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——2 FUTURES ARE AN IMPORTANT.
POWERFUL ABSTRACTION

——==> THERE’S FRAGMENTATION IN
THE SCALA ECOSYSTEM
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JAVA FUTURES NEITHER
EFFICIENT NOR COMPOSABLE

WE COULD MAKE FUTURES MORE
POWERFUL, BY TAKING ADVANTAGE
OF SCALA’S FEATURES
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CAN BE THOUGHT OF AS A COMBINED
CONCURRENCY ABSTRACTION

FUTURE PROMISE

IMPORTANT OPS

v/ Start async computation V4 Assign result value
V W ait for result V Obtain associated future object



Success& Fuilure

A PROMISE p OF TYPE Promise[T]
CAN BE COMPLETED IN TWO WAYS...

val result: T = ...
p.success(result)

val exc = new (“something went wrong”)
p.failure(exc)
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®
W locking
GOAL Do not block current fhreoo’ w hile waiting

for result of future

Ga%ad’u

~====» REGISTER CALLBACK which is invoked

(asynchronous/y) when future is com/o/efeo/

ASYNC COMPUTATIONS NEVER BLOCK
(excepf for momaged b/ocking)

USER DOESN’T HAVE TO EXPLICITLY MANAGE

|
CALLBACKS. HIGHER- -ORDER FUNCTIONS INSTEAD!
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| Thread1

SRS PROMISE

f val p = Promise[Int]() // Thread 1 (CREATE PROMISE)



EXAMPLE

' Thread1

f FUTURE PROMISE

val p = Promisel[Int]() // Thread 1 (CREATE PROMISE)
val f = p.future // Thread 1 (GET REFERENCE TO FUTURE)



EXAMPLE

Thread1

val p
val f

onSuccess
callback

FUTURE

PROMISE

Promise[Int]() // Thread 1

p.future

f onSuccess {
case x: Int => println(“Successful!”)

3

// Thread 1

(CREATE PROMISE)
(GET REFERENCE TO FUTURE)
(REGISTER CALLBACK)



EXAMPLE

Thread1

< 42
onSuccess
callback
FUTURE PROMISE
val p = Promisel[Int]() // Thread 1 (CREATE PROMISE)
val f = p.future // Thread 1 (GET REFERENCE TO FUTURE)
f onSuccess { (REGISTER CALLBACK)
case x: Int => println(“Successful!”)

g
p.success(42) // Thread 1 (WRITE TO PROMISE)



EXAMPLE

Thread1 Thread3
< 42 Successful!
el

f FUTURE PROMISE CONSOLE
val p = Promisel[Int]() // Thread 1 (CREATE PROMISE)
val f = p.future // Thread 1 (GET REFERENCE TO FUTURE)
i (C)gSucces; E // Thread 2 (REGISTER CALLBACK)

se x: Int => println(“Successful!” (EXECUTE CAL

} // Thread : Sk
p.success(42) // Thread 1 (WRITE TO PROMISE)

NOTE: onSuccess CALLBACK EXECUTED EVEN IF f HAS
ALREADY BEEN COMPLETED AT TIME OF REGISTRATION




—> COMPOSABILITY THRU HIGHER-ORDER FUNCS
—> STANDARD MONADIC COMBINATORS

defzmapESdiEhs S =208 i uturpe LS

val purchase: [Int] = rateQuote map {
quote => connection.buy(amount, quote)

¥

def filter(pred: T => Boolean): Future[T]

val postBySmith: [ 1=

post.filter(_.author == “




—> COMPOSABILITY THRU HIGHER-ORDER FUNCS
—> STANDARD MONADIC COMBINATORS

defzmapESdiEhs S =208 i uturpe LS

val purchase: [Int] = rateQuote map {
quote => connection.buy(amount, quote)

¥

IF MAP FAILS: purchose is comp|e+ed with unhandled exception

def filter(pred: T => Boolean): Future[T]

val postBySmith:

post.filter(_.author == “

IF FILTER FAILS: poerBySmiJrh comp|e+eo| with NoSuchE|emen+Excepﬁon



ADDITIONAL FUTURE-SPECIFIC HIGHER-
ORDER FUNCTIONS HAVE BEEN INTRODUCED

def fallbackTol[U >: T]1(that:

[T] = Future.firstCompletedOf[T](futures)

def andThen(pf:




ADDITIONAL FUTURE-SPECIFIC HIGHER-
ORDER FUNCTIONS HAVE BEEN INTRODUCED

def fallbackTol[U >: T]1(that:

"falls back” to that future in case of failure

[T] = Future.firstCompletedOf[T](futures)

returns a future Comp|e+ed with result of first Comp|e+ed future

def andThen(pf:

allows one to define a sequen+i0| execution over a chain of futures
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ARE NEEDED BY:

_) FUTURES for executing callbacks and

function argu menfts

q-> ACTORS for executing message handlers,
scheduled tasks, etc.

—> PARALLEL COLLECTIONS

for executing o’ofo—pam//e/ operations
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Scala 2.10 infroduces

PROVIDE GLOBAL THREADPOOL AS
PLATFORM SERVICE TO BE SHARED BY

ALL PARALLEL FRAMEWORKS

-a-i-—-> scala.concurrent package provides global ExecutionContext

a—_> Default ExecutionContext backed |oy the most recent fork join poo|
(collaboration with Doug Leq, SUNY stego)



Asynchronous computations are executed on an
ExecutionContext which is provided imp|ici+|y.

def map[S]1(f: T => S)(implicit executor:

def onSuccess[U](pf: [T, Ul)
(implicit executor:

|m|o|iciJr parameters enable Fine—grained selection of the
ExecutionContext:

implicit val context: = customkExecutionContext

val fut2 = futl.filter(pred)
.map(fun)




def map[S]1(f: T => S)(implicit executor:

def onSuccess[U](pf: [T, Ul)
(implicit executor:

implicit val context: = customkExecutionContext
val fut2 = futl.filter(pred)
.map(fun)




THE IMPLEMENTATION

Momy operations im/o/ememLed in ferms of/oromises

def map[SI1(f: T => S): Future[S] = {
val p = Promise[S]1()

onComplete {
case result =>
try {
result match {
case Success(r) => p success f(r)
case Failure(t) => p failure t

J
} catch {
case t: Throwable => p failure t
J
¥
p.future

}




THE RECY IMPLEMENTATION

The real implementation (a) adds an implicit ExecutionContext, (b)

avoids extra object creations, and (c) catches only non-fatal exceptions:

def map[S]1(f: T => S)(implicit executor: ExecutionContext): Future[S] = {
val p = Promise[S]1()

onComplete {
case result =>
try {
result match {
case Success(r) => p success f(r)
case f: Failure[_] => p complete f.asInstanceOf[Failure[S]]

¥
} catch {
case NonFatal(t) => p failure t
¥
¥
p.future

}



@W
THE IMPLEMENTATION

Promise is the work horse of the futures im/o/emenfafion.

A Promise[T] can be in one of two states:
PENDING

No result has been written to the promise.

State represenfeo/ using a list of callbacks (inih'a//y empty).

The promise has been assigneo’ a successful result or exce/oh'on.

State represem‘ed using an instance of Try[T]

|nvoking Promise.complete triggers a fransition from state Pending to Completed

A PROMISE CAN BE COMPLETED AT MOST ONCE:

def complete(result: [T]): this.type =
if (tryComplete(result)) this

else throw new ("Promise already completed.”)



def tryComplete(value: Try[T]): Boolean = {
val resolved = resolveTry(value)
(try {
@tailrec
def tryComplete(v: Try[T]): List[CallbackRunnable[T]] = {

getState match {

case raw: List[_] =>
val cur = raw.asInstanceOf[List[CallbackRunnable[T]]1]

1f (updateState(cur, v)) cur else tryComplete(v)

case _ => null
¥

¥

tryComplete(resolved)
} finally {

synchronized { notifyAll() }
}) match {

case null => false

case rs 1f rs.isEmpty => true

case rs =>

rs.foreach(_.executeWithValue(resolved)); true



THE AWKWARD SQUAD

abstract class AbstractPromise {
private volatile Object _ref;
final static long _refoffset;

static {
try {
_refoffset =
Unsafe.instance.objectFieldOffset(
AbstractPromise.class.getDeclaredField("_ref"));
} catch (Throwable t) {
throw new ExceptionInInitializerError(t);

}
}

protected boolean updateState(Object oldState, Object newState) {
return
Unsafe.instance.compareAndSwapObject(this, _refoffset,
oldState, newState);

}

protected final Object getState() {
return _ref;

}



Futures are results of osynchronous message sends

WHEN A RESPONSE IS EXPECTED

val response: [ ] socialGraph ? getFriends(user)

|mp|emen+ing synchronous send (un’ryped):

def syncSend(to: ; timeout:
val fut = to ? msg
.result(fut, timeout)

= response.mapTol [




Futures are results of osynchronous message sends

WHEN A RESPONSE IS EXPECTED

val response: [ ] = socialGraph ? getFriends(user)

———— e [R— A— \J\\‘,,,,L

friendsFut IS EITHER COMPLETED WITH A
SUCCESSFUL RESULT OR WITH A WRAPPED

EXCEPTION IF RESPONSE TIMES OUT OR IS NOT OF
- TYPE Seq[Friend]

RECOVERING TYPES

val friendsFut: [ 1] = response.mapTol[ [
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IMPORTANT work

WAITING for response

MEANS:

N requests == N threads
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IMPORTANT work

WAITING for response

MEANS:







hoohhs sochef tuwead1  thread 2




Qaynchronous .,

hoohhs sochef tuwead1  thread 2

-

We now SCO/G.I

MEANS:
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ACTIONS IN

package controllers
//imports. ..

object extends {
def index = { request =>

("It is November 19th - there are 42 days left of the year!")
¥



SIMPLE WEBSERVICES IN

package controllers

//imports. ..
object extends {
def index = { request =>
val f: = .url("http://api.day-of-year/today”) .get

val dayOfYear = ?7??
(s"It is $dayOfYear - there are 42 days left of the year!")
¥


http://api.day-of-year/today
http://api.day-of-year/today

FUTURE IN

package controllers
//imports. ..
object Application extends Controller {

def index = Action { request =>
val f: Future[Response] = WS.url("http://api.day-of-year/today”).get
f.map { response =>

val dayOfYear = response.body

Ok(s"It is $dayOfYear - there are 42 days left of the year!")



http://api.day-of-year/today
http://api.day-of-year/today

FUTURE IN

'package controllers
//imports. ..
object Application extends Controller {

def index = Action { request =>
import play.api.libs.concurrent.Execution.Implicits._
Async {
val f: Future[Response] = WS.url("http://api.day-of-year/today").get
f.map { response =>
val dayOfYear = response.body
Ok(s"It is $dayOfYear - there are 42 days left of the year!")

b
)

}


http://api.day-of-year/today
http://api.day-of-year/today

FUTURE
COMPOSITION IN

def index = Action { request =>
import play.api.libs.concurrent.Execution.Implicits._
Async {
val futureDOYResponse: Future[Response] =
WS.url("http://api.day-of-year/today”).get
val futureDaysLeftResponse: Future[Response] =
WS.url("http://api.days-left/today"”).get



http://api.day-of-year/today
http://api.day-of-year/today
http://api.days-left/today
http://api.days-left/today

FUTURE
COMPOSITION IN

def index = Action { request =>
import play.api.libs.concurrent.Execution.Implicits._
Async {
val futureDOYResponse: Future[Response] =
WS.url("http://api.day-of-year/today”).get
val futureDaysLeftResponse: Future[Response] =
WS.url("http://api.days-left/today"”).get

futureDOYResponse.map{ doyResponse =>
val dayOfYear = doyResponse.body
futureDayslLeftResponse.map { daysLeftResponse =>
val daysLeft = dayslLeftResponse.body
Ok(s "It is $dayOfYear - there are $daysLeft days left of the year!”)

}

}


http://api.day-of-year/today
http://api.day-of-year/today
http://api.days-left/today
http://api.days-left/today

FUTURE
COMPOSITION IN

def index = { request =>
import play.api.libs.concurrent.Execution.Implicits._
{
val futureDOYResponse: =
.url("http://api.day-of-year/today”).get
val futureDaysLeftResponse: =
url("http://api.days-left/today”).get

futureDOYResponse.map{ doyResponse =>
val dayOfYear = doyResponse.body
futureDayslLeftResponse.map { daysLeftResponse =>
val daysLeft = dayslLeftResponse.body
(s "It 1s $dayOfYear - there are $daysLeft days left of the year!")
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FUTURE
COMPOSITION IN

def index = Action { request =>
import play.api.libs.concurrent.Execution.Implicits._
Async {
val futureDOYResponse: Future[Response] =
WS.url("http://api.day-of-year/today”).get
val futureDaysLeftResponse: Future[Response] =
WS.url("http://api.days-left/today"”).get

futureDOYResponse. flatMap{ doyResponse =>
val dayOfYear = doyResponse.body
futureDayslLeftResponse.map { daysLeftResponse =>
val daysLeft = dayslLeftResponse.body
Ok(s "It is $dayOfYear - there are $daysLeft days left of the year!”)

}

}


http://api.day-of-year/today
http://api.day-of-year/today
http://api.days-left/today
http://api.days-left/today

}

FUTURE
COMPOSITION IN

def index = Action { request =>
import play.api.libs.concurrent.Execution.Implicits._

Async {

val futureDOYResponse: Future[Response

WS.url("http://api.day-of-year/today”).get

val futureDaysLeftResponse: Future[Response
WS.url("http://api.days-left/today"”).get

for {

doyResponse <- futureDOYResponse
dayOfYear = doyResponse.body
daysLeftResponse <- futureDayslLeftResponse
daysLeft = dayslLeftResponse.body
} yield {
Ok(s"It is $dayOfYear - there are $dayslLeft days left of the year!"”)

}
b



http://api.day-of-year/today
http://api.day-of-year/today
http://api.days-left/today
http://api.days-left/today

FUTURE IN

Async {
val futureDOYResponse: Future[Response] = //...
val futureDaysLeftResponse: Future[Response] = //...

val futureResult = for {
doyResponse <- futureDOYResponse
dayOfYear = doyResponse.body
daysLeftResponse <- futureDaysLeftResponse
daysLeft = daysLeftResponse.body
} yield {
Ok(s"It 1s $dayOfYear - there are $dayslLeft days left of the year!"”)

}

futureResult.recover {
case t: Throwable =>
BadRequest(s"It is 21st December 2012 - end of the world?")
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QUESTIONS:

h++p://<3|ocs.sc0|0-|0 ng.org/sips/pending/:ujru res—promises.h+m|
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http://docs.scala-lang.org/sips/pending/futures-promises.html
http://docs.scala-lang.org/sips/pending/futures-promises.html
http://www.playframework.org/documentation/2.0.4/ScalaAsync
http://www.playframework.org/documentation/2.0.4/ScalaAsync

