
Scala Async

PHILIPP HALLER

Asynchronous Code
Simplifying

with
JASON ZAUGG

The Problem
‣ Asynchronous code ubiquitous

‣ Intrinsic to programming models like actors

‣ Required for performance and scalability

‣ See Doug Lea’s talk at PhillyETE’13 [1]

‣ Problem: usually enforces an unnatural code style

‣ Async enables direct-style code while using efficient
non-blocking APIs under the hood

https://vimeo.com/65102395[1]

https://vimeo.com/65102395
https://vimeo.com/65102395

INSPIRATION

‣ Yes, we’re avoiding NIH!

‣ Popular additions to C# and F#

‣ Our twist:

‣ Don’t change the Scala language

‣ Async is “just” a macro

This Talk

‣ Motivate Async

‣ Async Internals

‣ Conclusion

Gentle Intro to
Async

‣ Declares block to be asynchronous

‣ Executes block asynchronously

‣ Returns future for the result of the block

async { <expr> }

Async provides two constructs: async and await

Using async
 async {
 // some expensive computation without result
 }

 val future = async {
 // some expensive computation with result
 }

 def findAll[T](what: T => Boolean) = async {
 // find it all
 }

“Asynchronous Method”

Await

await(<expr>)

‣ Only valid within an async { } block

‣ Argument <expr> returns a future

‣ Suspends execution of the enclosing async { }
block until argument future is completed

Within an async { } block, await provides a
non-blocking way to await the completion of a future

Using await
 val fut1 = future { 42 }
 val fut2 = future { 84 }

 async {
 println("computing...")
 val answer = await(fut1)
 println(s"found the answer: $answer")
 }

 val sum = async {
 await(fut1) + await(fut2)
 }

in short

def await[T](future: Future[T]): T

def async[T](body: => T): Future[T]

locking

Play Framework
Example

val futureDOY: Future[Response] =
 WS.url("http://api.day-of-year/today").get
val futureDaysLeft: Future[Response] =
 WS.url("http://api.days-left/today").get

futureDOY.flatMap { doyResponse =>
 val dayOfYear = doyResponse.body
 futureDaysLeft.map { daysLeftResponse =>
 val daysLeft = daysLeftResponse.body
 Ok(s"$dayOfYear: $daysLeft days left!")
 }
}

http://api.day-of-year/today
http://api.day-of-year/today
http://api.days-left/today
http://api.days-left/today

Play Framework
Example

val futureDOY: Future[Response] =
 WS.url("http://api.day-of-year/today").get
val futureDaysLeft: Future[Response] =
 WS.url("http://api.days-left/today").get

for { doyResponse <- futureDOY
 dayOfYear = doyResponse.body
 daysLeftResponse <- futureDaysLeft
 daysLeft = daysLeftResponse.body
} yield Ok(s"$dayOfYear: $daysLeft days left!")

http://api.day-of-year/today
http://api.day-of-year/today
http://api.days-left/today
http://api.days-left/today

Play Framework
Example

val futureDOY: Future[Response] =
 WS.url("http://api.day-of-year/today").get
val futureDaysLeft: Future[Response] =
 WS.url("http://api.days-left/today").get

async {
 val dayOfYear = await(futureDOY).body
 val daysLeft = await(futureDaysLeft).body
 Ok(s"$dayOfYear: $daysLeft days left!")
}

http://api.day-of-year/today
http://api.day-of-year/today
http://api.days-left/today
http://api.days-left/today

Another example
def nameOfMonth(num: Int): Future[String] = ...
val date = ”””(\d+)/(\d+)”””.r

async {
 await(futureDOY).body match {
 case date(month, day) =>
 Ok(s”It’s ${await(nameOfMonth(month.toInt))}!”)
 case _ =>
 NotFound(“Not a date, mate!”)
 }
}

Back to using for
def nameOfMonth(num: Int): Future[String] = ...
val date = ”””(\d+)/(\d+)”””.r
for { doyResponse <- futureDOY
 dayOfYear = doyResponse.body
 response <- dayOfYear match {
 case date(month, day) =>
 for (name <- nameOfMonth(month.toInt))
 yield Ok(s”It’s $name!”)
 case _ =>
 Future.successful(NotFound(“Not a...”))
 }
} yield response

Direct Style

‣ Not forced to introduced names for intermediate
results

‣ Control flow can be expressed naturally

‣ Suspend within if-else, while, match, try-catch, ...

Using await

‣ Requires a directly-enclosing async { }

‣ Cannot use await

‣ within closures

‣ within local functions/classes/objects

‣ within an argument to a by-name parameter

Remedy

async {
 list.map(x =>
 await(f(x)).toString
)
}

Future.sequence(
 list.map(x => async {
 await(f(x)).toString
 }))

def f(x: A): Future[B]

‣ Existing combinators in Futures API can help!

This Talk

‣ Motivate Async

‣ Async Internals

‣ Conclusion

Internals
Overview

‣ async { } is a macro

‣ await is a stub method

‣ Translation in two steps

‣ Step 1: ANF transform (“introduce temporaries”)

‣ Step 2: State machine transform

Debugging

‣ Stepping, setting breakpoints supported

‣ Similar trade-off as in for-comprehensions

‣ Artifacts of expanded program visible

‣ More IDE support planned (e.g., show expanded code)

This Talk

‣ Motivate Async

‣ Async Internals

‣ Conclusion

Conclusion
‣ Macro does a lot of hard work for you

‣ Generated code...

‣ is non-blocking

‣ spends a single class per async block

‣ avoids boxing of intermediate results (which is
more difficult with continuation closures)

What is it for?
‣ Play Framework

‣ Pervasive use of futures (SIP-14)

‣ Async perfect fit, out-of-the-box support

‣ Akka actors/futures integration

‣ Non-blocking I/O

‣ Connect to other asynchronous APIs

‣ Some uses of delimited continuations

Takeaway

def await[T](future: Future[T]): T

def async[T](body: => T): Future[T]

locking

Roadmap

‣ New feature of Scala 2.11

‣ https://github.com/scala/async

‣ Jason Zaugg, Typesafe

‣ Philipp Haller, Typesafe

CREDITS:

https://github.com/scala/async
https://github.com/scala/async

plug:

http://lampwww.epfl.ch/~hmiller/scala2013/

http://lampwww.epfl.ch/~hmiller/scala2013/
http://lampwww.epfl.ch/~hmiller/scala2013/

Async vs. CPS
Plugin

‣ Delimited continuations provided by CPS plugin can
be used to implement async/await

‣ CPS plugin could support await within closures

‣ CPS-transformed code creates more closures (a
closure is created at each suspension point)

‣ CPS plugin requires type annotations like
cpsParam[Int, String]

‣ Error messages contain type annotations

