusions

Higher-order functions useful for reductions, in
an imperative model.

Explicit parallelism feasible if computational
model simple (cf. MapReduce)

✗✗

✗✗

23

Sunday, July 17, 2011

Can avoid inversion of control in vertex-based
BSP using closures.

✗✗

Conclusions

Higher-order functions useful for reductions, in
an imperative model.

Explicit parallelism feasible if computational
model simple (cf. MapReduce)

The puzzle pieces are there to make analyzing
big data much easier.

✗✗

✗✗

✗✗

http://lcavwww.epfl.ch/~hmiller/menthor/

23

Sunday, July 17, 2011

http://lcavwww.epfl.ch/~hmiller/menthor/
http://lcavwww.epfl.ch/~hmiller/menthor/

Heterogeneous
Parallel DSLs

24

Based on the work at Stanford University’s PPL and EPFL

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Heterogeneous Parallel
Programming

Cray
Jaguar

Sun
T2

Nvidia
Fermi

25

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Heterogeneous Parallel
Programming

Cray
Jaguar

Sun
T2

Nvidia
Fermi

Pthreads
OpenMP

25

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Heterogeneous Parallel
Programming

Cray
Jaguar

Sun
T2

Nvidia
Fermi

Pthreads
OpenMP

CUDA
OpenCL

25

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Heterogeneous Parallel
Programming

Cray
Jaguar

Sun
T2

Nvidia
Fermi

Pthreads
OpenMP

CUDA
OpenCL

Verilog
VHDL

25

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Heterogeneous Parallel
Programming

Cray
Jaguar

Sun
T2

Nvidia
Fermi

MPI

Pthreads
OpenMP

CUDA
OpenCL

Verilog
VHDL

25

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Cray
Jaguar

Sun
T2

Nvidia
Fermi

MPI

Pthreads
OpenMP

CUDA
OpenCL

Verilog
VHDL

Too many different programming models

Virtual
Worlds

Personal Robotics

Data
informatics

Scientific
Engineering

Applications

26

Heterogeneous Parallel
Programming

Sunday, July 17, 2011

Hypothesis and New
Problem

Q: Is it possible to write one program and
 run it on all these targets?

Sunday, July 17, 2011

Hypothesis and New
Problem

Q: Is it possible to write one program and
 run it on all these targets?

THOUGH, IT’S QUITE DIFFICULT TO CREATE
DSLS USING CURRENT METHODS.

HYPOTHESIS: Yes, but need domain-specific languages

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Lightweight Modular
Staging.

 Typical Compiler

Lexer Parser Type
checker Analysis Optimization Code gen

28

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Lightweight Modular
Staging.

 Typical Compiler

Embedded DSL gets it all for free,
but can’t change any of it

Lexer Parser Type
checker Analysis Optimization Code gen

28

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Lightweight Modular
Staging.

 Typical Compiler

Lexer Parser Type
checker Analysis Optimization Code gen

Stand-alone DSL
implements everything

28

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Lightweight Modular
Staging.

 Typical Compiler

Lexer Parser Type
checker Analysis Optimization Code gen

Modular Staging provides a hybrid approach

28

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Lightweight Modular
Staging.

 Typical Compiler

Lexer Parser Type
checker Analysis Optimization Code gen

DSLs adopt front-end from highly
expressive embedding language

but can customize IR and
participate in backend phases

Modular Staging provides a hybrid approach

28

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Lightweight Modular
Staging.

 Typical Compiler

Lexer Parser Type
checker Analysis Optimization Code gen

DSLs adopt front-end from highly
expressive embedding language

but can customize IR and
participate in backend phases

Modular Staging provides a hybrid approach

Lightweight modular staging: a pragmatic approach to runtime
code generation and compiled DSLs

by Tiark Rompf, Martin Odersky (GPCE’10)

28

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Linear Algebra Example.

object TestMatrix {

 def example(a: Matrix, b: Matrix, c: Matrix, d: Matrix) = {
 val x = a*b + a*c
 val y = a*c + a*d
 println(x+y)
 }
}

Targeting heterogeneous HW requires changing

how data is represented
how operations are implemented

29

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Abstracting Matrices.

Use abstract type constructor
Do not fix a specific implementation, yet
Operations work on abstract matrices

 type Rep[T]

 def infix_+(x: Rep[Matrix], y: Rep[Matrix]): Rep[Matrix]

 def example(a: Rep[Matrix], b: Rep[Matrix], c: Rep[Matrix],
d: Rep[Matrix]) = {
 val x = a*b + a*c
 val y = a*c + a*d
 println(x+y)
 } IMPLEMENTATION DOESN’T CHANGE!

30

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Staging.

abstract class Exp[T]
case class Const[T](x: T) extends Exp[T]
case class Symbol[T](id: Int) extends Exp[T]
abstract class Op[T]

type Rep[T] = Exp[T]

def infix_+(x: Exp[Matrix], y: Exp[Matrix]) =
 new PlusOp(x, y)

class PlusOp(x: Exp[Matrix], y: Exp[Matrix])
 extends DeliteOpZip[Matrix]

EXAMPLE: expression trees

Matrix implementation:

Programming using only Rep[Matrix], Rep[Vector]
etc. allows different implementations for Rep

31

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Staging.

abstract class Exp[T]
case class Const[T](x: T) extends Exp[T]
case class Symbol[T](id: Int) extends Exp[T]
abstract class Op[T]

type Rep[T] = Exp[T]

def infix_+(x: Exp[Matrix], y: Exp[Matrix]) =
 new PlusOp(x, y)

class PlusOp(x: Exp[Matrix], y: Exp[Matrix])
 extends DeliteOpZip[Matrix]

EXAMPLE: expression trees

Matrix implementation:

Programming using only Rep[Matrix], Rep[Vector]
etc. allows different implementations for Rep

31

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

The Delite DSL Framework

Provides IR with parallel execution patterns
EXAMPLE: DeliteOpZip[T]

Parallel optimization of IR graph

Compiler framework with support for
heterogeneous hardware platforms

DSL extends parallel operations
EXAMPLE: class Plus extends DeliteOpZip[Matrix]

Domain-specific analysis and optimization

32

✗✗

✗✗

✗✗

✗✗

✗✗

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

The Delite IR Hierarchy

33

s = sum(M)V1 = exp(V2)M1 = M2 + M3
Domain User

Interface
DSL
User

Application

DS IR

Delite Op IR

Base IR

C2 = sort(C1)

Matrix
Plus

Vector
Exp

Matrix
Sum

Domain Analysis &
Opt.

DSL
AuthorCollectionQuick

sort

ReduceMapZipWith

Parallelism Analysis
& Opt.

Code Generation

Delite

Divide &
Conquer

OpGeneric Analysis &
Opt.

Delite

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Delite DSL Compilers.

34

Intermediate Representation (IR)

 Scala Embedding
 Framework

Delite Parallelism
Framework

Base IR

Generic Analysis & Opt.

Liszt
program

OptiML
program

DS IR

Domain Analysis &
Opt.

Delite IR

Parallelism Analysis, Opt. &
Mapping

⇒⇒

Sunday, July 17, 2011

Contributing to Delite

35

• Lots of cool things to work on

• New applications using existing DSLs

• Example: recommender engine using OptiML

• New tools: scripts (delitec), profilers, debuggers,
visualizers, ...

• New data input sources (cluster runtime!)

• Expand Getting Started guide, documentation, ...

• http://stanford-ppl.github.com/Delite/

Sunday, July 17, 2011

http://stanford-ppl.github.com/Delite/
http://stanford-ppl.github.com/Delite/

Parallel
Collections

36

Based on the work by Aleksandar Prokopec, Tiark Rompf, and Martin Odersky

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Scala’s Collections.

37

Collections are organized in two packages.

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Scala’s Collections.

scala.collection.mutable

37

scala.collection.immutable

Collections are organized in two packages.

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Scala’s Collections.

scala.collection.mutable

37

scala.collection.immutable

Collections are organized in two packages.

Can change, add, or remove
elements in place as a side
effect

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Scala’s Collections.

scala.collection.mutable

37

scala.collection.immutable

Collections are organized in two packages.

Methods that transform an
immutable collection return a
new collection and leave the old
collection unchanged

Can change, add, or remove
elements in place as a side
effect

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Scala’s Collections.

scala.collection.mutable

37

scala.collection.immutable

Collections are organized in two packages.

Abstract classes in scala.collection

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Parallel Collections.
Scala 2.9 introduces Parallel Collections, based on the idea
that many operations can safely be performed in parallel.

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Parallel Collections.
Scala 2.9 introduces Parallel Collections, based on the idea
that many operations can safely be performed in parallel.

Just add .par

And the same operation is performed in parallel:

myCollection.par.foldLeft(0)((a,b) => a+b)

1 2 3 4 50 0

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Parallel Collections.
Scala 2.9 introduces Parallel Collections, based on the idea
that many operations can safely be performed in parallel.

Just add .par

And the same operation is performed in parallel:

myCollection.par.foldLeft(0)((a,b) => a+b)

1 2 3 4 5

96 = 15

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

.par
New method added to regular collections

Returns a parallel version of the collection
pointing to the same underlying data

Use .seq to go back to the sequential collection

Parallel sequences, maps, and sets defined in
separate hierarchy

39

✗✗

✗✗

✗✗

✗✗

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

The Collections Hierarchy.

40

GenTraversable

GenIterable

GenSeq
Traversable

Iterable

Seq

ParIterable

ParSeq

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

The Collections Hierarchy.

40

GenTraversable

GenIterable

GenSeq
Traversable

Iterable

Seq

ParIterable

ParSeq

Immutable parallel collections:
ParRange
ParVector
ParHashMap
ParHashSet

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

The Collections Hierarchy.

40

GenTraversable

GenIterable

GenSeq
Traversable

Iterable

Seq

ParIterable

ParSeq

Immutable parallel collections:
ParRange
ParVector
ParHashMap
ParHashSet

Based on hash tries

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

The Collections Hierarchy.

40

GenTraversable

GenIterable

GenSeq
Traversable

Iterable

Seq

ParIterable

ParSeq

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

The Collections Hierarchy.

40

GenTraversable

GenIterable

GenSeq
Traversable

Iterable

Seq

ParIterable

ParSeq

Mutable parallel collections:
ParArray
ParHashMap

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

The Collections Hierarchy.

40

GenTraversable

GenIterable

GenSeq
Traversable

Iterable

Seq

ParIterable

ParSeq

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

The Collections Hierarchy.

40

GenTraversable

GenIterable

GenSeq
Traversable

Iterable

Seq

ParIterable

ParSeq

Why isn’t a ParSeq a Seq?

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Implementing Parallel
Collections.

41

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Implementing Parallel
Collections.

41

GOAL: define operations in terms of a few common
abstractions

Typically, in terms of a foreach method or iterators
However, their sequential nature makes these
approaches ill-suited for parallel execution!

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Implementing Parallel
Collections.

INSTEAD: abstractions for splitting and combining
Split collection into non-trivial partition
Iterate over disjunct subsets in parallel
Combine partial results computed in parallel

41

GOAL: define operations in terms of a few common
abstractions

Typically, in terms of a foreach method or iterators
However, their sequential nature makes these
approaches ill-suited for parallel execution!

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Splitters and Combiners.

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Splitters and Combiners.

A splitter is an iterator that can be recursively split
into disjoint iterators:

trait Splitter[T] extends Iterator[T] {
 def split: Seq[Splitter[T]]
}

✗✗

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Splitters and Combiners.

A splitter is an iterator that can be recursively split
into disjoint iterators:

trait Splitter[T] extends Iterator[T] {
 def split: Seq[Splitter[T]]
}

trait Combiner[T, Coll] extends Builder[T, Coll] {
 def combine(other: Combiner[T, Coll]): Combiner[T, Coll]
}

A combiner combines partial results
The combine method returns a combiner containing
the union of its argument elements
Results from different tasks are combined in a tree-
like manner

✗✗

✗✗

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Summary.

43

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Summary.

43

Simple transition from regular collections to
parallel collections (“just add .par!”)

If access patterns aren’t inherently sequential

✗✗

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Summary.

43

Simple transition from regular collections to
parallel collections (“just add .par!”)

If access patterns aren’t inherently sequential

Parallel collections are implemented in terms
of splitters and combiners

Parallel collections must provide efficient
implementations of those

✗✗

✗✗

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

Summary.

43

Simple transition from regular collections to
parallel collections (“just add .par!”)

If access patterns aren’t inherently sequential

Parallel collections are implemented in terms
of splitters and combiners

Parallel collections must provide efficient
implementations of those

✗✗

✗✗

✗✗ Collection-based programming is easy and
powerful

Can we make it work for more applications and
for distribution?

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

What’s Next

We only scratched the surface:

• Debugging, Testing

• Combining parallel and concurrent collections

• More programming models/synchronizers

• X10-style async/finish, phasers in JDK7, ...

• Pipelines, streaming, data flow, ...

• Determinism, side effects, thread locality, ...

• Exploiting the Java Memory Model

44

Sunday, July 17, 2011

| Scalathon, Philadelphia, PA. July 16-17, 2011.

How?

• Scala great vehicle for pushing cutting-edge
research into practice

• Extractors, continuations, named and default
arguments, implicits, parallel collections, ...

• Industrial practice demands stability, backward
compatibility

• Another good research topic: API migration

• But: this doesn’t hinder research on concurrency
libraries!

45

Sunday, July 17, 2011

Questions?
THANK YOU.

Sunday, July 17, 2011

