
Implementing Joins Using Extensible Pattern
Matching

Philipp Haller1 and Tom Van Cutsem2,�

1 EPFL
1015 Lausanne, Switzerland

firstname.lastname@epfl.ch
2 Vrije Universiteit Brussel, Belgium

Abstract. Join patterns are an attractive declarative way to synchro-
nize both threads and asynchronous distributed computations. We ex-
plore joins in the context of extensible pattern matching that recently
appeared in languages such as F# and Scala. Our implementation sup-
ports join patterns with multiple synchronous events, and guards. Fur-
thermore, we integrated joins into an existing actor-based concurrency
framework. It enables join patterns to be used in the context of more
advanced synchronization modes, such as future-type message sending
and token-passing continuations.

Keywords: Concurrent Programming, Join Patterns, Chords, Actors.

1 Introduction

Recently, the pattern matching facilities of languages such as Scala and F#
have been generalized to allow representation independence for objects used in
pattern matching [6,20]. Extensible patterns open up new possibilities for im-
plementing abstractions in libraries which were previously only accessible as
language features. More specifically, we claim that extensible pattern matching
eases the construction of declarative approaches to synchronization in libraries
rather than languages. To support this claim, we show how a concrete declar-
ative synchronization construct, join patterns, can be implemented in Scala, a
language with extensible pattern matching.

Join patterns [8,9] offer a declarative way of synchronizing both threads and
asynchronous distributed computations that is simple and powerful at the same
time. They form part of languages such as JoCaml [7] and Funnel [14]. Join
patterns have also been implemented as extensions to existing languages [3,23].
Recently, Russo [17] and Singh [18] have shown that advanced programming
language features, such as generics or software transactional memory, make it
feasible to provide join patterns as libraries rather than language extensions.

We motivate that our implementation based on extensible pattern matching is
an interesting third way to provide join patterns in a library since it has a number
of desirable properties. More concretely, we make the following contributions:
� Supported by a Ph.D. fellowship of the Research Foundation Flanders (FWO).

D. Lea and G. Zavattaro (Eds.): COORDINATION 2008, LNCS 5052, pp. 135–152, 2008.
© Springer-Verlag Berlin Heidelberg 2008



136 P. Haller and T. Van Cutsem

– We present a novel implementation technique for joins based on extensible
pattern matching. We show that it allows programmers to avoid certain kinds
of boilerplate code that are inevitable when using existing approaches.

– We discuss a concrete implementation of our approach in Scala. A complete
implementation that supports join patterns with multiple synchronous events
and a restricted form of guards is available on the web.1

– We integrate our library into an existing actor-based concurrency framework.
This enables expressive join patterns to be used in the context of more
advanced synchronization modes, such as future-type message sending and
token-passing continuations.

The rest of this paper is structured as follows. In the following section we briefly
highlight join patterns as a declarative synchronization abstraction, how they
have been integrated in other languages before, and how combining them with
pattern matching can improve this integration. Section 3 shows how to synchro-
nize both threads and actors using our new Scala Joins framework. In section 4
we discuss a concrete implementation of expressive join patterns in Scala. Section
5 discusses related work, and section 6 concludes.

2 Motivation

Background: Join Patterns. A join pattern consists of a body guarded by
a linear set of events. The body is executed only when all of the events in
the set have been signaled to an object. Threads may signal synchronous or
asynchronous events to objects. By signaling a synchronous event to an object,
threads may implicitly suspend. The simplest illustrative example of a join pat-
tern is that of an unbounded FIFO buffer. In Cω [3], it is expressed as follows:

public class Buffer {
public async Put(int x);
public int Get() & Put(int x) { return x; }

}

A detailed explanation of join patterns is outside the scope of this paper. For the
purposes of this paper, it suffices to understand the operational effect of a join
pattern. Threads may put values into a buffer b by invoking b.Put(v). They
may also read values from the buffer by invoking b.Get(). The join pattern
Get() & Put(int x) (called a chord in Cω) specifies that a call to Get may
only proceed if a Put event has previously been signaled. Hence, if there are no
pending Put events, a thread invoking Get is automatically suspended until such
an event is signaled.

The advantage of join patterns is that they allow a declarative specification
of the synchronization between different threads. Often, the join patterns cor-
respond closely to a finite state machine that specifies the valid states of an
object [3]. In the following, we explain the benefits of our new implementation
by means of an example.
1 See http://lamp.epfl.ch/˜phaller/joins/.



Implementing Joins Using Extensible Pattern Matching 137

Example. Consider the traditional problem of synchronizing multiple concur-
rent readers with one or more writers who need exclusive access to a resource.
In Cω, join patterns are supported as a language extension through a dedicated
compiler. With the introduction of generics in C# 2.0, Russo has made join
patterns available in a C# library called Joins [17]. In that library, a multiple
reader/one writer lock can be implemented as follows:

public class ReaderWriter {
public Synchronous.Channel Exclusive, ReleaseExclusive;
public Synchronous.Channel Shared, ReleaseShared;
private Asynchronous.Channel Idle;
private Asynchronous.Channel<int> Sharing;
public ReaderWriter() {
Join j = Join.Create(); ... // Boilerplate omitted
j.When(Exclusive).And(Idle).Do(delegate {});
j.When(ReleaseExclusive).Do(delegate{ Idle(); });
j.When(Shared).And(Idle).Do(delegate{ Sharing(1); });
j.When(Shared).And(Sharing).Do(delegate(int n) {
Sharing(n+1); });

j.When(ReleaseShared).And(Sharing).Do(delegate(int n) {
if (n==1) Idle(); else Sharing(n-1); });

Idle(); } }

In C# Joins, join patterns consist of linear combinations of channels and a
delegate (a function object) which encapsulates the join body. Join patterns are
triggered by invoking channels which are special delegates.

In the example, channels are declared as fields of the ReaderWriter class.
Channel types are either synchronous or asynchronous. Asynchronous channels
correspond to asynchronous methods in Cω (e.g. Put in the previous example).
Channels may take arguments which are specified using type parameters. For
example, the Sharing channel is asynchronous and takes a single int argument.
Channels are often used to model (parts of) the internal state of an object. For
example, the Idle and Sharing channels keep track of concurrent readers (if
any), and are therefore declared as private. To declare a set of join patterns,
one first has to create an instance of the Join class. Individual join patterns are
then created by chaining a number of method calls invoked on that Join instance.
For example, the first join pattern is created by combining the Exclusive and
Idle channels with an empty delegate; this means that invoking the synchronous
Exclusive channel (a request to acquire the lock in exclusive mode) will not
block the caller if the Idle channel has been invoked (the lock has not been
acquired).

Even though the verbosity of programs written using C# Joins is slightly
higher compared to Cω, basically all the advantages of join patterns are pre-
served. However, this code still has a number of drawbacks: first, the encod-
ing of the internal state is redundant. Logically, a lock in idle state can be



138 P. Haller and T. Van Cutsem

represented either by the non-empty Idle channel or the Sharing channel in-
voked with 0.2

Note that it is impossible in C# (and in Cω) to use only Sharing. Consider
the first join pattern. Implementing it using Sharing instead of Idle requires a
delegate that takes an integer argument (the number of concurrent readers):

j.When(Exclusive).And(Sharing).Do(delegate(int n) {...}

Inside the body we have to test whether n > 0 in which case the thread invoking
Exclusive has to block. Blocking without reverting to lower-level mechanisms
such as locks is only possible by invoking a synchronous channel; however, that
channel has to be different from Exclusive (since invoking Exclusive does not
block when Sharing has been invoked) which re-introduces the redundancy.

Another drawback of the above code is the fact that arguments are passed
implicitly between channels and join bodies: in the third case, the argument n
passed to the delegate is the argument of the Sharing channel. Contrast this with
the Cω buffer example in which the Put event explicitly binds its argument x. Not
only are arguments passed implicitly, the order in which they are passed is merely
conventional and not checked by the compiler. For example, the delegate of a (hy-
pothetical) join pattern with two channels of type Asynchronous.Channel<int>
would have two int arguments. Accidentally swapping the arguments in the body
delegate would go unnoticed and result in errors.

In Scala Joins the join patterns of the above example are expressed as follows:

join {
case Exclusive() & Sharing(0) => Exclusive.reply()
case ReleaseExclusive() => Sharing(0); ReleaseExclusive.reply()
case Shared() & Sharing(n) => Sharing(n+1); Shared.reply()
case ReleaseShared() & Sharing(n) if n > 0 =>
Sharing(n-1); ReleaseShared.reply()

}

The internal state of the lock is now represented uniformly using only Sharing.
Moreover, two formerly separate patterns are unified (patterns 3 and 4 in the C#
example) and the if-else statement is gone. (Inside join bodies, synchronous
events are replied to via their reply method; this is necessary since, contrary
to C# and Cω, Scala Joins supports multiple synchronous events per pattern,
cf. section 3.) The gain in expressivity is due to nested pattern matching. In
the first pattern, pattern matching constrains the argument of Sharing to 0,
ensuring that this pattern only triggers when no other thread is sharing the
lock. Therefore, an additional Idle event is no longer necessary, which decreases
the number of patterns. In the last pattern, a guard (if n > 0) prevents invalid
states (i.e. invoking Sharing(n) where n < 0).
2 The above implementation actually ensures that an idle lock is always represented

as Idle and never as Sharing(0). However, this close relationship between Idle and
Sharing is not explicit and has to be inferred from all the join patterns.



Implementing Joins Using Extensible Pattern Matching 139

Joins for Actors. While join patterns have been successfully used to syn-
chronize threads, to the best of our knowledge, join patterns have not yet been
applied in the context of an actor-based concurrency model [1]. In Scala, actor-
based concurrency is supported by means of a library extension [11]. Because
we provide join patterns as a library as well, we have created the opportunity
to combine join patterns with the concurrency model offered by actors. We give
a more detailed explanation of this combination in section 3. However, in order
to understand this integration, we first briefly highlight how to write concurrent
programs using Scala’s actor framework.

Scala’s actors are largely inspired by Erlang’s model of concurrent processes
communicating by message passing [2]. New actors are defined as classes ex-
tending the Actor class. An actor’s life cycle is defined by its act method. The
following code shows how to implement the unbounded buffer as an actor:

class Buffer extends Actor {
def act() { loop(List()) }
def loop(buf: List[Int]) {
receive {
case Put(x) => loop(buf ::: List(x)) // append x to buf
case Get() if !buf.isEmpty =>

reply(buf.head); loop(buf.tail) }
} }

The receive method allows an actor to selectively wait for certain messages
to arrive in its mailbox. The actor processes at most one message at a time.
Messages that are sent concurrently to the actor are queued in its mailbox.
Interacting with a buffer actor occurs as follows:

val buffer = new Buffer; buffer.start()
buffer ! Put(42) // asynchronous send, returns nothing
println(buffer !? Get()) // synchronous send, waits for reply

Synchronous message sends make the sending process wait for the actor to re-
ply to the message (by means of reply(value)). Scala actors also offer more
advanced synchronization patterns such as futures [12,25]. actor !! msg de-
notes an asynchronous send that immediately returns a future object. In Scala,
a future is a nullary function that, when applied, returns the future’s computed
result value. If the future is applied before the value is computed, the caller is
blocked.

In the above example, the required synchronization between Put and Get is
achieved by means of a guard. The guard in the Get case disallows the processing
of any Get message while the buf queue is empty. In the implementation, all cases
are sequentially checked against the incoming message. If no case matches, or all
of the guards for matching cases evaluate to false, the actor keeps the message
stored in its mailbox and awaits other messages.

Even though the above example remains simple enough to implement, the
synchronization between Put and Get remains very implicit. The actual intention
of the programmer, i.e. the fact that an item can only be produced when the



140 P. Haller and T. Van Cutsem

actor received both a Get and a Put message, remains implicit in the code.
Therefore, even actors can benefit from the added declarative synchronization
of join patterns, as we illustrate in section 3.

3 A Scala Joins Library

We discuss a Scala library (called Scala Joins) providing join patterns imple-
mented via extensible pattern matching. First, we explain how Scala Joins en-
ables declarative thread synchronization, postponing joins for actors until the
next section.

Joining Threads. Join patterns in Scala Joins are composed of synchronous
and asynchronous events. Events are strongly typed and can be invoked using
standard method invocation syntax. The FIFO buffer example is written in Scala
Joins as follows:

class Buffer extends Joins {
val Put = new AsyncEvent[Int]
val Get = new SyncEvent[Int]
join { case Get() & Put(x) => Get reply x }

}

To enable join patterns, a class inherits from the Joins class.3 Events are de-
clared as regular fields. They are distinguished based on their (a)synchrony and
the number and types of arguments they take. For example, Put is an asyn-
chronous event that takes a single argument of type Int. Since it is asynchronous,
no return type is specified (it immediately returns unit when invoked). In the
case of a synchronous event such as Get, the first type parameter specifies the
return type. Therefore, Get is a synchronous event that takes no arguments and
returns values of type Int.

Joins are declared using the join { ... } construct.4 This construct enables
pattern matching via a list of case declarations that each consist of a left-
hand side and a right-hand side, separated by =>. The left-hand side defines a
join pattern through the juxtaposition of a linear combination of asynchronous
and synchronous events. As is common in the joins literature, we use & as the
juxtaposition operator. Arguments of events are usually specified as variable
patterns. For example, the variable pattern x in the Put event can bind to any
value (of type Int). This means that on the right-hand side, x is bound to the
argument of the Put event when the join pattern matches. Standard pattern
matching can be used to constrain the match even further (see section 2).

The right-hand side of a join pattern defines the join body (an ordinary block
of code) that is executed when the join pattern matches. Like JoCaml, but
3 Actually, Joins is a trait that can be mixed into any class.
4 As explained in section 4, join is a method of the Joins class. In Scala, the body

of a class definition serves as the primary constructor of the class which allows this
freestanding call to join.



Implementing Joins Using Extensible Pattern Matching 141

unlike Cω and C# Joins, Scala Joins allows any number of synchronous events
to appear in a join pattern. Because of this, it is impossible to use the return
value of the body to implicitly reply to the single synchronous event in the join
pattern. Instead, the body of a join pattern explicitly replies to all synchronous
events that are part of the join pattern on the left-hand side. This is done by
invoking those events’ reply method, which wakes up the thread that originally
signaled that event.

Joining Actors. We now describe an integration of our joins library with
Scala’s actor framework. The following example shows how to re-implement the
unbounded buffer example using joins:

val Put = new Join1[Int]
val Get = new Join
class Buffer extends JoinActor {
def act() {
receive { case Get() & Put(x) => Get reply x }

} }

It differs from the thread-based bounded buffer using joins in the following ways:

– The Buffer class inherits from the JoinActor class to declare itself to be
an actor capable of processing join patterns.

– Rather than defining Put and Get as synchronous or asynchronous events,
they are all defined as join messages which may support both kinds of syn-
chrony (this is explained in more detail below).

– The Buffer actor defines act and awaits incoming messages by means of
receive. It is still possible for the actor to serve regular messages within
the receive block. Logically, regular messages can be regarded as unary join
patterns. However, they don’t have to be declared as joinable messages.

We illustrate below how the buffer actor can be used as a coordinator between
a consumer and a producer actor. The producer sends an asynchronous Put
message while the consumer awaits the reply to a Get message by invoking it
synchronously (using !?).

val buffer = new Buffer; buffer.start()
val prod = actor { buffer ! Put(42) }
val cons = actor { process(buffer !? Get()) }

By applying joins to actors, the synchronization dependencies between Get and
Put can be specified declaratively by the buffer actor. The actor receives Get and
Put messages by queuing them in its mailbox. Only when all of the messages
specified in the join pattern have been received is the body executed by the actor.
Before processing the body, the actor atomically removes all of the participating
messages from its mailbox. Replies may be sent to any or all of the messages
participating in the join pattern. This is similar to the way replies are sent to
events in the thread-based joins library described previously.



142 P. Haller and T. Van Cutsem

Contrary to the way events are defined in the thread-based joins library, an ac-
tor does not explicitly define a join message to be synchronous or asynchronous.
We say that join messages are “synchronization-agnostic” because they can be
used in different synchronization modes between the sender and receiver actors.
However, when they are used in a particular join pattern, the sender and receiver
actors have to agree upon a valid synchronization mode. In the previous exam-
ple, the Put join message was sent asynchronously, while the Get join message
was sent synchronously. In the body of a join pattern, the receiver actor replied
to Get, but not to Put.

The disadvantage of making join messages synchronization-agnostic is that
it introduces the possibility for errors. For example, if a receiver does not re-
ply to a synchronously sent message, the sender remains blocked. However, the
advantage is that join messages may be used in many different synchronization
modes, including future-type message sending [25] or Salsa’s token-passing con-
tinuations [22]. Every join message has an associated reply destination which is
an output channel on which processes may listen for replies to the message. How
the reply to a message is processed is determined by the way the message was
sent. For example, if the message was sent purely asynchronously, the reply is
discarded; if it was sent synchronously, the reply awakes the sender. If it was
sent using a future-type message send, the reply resolves the future.

4 Integrating Joins and Extensible Pattern Matching

In this section we present a novel implementation that integrates joins into gen-
eral language-based pattern matching. We explain our technique using a con-
crete implementation in Scala. However, we expect that implementations based
on, e.g., the active patterns of F# [20] would not be much different.

In the following we first look at pattern matching in Scala; this provides
some terminology and background used in subsequent sections. After that we
review the essentials of Scala’s extensible patterns; the small set of necessary
concepts suggests that our approach is readily transferable to languages with
similar features. In section 4.1 we outline the core of an implementation of joins
that builds on extensible pattern matching. In section 4.2 we highlight how joins
have been integrated into Scala’s actor framework.

Partial Functions. In the previous section we used the join { ... } con-
struct to declare a set of join patterns. It has the following form:

join {
case pat1 => body1
...
case patn => bodyn

}

The patterns pati consist of a linear combination of events evt1& ... & evtm.
Threads synchronize over a join pattern by invoking one or several of the events



Implementing Joins Using Extensible Pattern Matching 143

listed in a pattern pati. When all events occurring in pati have been invoked,
the join pattern matches, and its corresponding join bodyi is executed.

In Scala, the pattern matching expression inside braces is treated as a first-
class value that is passed as an argument to the join function. The argument’s
type is an instance of PartialFunction, which is a subclass of Function1, the
class of unary functions. The two classes are defined as follows.

abstract class Function1[A, B] {
def apply(x: A): B }

abstract class PartialFunction[A, B] extends Function1[A, B] {
def isDefinedAt(x: A): Boolean }

Functions are objects which have an apply method. Partial functions are objects
which have in addition a method isDefinedAt which tests whether a function
is defined for a given argument. Both classes are parametrized; the first type pa-
rameter A indicates the function’s argument type and the second type parameter
B indicates its result type.

In Scala, each pattern matching expression

{ case p1 => e1; ...; case pn => en }

is compiled into a partial function whose methods are defined as follows.

– The isDefinedAt method returns true if one of the patterns pi matches the
argument, false otherwise.

– The apply method returns the value ei for the first pattern pi that matches
its argument. If none of the patterns match, a MatchError exception is
thrown.

Note that partial functions are not crucial for our implementation of joins. In
fact, Scala’s partial functions can be encoded using only higher-order functions as
follows. The idea is to define a partial function as a regular function that returns
an option;5 either the partial function is defined at the given value, in which
case it returns its body as a thunk (i.e. a function with an empty parameter
list) wrapped in Some. If the partial function is not defined, it returns None.
Operations for testing whether a partial function is defined at a given value, and
for applying it are defined accordingly:

type PartFun[A, R] = A => Option[() => R]
def isDefAt[A, R](fun: PartFun[A, R], arg: A) = fun(arg) match {
case Some(_) => true
case None => false }

def apply[A, R](fun: PartFun[A, R], arg: A) = fun(arg) match {
case Some(res) => res()
case None => error("PartFun not defined") }

5 The optional value is of parameterized type Option[T] that has the two subclasses
Some[T](x: T) and None.



144 P. Haller and T. Van Cutsem

Using this encoding, the native Scala partial function

{ case x :: xs => println("head: "+x) }

can then be represented as follows:

(l: List[Int]) => l match {
case x :: xs => Some(() => println("head: "+x))
case _ => None }

Join Patterns as Partial Functions. Whenever a thread invokes an event, each
join pattern in which e occurs has to be checked for a potential match. There-
fore, events have to be associated with the set of join patterns in which they
participate. As shown before, this set of join patterns is represented as a partial
function. Invoking join(pats) associates each event occurring in the set of join
patterns with pats.

When a thread invokes an event, the isDefinedAt method of pats is used to
check whether any of the associated join patterns match. If yes, the corresponding
join body is executed by invoking the apply method of pats. A question remains:
what argument is passed to isDefinedAt and apply, respectively? To answer
this question, consider the simple buffer example from the previous section. It
declares the following join pattern:

join { case Get() & Put(x) => Get reply x }

Assume that no events have been invoked before, and a thread t invokes the
Get event to remove an element from the buffer. Clearly, the join pattern does
not match, which causes t to block since Get is a synchronous event (more on
synchronous events later). Assume that after thread t has gone to sleep, another
thread s adds an element to the buffer by invoking the Put event. Now, we want
the join pattern to match since both events have been invoked. However, the
result of the matching does not only depend on the event that was last invoked
but also on the fact that other events have been invoked previously. Therefore,
it is not sufficient to simply pass a Put message to the isDefinedAt method
of the partial function the represents the join patterns. Instead, when the Put
event is invoked, the Get event has to somehow “pretend” to also match, even
though it has nothing to do with the current event. While previous invocations
can simply be buffered inside the events, it is non-trivial to make the pattern
matcher actually consult this information during the matching, and “customize”
the matching results based on this information. To achieve this customization
we use extensible pattern matching.

Extensible Pattern Matching. Emir et al. [6] recently introduced extractors
for Scala that provide representation independence for objects used in patterns.
Extractors play a role similar to views in functional programming languages
[24,15] in that they allow conversions from one data type to another to be applied
implicitly during pattern matching. As a simple example, consider the following
object that can be used to match even numbers:



Implementing Joins Using Extensible Pattern Matching 145

object Twice {
def apply(x: Int) = x*2
def unapply(z: Int) = if (z%2 == 0) Some(z/2) else None }

Objects with apply methods are uniformly treated as functions in Scala.
When the function invocation syntax Twice(x) is used, Scala implicitly calls
Twice.apply(x). The unapply method in Twice reverses the construction in a
pattern match. It tests its integer argument z. If z is even, it returns Some(z/2).
If it is odd, it returns None. The Twice object can be used in a pattern match
as follows:

val x = Twice(21)
x match {
case Twice(y) => println(x+" is two times "+y)
case _ => println("x is odd") }

To see where the unapply method comes into play, consider the match against
Twice(y). First, the value to be matched (x in the above example) is passed
as argument to the unapply method of Twice. This results in an optional value
which is matched subsequently. The preceding example is expanded as follows:

val x = Twice.apply(21)
Twice.unapply(x) match {
case Some(y) => println(x+" is two times "+y)
case None => println("x is odd") }

Extractor patterns with more than one argument correspond to unapply meth-
ods returning an optional tuple. Nullary extractor patterns correspond to
unapply methods returning a Boolean.

In the following we show how extractors can be used to implement the match-
ing semantics of join patterns. In essence, we define appropriate unapply meth-
ods for events which get implicitly called during the matching.

4.1 Matching Join Patterns

As shown previously, a set of join patterns is represented as a partial function.
Its isDefinedAt method is used to find out whether one of the join patterns
matches. In the following we are going to explain the code that the Scala compiler
produces for the body of this method. Let us revisit the join pattern that we
have seen in the previous section:

Get() & Put(x)

In our library, the & operator is an extractor that defines an unapply method;
therefore, the Scala compiler produces the following matching code:

&.unapply(m) match {
case Some((Get(), Put(x))) => true
case None => false }



146 P. Haller and T. Van Cutsem

We defer a discussion of the argument m that is passed to the & operator.
For now, it is important to understand the general scheme of the matching
process. Basically, calling the unapply method of the & operator produces a
pair of intermediate results wrapped in Some. Nested pattern matching matches
the two components of the pair against the Get and Put events. Only if both of
them match, the overall pattern matches. Since the & operator is left-associative,
matching more than two events proceeds by first calling the unapply methods of
all the & operators from right to left, and then matching the intermediate results
with the corresponding events from left to right.

Since events are objects that have an unapply method, we can expand the
code further:

&.unapply(m) match {
case Some((u, v)) =>
Get.unapply(u) match {
case true => Put.unapply(v) match {

case Some(x) => true
case None => false }

case false => false }
case None => false }

As we can see, the intermediate results produced by the unapply method of the &
operator are passed as arguments to the unapply methods of the corresponding
events. Since the Get event is parameter-less, its unapply method returns a
Boolean, telling whether it matches or not. The Put event, on the other hand,
takes a parameter; when the pattern matches, this parameter gets bound to a
concrete value that is produced by the unapply method.

The unapply method of a parameter-less event such as Get essentially checks
whether it has been invoked previously. The unapply method of an event that
takes parameters such as Put returns the argument of a previous invocation
(wrapped in Some), or signals failure if there is no previous invocation. In both
cases, previous invocations have to be buffered inside the event.

Firing join patterns. As mentioned before, executing the right-hand side of a
pattern that is part of a partial function amounts to invoking the apply method
of that partial function. Basically, this repeats the matching process, thereby
binding any pattern variables to concrete values in the pattern body. When firing
a join pattern, the events’ unapply methods have to dequeue the corresponding
invocations from their buffers. In contrast, invoking isDefinedAt does not have
any effect on the state of the invocation buffers. To signal to the events in
which context their unapply methods are invoked, we therefore need some way
to propagate out-of-band information through the matching. For this, we use
the argument m that is passed to the isDefinedAt and apply methods of the
partial function. The & operator propagates this information verbatim to its two
children (its unapply method receives m as argument and produces a pair with
two copies of m wrapped in Some). Eventually, this information is passed to the
events’ unapply methods.



Implementing Joins Using Extensible Pattern Matching 147

Implementation Details. Events are represented as classes that contain
queues to buffer invocations. The Event class is the super class of all synchronous
and asynchronous events:6

abstract class Event[R, Arg](owner: Joins) {
val tag = owner.freshTag()
val argQ = new Queue[Arg]
def apply(arg: Arg): R = synchronized {argQ += arg; invoke()}
def invoke(): R
def unapply(isDryRun: Boolean): Option[Arg] =
if (isDryRun && !argQ.isEmpty)
Some(argQ.front)

else if (!isDryRun)
Some(argQ.dequeue())

else None }

The Event class takes two type arguments R and Arg that indicate the result
type and parameter type of event invocations, respectively. Events have a unique
owner which is passed as argument of the primary constructor of the Event
class.7 An event can appear in several join patterns declared by its owner. The
tag field holds an identifier which is unique with respect to a given owner in-
stance; it is used to check the linearity of patterns (i.e. ensuring that an event
occurs at most once in a pattern).

Whenever the event is invoked via its apply method, we append the pro-
vided argument to the argQ. The abstract invoke method is used to run
synchronization-specific code; synchronous and asynchronous events differ mainly
in their implementation of the invoke method (we show a concrete implemen-
tation for synchronous events below). In the unapply method we test whether
matching occurs during a dry run. If it does not we dequeue an event invocation.

Synchronous events are implemented as follows:

abstract class SyncEvent[R, Arg] extends Event[R, Arg] {
val waitQ = new Queue[SyncVar[R]]
def invoke(): R = { val res = new SyncVar[R]
waitQ += res; owner.matchAndRun(); res.get }

def reply(res: R) = waitQ.dequeue().set(res) }

Synchronous events contain a logical queue of waiting threads, waitQ, which is
implemented using the implicit wait set of synchronous variables.8 The invoke
6 In our actual implementation the fact whether an event is parameter-less is factored

out for efficiency. Due to lack of space, we show a simplified class hierarchy.
7 To allow the short syntax for declaring events that we have seen before, the owner is

passed implicitly in the actual implementation. It is defined to be the current object
this of the pattern-declaring class that inherits from Joins. A detailed account of
implicit parameters in Scala is out of scope of this paper; the interested reader is
referred to the Scala language specification.

8 A SyncVar is an atomically updatable reference cell; it blocks threads trying to access
an uninitialized cell.



148 P. Haller and T. Van Cutsem

method is run whenever the event is invoked. It creates a new SyncVar and
appends it to the waitQ. Then, the owner’s matchAndRun method is invoked to
check whether the event invocation triggers a complete join pattern. After that,
the current thread waits for the SyncVar to become initialized by accessing it. If
the owner detects (during owner.matchAndRun()) that a join pattern triggers,
it will apply the join, thereby re-executing the pattern match (binding variables
etc.) and running the join body. Inside the body, synchronous events are replied
to by invoking their reply method. Replying means dequeuing a SyncVar and
setting its value to the supplied argument. If none of the join patterns matches,
the thread that invoked the synchronous event is blocked (upon calling res.get)
until another thread triggers a join pattern that contains the same synchronous
event.

Thread-safety. Our implementation avoids races when multiple threads try
to match a join pattern at the same time; checking whether a join pattern
matches (and, if so, running its body) is an atomic operation. Notably, the
isDefinedAt/apply methods of the join set are only called from within the
synchronized matchAndRun method of the Joins class. The unapply methods
of events, in turn, are only called from within the matching code inside the
partial function, and are thus guarded by the same lock. The internal state of
individual events is updated consistently: the apply method is atomic, and the
reply method is called only from within join bodies which are guarded by the
owner’s lock. We don’t assume any concurrency properties of the argQ and waitQ
queues.

Optimization. Efficient join implementations represent patterns using bit
sets [3,17]. An event with tag n forms part of a pattern iff bit n is set in the
corresponding bit set. This representation allows one to efficiently check whether
an event invocation triggers a join pattern.

The above implementation cannot use such an optimization as is, since the
abstract PartialFunction class is the only way to interact with the set of join
patterns; for instance the number of patterns is not known a priori. However,
it is possible to gradually construct an efficient bit set representation during the
matching process. The idea is to keep track of event invocations while matching
a pattern. When a pattern matches, the tags of matched events give rise to a bit
set that uniquely represents the pattern. At the point where each pattern has
matched at least once, the bit sets are used to efficiently check for a match. If the
set of events with queued invocations is represented as a bit set ib, then invoking
an event with tag n triggers a pattern represented as pb iff pb ⊆ ib ∪ {n}.

To test the effectiveness of the above optimization, we compared the per-
formance of a bounded buffer implementation using our library without the
optimization with a second one using the optimized library. Concurrently read-
ing/writing 106 items from/to a bounded buffer of size 100 is about 28% faster
using the optimized library. However, this is only a first step towards an effi-
cient implementation. Further optimizations are a worthwhile topic for future
work.



Implementing Joins Using Extensible Pattern Matching 149

4.2 Implementation of Actor-Based Joins

Actor-based joins integrate with Scala’s pattern matching in essentially the same
way as the thread-based joins, making both implementations very similar. We
highlight how joins are integrated into the actor library, and how reply destina-
tions are supported.

In the Scala actors library, receive is a method that takes a
PartialFunction as a sole argument, similar to the join method defined pre-
viously. To make receive aware of join patterns, the abstract JoinActor class
overrides these methods by wrapping the partial function into a specialized par-
tial function that understands join messages. JoinActor also overrides send to
set the reply destination of a join message. When an actor executes a!msg, it
invokes the ! method of a. This method invokes a.send, implicitly passing the
reply channel of the sender actor as a second argument.

abstract class JoinActor extends Actor {
override def receive[R](f: PartialFunction[Any, R]): R =
super.receive(new JoinPatterns(f))

override def send(msg: Any, replyTo: OutputChannel[Any]) {
setReplyDest(msg, replyTo)
super.send(msg, replyTo) }

def setReplyDest(msg: Any, replyTo: OutputChannel[Any]) {...}}

JoinPatterns is a special partial function that detects whether its argument
message is a join message. If it is, then the argument message is transformed
to include out-of-band information that will be passed to the pattern matcher,
as is the case for events in the thread-based joins library. The boolean argu-
ment passed to the asJoinMessage method indicates to the pattern matcher
whether or not join message arguments should be dequeued upon successful pat-
tern matching. If the msg argument is not a join message, asJoinMessage passes
the original message to the pattern matcher unchanged, enabling regular actor
messages to be processed as normal.

class JoinPatterns[R](f: PartialFunction[Any, R])
extends PartialFunction[Any, R] {
def asJoinMessage(msg: Any, isDryRun: Boolean): Any =
...

override def isDefinedAt(msg: Any) =
f.isDefinedAt(asJoinMessage(msg, true))

override def apply(msg: Any) =
f(asJoinMessage(msg, false))

}

Recall from the implementation of synchronous events that thread-based joins
used constructs such as SyncVars to synchronize the sender of an event with the
receiver. Actor-based joins do not use such constructs. In order to synchronize
sender and receiver, every join message has a reply destination (which is an
OutputChannel, set when the message is sent in the actor’s send method) on



150 P. Haller and T. Van Cutsem

which a sender may listen for replies. The reply method of a JoinMessage
simply forwards its argument value to this encapsulated reply destination. This
wakes up an actor that performed a synchronous send (a!?msg) or that was
waiting on a future (a!!msg).

5 Discussion and Related Work

Benton et al. [3] note that supporting general guards in join patterns is difficult
to implement efficiently as it requires testing all possible combinations of queued
messages to find a match. Side effects pose another problem. Benton et al. suggest
a restricted language for guards to overcome these issues. However, to the best of
our knowledge, there is currently no joins framework that supports a sufficiently
restrictive yet expressive guard language to implement efficient guarded joins.
Our current implementation handles (side-effect free) guards that only depend
on arguments of events that queue at most one invocation at a time.

Cω [3] is a language extension of C# supporting chords, linear combinations
of methods. In contrast to Scala Joins, Cω allows at most one synchronous
method in a chord. The thread invoking this method is the thread that eventually
executes the chord’s body. The benefits of Cω as a language extension over Scala
Joins are that chords can be enforced to be well-formed and that their matching
code can be optimized ahead of time. In Scala Joins, the joins are only analyzed
at pattern-matching time. The benefit of Scala Joins as a library extension is
that it provides more flexibility, such as multiple synchronous events. Russo’s C#
Joins library [17] exploits the expressiveness of C# 2.0’s generics to implement
Cω’s synchronization constructs. Piggy-backing on an existing variable binding
mechanism allows us to avoid problems with C# Joins’ delegates where the order
in which arguments are passed is merely conventional. Scala Joins extends both
Cω and C# Joins with nested patterns that can avoid certain redundancies by
generalizing events and patterns.

CCR [4] is a C# library for asynchronous concurrency that supports join pat-
terns without synchronous components. Join bodies are scheduled for execution
in a thread pool. Our library integrates with JVM threads using synchronous
variables, and supports event-based programming through its integration with
Scala Actors. Singh [18] shows how a small set of higher-order combinators
based on Haskell’s software transactional memory (STM) can encode expressive
join patterns. CML [16] allows threads to synchronize on first-class composable
events; because all events have a single commit point, certain protocols may not
be specified in a modular way (for example when an event occurs in several join
patterns). By combining CML’s events with all-or-nothing transactions, transac-
tional events [5] overcome this restriction but may have a higher overhead than
join patterns.

Synchronization in actor-based languages is a well-studied domain. Salsa [22]
is a Java language extension with support for actors. It introduces the notion of
a join continuation. However, join continuations are not to be mistaken with join
patterns: the former only allow an actor to synchronize on multiple replies to



Implementing Joins Using Extensible Pattern Matching 151

previously sent messages. Activation based on message sets [10] is more general
than joins since events/channels have a fixed owner, which enables important op-
timizations. Other actor-based languages allow for a synchronization style similar
to that supported by join patterns. For example, behavior sets in Act++ [13] or
enabled sets in Rosette [21] allow an actor to restrict the set of messages which it
may process. They do so by partitioning messages into different sets representing
different actor states. Joins do not make these states explicit, but rather allow
state transitions to be encoded in terms of sending messages. The novelty of
Scala Joins for actors is that such synchronization is integrated with the actor’s
standard message reception operation using extensible pattern matching. Recent
work by Sulzmann et al. [19] extends Erlang-style actors with receive patterns
consisting of multiple messages, which is very similar to our join-based actors.
The two approaches are complementary: their work focuses on providing a formal
matching semantics in form of Constraint Handling Rules whereas the emphasis
of our work lies on the integration of joins with extensible pattern matching;
Scala Joins additionally permits joins for standard (non-actor) threads that do
not have a mailbox.

6 Conclusion

We presented a novel implementation of join patterns based on extensible pattern
matching constructs of languages such as Scala and F#. The embedding into
general pattern matching provides expressive features such as nested patterns
and guards. The resulting programs are often as concise as if written in more
specialized language extensions. We implemented our approach as a Scala library
that supports join patterns with multiple synchronous events and guards and
furthermore integrated it with the Scala Actors concurrency framework without
changing the syntax and semantics of existing programs.

References

1. Agha, G.A.: ACTORS: A Model of Concurrent Computation in Distributed Sys-
tems. MIT Press, Cambridge (1986)

2. Armstrong, J., Virding, R., Wikström, C., Williams, M.: Concurrent Programming
in Erlang, 2nd edn. Prentice-Hall, Englewood Cliffs (1996)

3. Benton, N., Cardelli, L., Fournet, C.: Modern concurrency abstractions for C#.
ACM Trans. Program. Lang. Syst 26(5), 769–804 (2004)

4. Chrysanthakopoulos, G., Singh, S.: An asynchronous messaging library for C#. In:
Proc. SCOOL Workshop, OOPSLA (2005)

5. Donnelly, K., Fluet, M.: Transactional events. In: Proc. ICFP, pp. 124–135. ACM,
New York (2006)

6. Emir, B., Odersky, M., Williams, J.: Matching Objects with Patterns. In: Ernst,
E. (ed.) ECOOP 2007. LNCS, vol. 4609, pp. 273–298. Springer, Heidelberg (2007)

7. Fournet, C., Le Fessant, F., Maranget, L., Schmitt, A.: JoCaml: A language for con-
current distributed and mobile programming. In: Jeuring, J., Jones, S.L.P. (eds.)
AFP 2002. LNCS, vol. 2638, pp. 129–158. Springer, Heidelberg (2003)



152 P. Haller and T. Van Cutsem

8. Fournet, C., Gonthier, G.: The reflexive chemical abstract machine and the join-
calculus. In: Proc. POPL, January 1996, pp. 372–385. ACM, New York (1996)

9. Fournet, C., Gonthier, G., Lévy, J.-J., Maranget, L., Rémy, D.: A Calculus of Mo-
bile Agents. In: Montanari, U., Sassone, V. (eds.) CONCUR 1996. LNCS, vol. 1119,
pp. 406–421. Springer, Heidelberg (1996)

10. Frølund, S., Agha, G.: Abstracting interactions based on message sets. In: Cian-
carini, P., Nierstrasz, O., Yonezawa, A. (eds.) ECOOP-WS 1994. LNCS, vol. 924,
pp. 107–124. Springer, Heidelberg (1995)

11. Haller, P., Odersky, M.: Actors that unify threads and events. In: Murphy, A.L.,
Vitek, J. (eds.) COORDINATION 2007. LNCS, vol. 4467, pp. 171–190. Springer,
Heidelberg (2007)

12. Halstead Jr., R.H.: Multilisp: a language for concurrent symbolic computation.
ACM Trans. Program. Lang. Syst. 7(4), 501–538 (1985)

13. Kafura, D., Mukherji, M., Lavender, G.: ACT++: A Class Library for Concur-
rent Programming in C++ using Actors. J. of Object-Oriented Programming 6(6)
(1993)

14. Odersky, M.: Functional Nets. In: Smolka, G. (ed.) ESOP 2000. LNCS, vol. 1782,
pp. 1–25. Springer, Heidelberg (2000)

15. Okasaki, C.: Views for Standard ML. In: Proc. SIGPLAN Workshop on ML (1998)
16. Reppy, J.H.: CML: A higher-order concurrent language. In: Proc. PLDI, pp. 293–

305. ACM Press, New York (1991)
17. Russo, C.V.: The Joins concurrency library. In: Proc. PADL, pp. 260–274 (2007)
18. Singh, S.: Higher-order combinators for join patterns using STM. In: Proc. TRANS-

ACT Workshop, OOPSLA (2006)
19. Sulzmann, M., Lam, E.S.L., Van Weert, P.: Actors with multi-headed message re-

ceive patterns. In: COORDINATION 2008. LNCS, vol. 5052. Springer, Heidelberg
(2008)

20. Syme, D., Neverov, G., Margetson, J.: Extensible pattern matching via a
lightweight language extension. In: Proc. ICFP, pp. 29–40. ACM Press, New York
(2007)

21. Tomlinson, C., Singh, V.: Inheritance and synchronization with enabled-sets. ACM
SIGPLAN Notices 24(10), 103–112 (1989)

22. Varela, C., Agha, G.: Programming dynamically reconfigurable open systems with
SALSA. ACM SIGPLAN Notices 36(12), 20–34 (2001)

23. von Itzstein, G.S., Kearney, D.: Join Java: An alternative concurrency semantic for
Java. Technical report, University of South Australia (2001)

24. Wadler, P.: Views: A way for pattern matching to cohabit with data abstraction.
In: Proc. POPL, pp. 307–313 (1987)

25. Yonezawa, A., Briot, J.-P., Shibayama, E.: Object-oriented concurrent program-
ming in ABCL/1. In: Proc. OOPSLA, pp. 258–268 (1986)


	Implementing Joins Using Extensible Pattern Matching
	Introduction
	Motivation
	A Scala Joins Library
	Integrating Joins and Extensible Pattern Matching
	Matching Join Patterns
	Implementation of Actor-Based Joins

	Discussion and Related Work
	Conclusion



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




