Scala Actors

Scalable Multithreading on the JVM

Philipp Haller

Ph.D. candidate
Programming Methods Lab
EPFL, Lausanne, Switzerland



The free lunch is over!

o Software is concurrent

- Interactive applications
- Web services
— Distributed software

« Hardware is concurrent
- Hyper-threading
— Multi-cores, Many-cores
- Grid computing

May 2007 Scala Actors — Philipp Haller, EPFL 2/23



Concurrency on the JVM

Threads and locks (synchronized):
« Error-prone [Ousterhout96]

- races vs. deadlock, not composable
» Correct solutions often don't scale
- memory consumption, lock contention
« Debugging and testing is hard

- hard to reproduce executions (non-determinism)

May 2007 Scala Actors — Philipp Haller, EPFL 3/23



Outline

« Overview of Scala Actors
 Example

» Event-based Actors

* The /ift Web Framework
* Performance

e Conclusion

May 2007 Scala Actors — Philipp Haller, EPFL 4/23



Scala Actors

 Light-weight concurrent processes

- Actor model (Erlang-style processes)
- Asynchronous message passing
- Expressive pattern matching

« Unify threads and events (efficient, scalable)
» Automatically mapped to multiple JVM threads
- leverage multi-core processors

 No inversion of control

May 2007 Scala Actors — Philipp Haller, EPFL 5/23



What is an actor?

Actor

Thread

Message

Internal vamables

.?i‘x E

. Mlailbaex

Methods

May 2007 Scala Actors — Philipp Haller, EPFL 6/23



Actors In a Nutshell

» Actors encapsulate state and behavior (like
objects)

« Actors are logically active (unlike most objects)

* Actors communicate through asynchronous
message passing (non-blocking send, blocking
receive)

May 2007 Scala Actors — Philipp Haller, EPFL 7/23



Example

class Ping(count: int, pong: Pong) extends Actor {
def act() {

}
}

analogous to
... extends Thread
..def run() { ... }

May 2007 Scala Actors — Philipp Haller, EPFL 8/23



Message Send/Receive

class Ping(count: int, pong: Pong) extends Actor {
def act() {

pong ! 'Ping

receive {
case 'Pong =>

}
}

May 2007 Scala Actors — Philipp Haller, EPFL 9/23



The “Ping” Actor

class Ping(count: int, pong: Pong) extends Actor {
def act() {

var pingsLeft = count - 1
pong ! 'Ping
while (true) {
receive {
case 'Pong =>
Console.println("“Ping: 'Pong received")
if (pingsLeft > 0) {
Thread.sleep(500)

pong ! 'Ping
pingsLeft -=1

} else {
pong ! 'Stop
exit()

}

}
}

May 2007 Scala Actors — Philipp Haller, EPFL 10/23



May 2007

Library Features

val pong = actor
while (true) {
receive {
case 'Ping =>
Console.println(“Pong: 'Pir }
Thread.sleep(500)

sender ‘Pong
case 'Stop =>
exit()

} Implicit sender Ids: sender

“Inline” definition

of actors:
actor {

Scala Actors — Philipp Haller, EPFL

11/23



Futures

* Invoke asynchronous operation, returning a
future (a place-holder for the reply) used to

— walit for reply (blocking)
- test whether reply available (non-blocking)

abstract class Future[T] extends FunctionO[T] {
def isSet: boolean

}

trait FunctionO[+R] extends AnyRef {
def apply(): R
}

May 2007 Scala Actors — Philipp Haller, EPFL 12/23



Futures: Examples

val ft = a !! Msqg // send message, ft is a future
val res = ft() // await future ft

val ftl = a !! Msg

val ft2 = b !! Msg

val ft3 = c !'! Msg

val results = awaitAll(500, ftl, ft2, ft3)
// returns a List[Option[Any]]' holding the results

val res = awaltEither(ftl, ft2)

val ft = future { // define ad-hoc future

, .

May 2007 Scala Actors — Philipp Haller, EPFL 13/23



More Library Features

e receiveWithin (timeout)

« Channels (type-safe communication)

« Java threads are Actors (automatically)
 Linking Actors (monitoring)

» Pluggable schedulers

 Remote Actors
- over TCP, JXTA not yet released

May 2007 Scala Actors — Philipp Haller, EPFL 14/23



Event-based Actors

* Do not consume a thread
* Very light-weight representation at run-time

- closure object (similar to a Runnable)

e Use react instead of receive
» Restriction:

— call to react does not return

- at the end: exit or call rest of computation
- shortcuts for sequence and looping

May 2007 Scala Actors — Philipp Haller, EPFL 15/23



The “Ping” Actor - Event-based

class Ping(count: int, pong: Pong) extends Actor {
def act() {

var pingsLeft = count - 1
pong ! 'Ping
Lloop {
react {
case 'Pong =>
Console.println("“Ping: 'Pong received")
if (pingsLeft > 0) {
Thread.sleep(500)

pong ! 'Ping
pingsLeft -=1

} else {
pong ! 'Stop
exit()

}

}
}

May 2007 Scala Actors — Philipp Haller, EPFL 16/23



The lift Web Framework

« 3" party web framework

« Compatible with any 2.4 servlet engine
» Multi-threaded, scalable

» Scala Actors used for critical parts

- Session management (Session Actors)
- Dynamic content (Controller Actors)

e update asynchronously, send updates to Page Actors

« Page Actor updates packaged as DOM-modifying

JavaScript sent back to browser
May 2007 Scala Actors — Philipp Haller, EPFL 17/23



lift: Actor Example

class Clock extends ControllerActor {
ActorPing.schedule(this, Tick, 10000L)

def render = bind("time" -> Text(timeNow.toString))

override def lowPriority: PartialFunction[Any, Unit] = {
case Tick =>

reRender

ActorPing.s

edule(this, Tick, 10000L)

}
}

renders Controller and sends
update to all Page Actors on
which Controller exists

schedule a Tick
message in 10 seconds

May 2007 Scala Actors — Philipp Haller, EPFL 18/23



Performance

105

:

e L
o0 b - ! - L 1 .
Q 1000 2000 =000 000 SO0 B0
I

Token passes per sec. in ring of processes

« Java Threads: only up to 5000 threads, throughput
breaks in

« Scala Actors: constant throughput, up to 1.200.000 actors

umber o bokenpasses [15]

;

May 2007 Scala Actors — Philipp Haller, EPFL 19/23



Scalability on Multi-Cores

'FbZedabchrs -
Ineg Zoaladchas o«
ALFJ ul

FsgFJd oo

] ! ! ! ! ] o
1 2 k=] + = B T 8
Fuartser of Hweads

« Micro-benchmarks run on 4-way dual-core Opteron
machine (8 cores total)
« Compared to Doug Lea's FJTask framework for Java

May 2007 Scala Actors — Philipp Haller, EPFL 20/23



May 2007

P scalabenchmarkst | NGentoo ntel @ PentiumE g Computer Canguage BENChmarks Game - Eirefox

File Edit View History Bookmarks

Tools Help

@ - l$ - @ m |I‘ http://shootout.alioth.debian.org/gpd/scala.php

=[] [Q-

Google |'\..‘\.]

Gentoo : Intel® Pentium® 4

Computer Language Benchmarks Game

Frequently Asked Questions

Compare the performance of Scala programs against some other language implementation, or check the Scala
CPU time and Memory use measurements.

For more information about the Scala implementation we measured see | about Scala.

I- all benchmarks - j IScaIa j

j Show |
Are the Scala programs better?

For each of one our benchmarks, a white bar shows which language implementation had the faster program,
and a black bar shows which used the least memory.

Compare to: I Java DK -server

Scala better

JOK =-server better
= Memory Use

How many times better?
How many times faster or smaller are the Scala programs than the corresponding Java JDK -server programs?

Scala x times better
- |DK -server x times better

Program & Logs Faster Smaller: Memory Use Smaller: GZip Bytes Reduced N

binary-trees 1.1 -1.4 1.1
chameneos -3.0 11
icheap-concurrencys a -5.8 1.4
fannkuch 1.0 -1.6 1.2
fasta -1.1 -1.6 1.0
k-nucleotide -1.2 1.3 1.0
mandelbrot 1.1 -1.6 1.1
meteor-contest (new) -8.1 -1.7 1.7
n-body -1.0 -1.6

nsieve 211 14 17

http://shootout.alioth.debian.org/gpd/benchmark.php?test=message&lang=scala&id=2

‘ﬁcl

21/23



Summary: Performance

« Millions of actors, constant throughput

« Scalability on multi-cores without changes in
program

 Real-life experience with /ift web framework:

different computers, they can share a shopping cart.) Controllers are based on Scala Actors.
Each controller consumes about 200 bytes plus whatever state the controller keeps around

=L | (let's say 2K of state per Controller for a shopping cart.) This means that 10,000 active

fe~" |controllers would consume about 20MB of RAM, or about 1/2 of the RAM used by a single Rails
.-u.':;g'r.."\.-l
Btk

AR instance. Put another 1-»'&1,*'&'99]:{1119 state iIn memory scales.
Tty P B

1) http://blog.lostlake.org/index.php?/archives/46-Some-more-Rails-to-lift-code-examples.html
May 2007 Scala Actors — Philipp Haller, EPFL 22/23



Scala Actors: Take Home

* Multi-threading on the JVM made easier and
more scalable

e Used in real-world frameworks
* Included in Scala standard library

* Documentation/Tutorial at
http://lamp.epfl.ch/~phaller/

« Try it out: http://scala-lang.org
« Send me mail: philipp.haller@epfl.ch

May 2007 Scala Actors — Philipp Haller, EPFL 23/23


http://lamp.epfl.ch/~phaller/
http://scala-lang.org/
mailto:philipp.haller@epfl.ch

Asynchronous Web Services

« Trend towards rich, responsive web
applications

- e.g. Gmail, Google calendar
- technologies such as AJAX

« Responsiveness, performance, scalability
* Asynchronicity is key
Problem: Asynchronicity is hard

May 2007 Scala Actors — Philipp Haller, EPFL 24/23



Asynchronicity is hard

def httpFetch(queryURL: String) = {
val req = new XmlHttpRequest
req.addOnReadyStateChangedListener(new PropertyChangelListener() {
override def propertyChange(evt: PropertyChangeEvent) {
if (evt.getNewValue() == ReadyState.LOADED) {
val response = reqg.getResponseText()
httpParseResponse(response)
}
}
})

try {
req.open(Method.GET, new URL(queryURL))

req.send()
} catch {

case e: Throwable => ...
}

} Typical asynchronous
HTTP document fetch

May 2007 Scala Actors — Philipp Haller, EPFL 25/23



Client

val
res =
evt...

May 2007

Server

Scala Actors — Philipp Haller, EPFL

26/23



Problems of Inversion of Control

* Hard to understand control-flow
- reconstruct entire call-graph
 Manual stack management

- handler code not defined where event is handled
- local variables, parameters etc. not accessible

« Managing resources (files, sockets) becomes
even harder

- often long-lived, used in several event handlers
_ ?
May 2007 Wheﬂ IS d mISSég golr(s) SP?Q a//ere I:%IL(L 27/23



Wrapper Actor

\C‘Ilent

L

val
res =
evt...

S Message sends

May 2007

Scala Actors — Philipp Haller, EPFL

Server

28/23



Avoiding Inversion of Control

Wrapper: val fetcher = actor {

loop {

react {
case HttpFetch(url) =>
httpFetch(url)

}

}

}
Client: fetcher ! HttpFetch("http://www.epfl.ch")

// do some overlapping computation
react { // wait for response
case Response(content) =>
// process response

May 2007 Scala Actors — Philipp Haller, EPFL 29/23



