
futures&promises
in Scala 2.10

PHILIPP HALLER

with HEATHER MILLER
FREDRIK EKHOLDT

Futures/Promises
Agenda

Execution Ctxs
Futures in Play

future&promise

scala.concurrent.

First, some Motivation

1Several important
libraries have their
own future/promise
implementation

1Several important
libraries have their
own future/promise
implementation

java.util.concurrent.
scala.actors.

com.twitter.util.

akka.dispatch.
scalaz.concurrent.
net.liftweb.actor.

FUTURE
FUTURE
FUTURE

FUTURE
PROMISE
LAFUTURE

This makes it clear that...

This makes it clear that...

futures are an important,
powerful abstraction

This makes it clear that...

futures are an important,
powerful abstraction

there’s fragmentation in

the scala ecosystem

no hope of interop!

 Furthermore...

 Furthermore...
Java futures neither
efficient nor composable2

 Furthermore...
Java futures neither
efficient nor composable2
we could make futures more
powerful, by taking advantage
of scala’s features

3

can be thought of as a COMBINED
concurrency abstraction

Futures&Promises

Future promise

can be thought of as a COMBINED
concurrency abstraction

Futures&Promises

Future

READ-MANY

promise

write-once

can be thought of as a COMBINED
concurrency abstraction

Futures&Promises

Future

READ-MANY

promise

write-once

Start async computation ✔
important ops

Assign result value
✔ Wait for result ✔ Obtain associated future object

✔

a promise p of type Promise[T]
can be completed in two ways...

Success&Failure

val result: T = ...
p.success(result)

Success

val exc = new Exception(“something went wrong”)
p.failure(exc)

Failure

Future
Promise
Future with value

Green
Red thread waiting on the

result of another thread

meaningful work

java.util.concurrent.future

java.util.concurrent.future

Future
Promise
Future with value

Green
Red thread waiting on the

result of another thread

meaningful work

what we’d like to do instead

Future
Promise
Future with value

Green
Red thread waiting on the

result of another thread

meaningful work

Async&NonBlocking

Async&NonBlocking
goal: Do not block current thread while waiting

for result of future

Async&NonBlocking
goal: Do not block current thread while waiting

for result of future

Callbacks
Register callback which is invoked
(asynchronously) when future is completed

Async computations never block
(except for managed blocking)

Async&NonBlocking
goal: Do not block current thread while waiting

for result of future

Callbacks
Register callback which is invoked
(asynchronously) when future is completed

Async computations never block
(except for managed blocking)

user doesn’t have to explicitly manage

callbacks. higher-order functions instead!

Futures&Promises
Thread1 Thread2 Thread3

example

Futures&Promises

Promise

val p = Promise[Int]() // Thread 1

Thread1 Thread2 Thread3

(create promise)

example

Futures&Promises

PromiseFuture

val p = Promise[Int]() // Thread 1
val f = p.future // Thread 1

Thread1 Thread2 Thread3

(create promise)
(get reference to future)

example

Futures&Promises

PromiseFuture

val p = Promise[Int]() // Thread 1
val f = p.future // Thread 1

f onSuccess { // Thread 2
 case x: Int => println(“Successful!”)
}

Thread1 Thread2 Thread3

onSuccess
callback

(create promise)
(get reference to future)
(register callback)

example

Futures&Promises

PromiseFuture

val p = Promise[Int]() // Thread 1
val f = p.future // Thread 1

f onSuccess { // Thread 2
 case x: Int => println(“Successful!”)
}

Thread1 Thread2 Thread3

onSuccess
callback

p.success(42) // Thread 1

4242

(create promise)
(get reference to future)
(register callback)

(write to promise)

example

Futures&Promises

PromiseFuture

val p = Promise[Int]() // Thread 1
val f = p.future // Thread 1

f onSuccess { // Thread 2
 case x: Int => println(“Successful!”)
}

Thread1 Thread2 Thread3

onSuccess
callback

p.success(42) // Thread 1

4242 Successful!

Console

(create promise)
(get reference to future)
(register callback)

(write to promise)

(execute callback)
// Thread

example

note: onSuccess callback executed even if f has

already been completed at time of registration

Combinators

 val purchase: Future[Int] = rateQuote map {
 quote => connection.buy(amount, quote)
 }

 val postBySmith: Future[Post] =
 post.filter(_.author == “Smith”)

Composability thru higher-order funcs
standard monadic combinators

def map[S](f: T => S): Future[S]

def filter(pred: T => Boolean): Future[T]

Combinators

 val purchase: Future[Int] = rateQuote map {
 quote => connection.buy(amount, quote)
 }

 val postBySmith: Future[Post] =
 post.filter(_.author == “Smith”)

Composability thru higher-order funcs
standard monadic combinators

def map[S](f: T => S): Future[S]

def filter(pred: T => Boolean): Future[T]

If filter fails: postBySmith completed with NoSuchElementException

If map fails: purchase is completed with unhandled exception

Combinators
Additional future-specific higher-
order functions have been introduced

def fallbackTo[U >: T](that: Future[U]): Future[U]

val fut: Future[T] = Future.firstCompletedOf[T](futures)

def andThen(pf: PartialFunction[...]): Future[T]

Combinators
Additional future-specific higher-
order functions have been introduced

def fallbackTo[U >: T](that: Future[U]): Future[U]

val fut: Future[T] = Future.firstCompletedOf[T](futures)

def andThen(pf: PartialFunction[...]): Future[T]

”falls back” to that future in case of failure

returns a future completed with result of first completed future

allows one to define a sequential execution over a chain of futures

context
Execution

scala.concurrent.

are needed by:
Threadpools...

futures

Actors

parallel collections

for executing callbacks and
function arguments

for executing message handlers,
scheduled tasks, etc.

for executing data-parallel operations

contexts
Execution

Scala 2.10 introduces

contexts
Execution

Scala 2.10 introduces

provide global threadpool as platform service to be shared by all parallel frameworks

Goal

contexts
Execution

Scala 2.10 introduces

provide global threadpool as platform service to be shared by all parallel frameworks

Goal

scala.concurrent package provides global ExecutionContext

Default ExecutionContext backed by the most recent fork join pool
(collaboration with Doug Lea, SUNY Oswego)

Implicit Execution Ctxs
def map[S](f: T => S)(implicit executor: ExecutionContext): Future[S]

def onSuccess[U](pf: PartialFunction[T, U])
 (implicit executor: ExecutionContext): Unit

Asynchronous computations are executed on an
ExecutionContext which is provided implicitly.

Implicit parameters enable fine-grained selection of the
ExecutionContext:

implicit val context: ExecutionContext = customExecutionContext
val fut2 = fut1.filter(pred)
 .map(fun)

Implicit Execution Ctxs
def map[S](f: T => S)(implicit executor: ExecutionContext): Future[S]

def onSuccess[U](pf: PartialFunction[T, U])
 (implicit executor: ExecutionContext): Unit

Asynchronous computations are executed on an
ExecutionContext which is provided implicitly.

Implicit parameters enable fine-grained selection of the
ExecutionContext:

implicit val context: ExecutionContext = customExecutionContext
val fut2 = fut1.filter(pred)
 .map(fun)

implicit ExecutionContexts allow sharing ecs

between frameworks

Enables flexible selection of execution policy

Future
the implementation

def map[S](f: T => S): Future[S] = {
 val p = Promise[S]()

 onComplete {
 case result =>
 try {
 result match {
 case Success(r) => p success f(r)
 case Failure(t) => p failure t
 }
 } catch {
 case t: Throwable => p failure t
 }
 }
 p.future
}

Many operations implemented in terms of promises
simplified example

Future
the implementationREAL

def map[S](f: T => S)(implicit executor: ExecutionContext): Future[S] = {
 val p = Promise[S]()

 onComplete {
 case result =>
 try {
 result match {
 case Success(r) => p success f(r)
 case f: Failure[_] => p complete f.asInstanceOf[Failure[S]]
 }
 } catch {
 case NonFatal(t) => p failure t
 }
 }

 p.future
}

The real implementation (a) adds an implicit ExecutionContext, (b)
avoids extra object creations, and (c) catches only non-fatal exceptions:

Promise
the implementation

Promise is the work horse of the futures implementation.

def complete(result: Try[T]): this.type =
 if (tryComplete(result)) this
 else throw new IllegalStateException("Promise already completed.")

A Promise[T] can be in one of two states:

COMPLETED

PENDING
No result has been written to the promise.
State represented using a list of callbacks (initially empty).

The promise has been assigned a successful result or exception.
State represented using an instance of Try[T]

Invoking Promise.complete triggers a transition from state Pending to Completed

A Promise can be completed at most once:

def tryComplete(value: Try[T]): Boolean = {
 val resolved = resolveTry(value)
 (try {
 @tailrec
 def tryComplete(v: Try[T]): List[CallbackRunnable[T]] = {
 getState match {
 case raw: List[_] =>
 val cur = raw.asInstanceOf[List[CallbackRunnable[T]]]
 if (updateState(cur, v)) cur else tryComplete(v)
 case _ => null
 }
 }
 tryComplete(resolved)
 } finally {
 synchronized { notifyAll() } // Notify any blockers
 }) match {
 case null => false
 case rs if rs.isEmpty => true
 case rs =>
 rs.foreach(_.executeWithValue(resolved)); true
 }
}

Completing a Promise

the awkWard squad
abstract class AbstractPromise {
 private volatile Object _ref;
 final static long _refoffset;

 static {
 try {
 _refoffset =
 Unsafe.instance.objectFieldOffset(
 AbstractPromise.class.getDeclaredField("_ref"));
 } catch (Throwable t) {
 throw new ExceptionInInitializerError(t);
 }
 }

 protected boolean updateState(Object oldState, Object newState) {
 return
 Unsafe.instance.compareAndSwapObject(this, _refoffset,
 oldState, newState);
 }

 protected final Object getState() {
 return _ref;
 }
}

IntegratingFutures Actors&
Futures are results of asynchronous message sends
when a response is expected

Future of Friends is either completed with a successful result or with a
wrapped exception if response times out or is not of type Seq[Friend]

val response: Future[Any] = socialGraph ? getFriends(user)

Implementing synchronous send (untyped):

def syncSend(to: ActorRef, msg: Any, timeout: Duration): Any = {
 val fut = to ? msg
 Await.result(fut, timeout)
}

Recovering types
val friendsFut: Future[Seq[Friend]] = response.mapTo[Seq[Friend]]

IntegratingFutures Actors&
Futures are results of asynchronous message sends
when a response is expected

Future of Friends is either completed with a successful result or with a
wrapped exception if response times out or is not of type Seq[Friend]

val response: Future[Any] = socialGraph ? getFriends(user)

Implementing synchronous send (untyped):

def syncSend(to: ActorRef, msg: Any, timeout: Duration): Any = {
 val fut = to ? msg
 Await.result(fut, timeout)
}

Recovering types
val friendsFut: Future[Seq[Friend]] = response.mapTo[Seq[Friend]]

friendsFut is either completed with a
successful result or with a wrapped exception if response times out or is not of type Seq[Friend]

THE PLAy
Example

Ye Olde Webapp

databases
ORM

FutureTHe of
IS NOW

webapps
SERVICES

XYZ

Synchronous

thread 1 thread 2

BLOCKING
BLOCKING

IMPORTANT work

WAITING for response

IO

Synchronous

thread 1 thread 2

BLOCKING
BLOCKING

Means: N requests == N threads

IMPORTANT work

WAITING for response

IO

Synchronous

thread 1 thread 2

BLOCKING
BLOCKING

Means: N requests == N threads

DOeS
NOT

SCale

IMPORTANT work

WAITING for response

IO

Asynchronous

checks socket thread 1 thread 2

IO

Asynchronous

checks socket thread 1 thread 2

IO

Asynchronous

checks socket thread 1 thread 2

Means: We now scale!

IO

PLay

Client

Client

...

Controller

ActionAction
Routing

models

views
Client

HTTP/1.1: 200 Ok
Location:

GET / HTTP/1.1
User-Agent: ... Request

Result

101

PLay

Controller

ActionAction

Request

Result

101

Play

package controllers

//imports...

object Application extends Controller {

 def index = Action { request =>
 Ok("It is November 19th - there are 42 days left of the year!")
 }

}

Actions in

SIMPLE Webservices in

package controllers

//imports...

object Application extends Controller {

 def index = Action { request =>
 val f: Future[Response] = WS.url("http://api.day-of-year/today").get
 val dayOfYear = ???
 Ok(s"It is $dayOfYear - there are 42 days left of the year!")
 }

}

Play

http://api.day-of-year/today
http://api.day-of-year/today

package controllers

//imports...

object Application extends Controller {

 def index = Action { request =>
 val f: Future[Response] = WS.url("http://api.day-of-year/today").get
 f.map { response =>
 val dayOfYear = response.body
 Ok(s"It is $dayOfYear - there are 42 days left of the year!")
 }
 }

}

PlayFuture in

http://api.day-of-year/today
http://api.day-of-year/today

package controllers

//imports...

object Application extends Controller {

 def index = Action { request =>
 import play.api.libs.concurrent.Execution.Implicits._
 Async {
 val f: Future[Response] = WS.url("http://api.day-of-year/today").get
 f.map { response =>
 val dayOfYear = response.body
 Ok(s"It is $dayOfYear - there are 42 days left of the year!")
 }
 }
 }

}

PlayFuture in Execution context &
ASYnc

http://api.day-of-year/today
http://api.day-of-year/today

 def index = Action { request =>
 import play.api.libs.concurrent.Execution.Implicits._
 Async {
 val futureDOYResponse: Future[Response] =
 WS.url("http://api.day-of-year/today").get
 val futureDaysLeftResponse: Future[Response] =
 WS.url("http://api.days-left/today").get

 }
 }

PlayFuture
CompoSITION IN

http://api.day-of-year/today
http://api.day-of-year/today
http://api.days-left/today
http://api.days-left/today

 def index = Action { request =>
 import play.api.libs.concurrent.Execution.Implicits._
 Async {
 val futureDOYResponse: Future[Response] =
 WS.url("http://api.day-of-year/today").get
 val futureDaysLeftResponse: Future[Response] =
 WS.url("http://api.days-left/today").get

 }
 }

PlayFuture
CompoSITION IN

 futureDOYResponse.map{ doyResponse =>
 val dayOfYear = doyResponse.body
 futureDaysLeftResponse.map { daysLeftResponse =>
 val daysLeft = daysLeftResponse.body
 Ok(s "It is $dayOfYear - there are $daysLeft days left of the year!")
 }
 }

http://api.day-of-year/today
http://api.day-of-year/today
http://api.days-left/today
http://api.days-left/today

 def index = Action { request =>
 import play.api.libs.concurrent.Execution.Implicits._
 Async {
 val futureDOYResponse: Future[Response] =
 WS.url("http://api.day-of-year/today").get
 val futureDaysLeftResponse: Future[Response] =
 WS.url("http://api.days-left/today").get

 }
 }

PlayFuture
CompoSITION IN

 futureDOYResponse.map{ doyResponse =>
 val dayOfYear = doyResponse.body
 futureDaysLeftResponse.map { daysLeftResponse =>
 val daysLeft = daysLeftResponse.body
 Ok(s "It is $dayOfYear - there are $daysLeft days left of the year!")
 }
 }

FlatMAP
that shit!

http://api.day-of-year/today
http://api.day-of-year/today
http://api.days-left/today
http://api.days-left/today

 def index = Action { request =>
 import play.api.libs.concurrent.Execution.Implicits._
 Async {
 val futureDOYResponse: Future[Response] =
 WS.url("http://api.day-of-year/today").get
 val futureDaysLeftResponse: Future[Response] =
 WS.url("http://api.days-left/today").get

 }
 }

PlayFuture
CompoSITION IN

 futureDOYResponse.flatMap{ doyResponse =>
 val dayOfYear = doyResponse.body
 futureDaysLeftResponse.map { daysLeftResponse =>
 val daysLeft = daysLeftResponse.body
 Ok(s "It is $dayOfYear - there are $daysLeft days left of the year!")
 }
 }

http://api.day-of-year/today
http://api.day-of-year/today
http://api.days-left/today
http://api.days-left/today

 def index = Action { request =>
 import play.api.libs.concurrent.Execution.Implicits._
 Async {
 val futureDOYResponse: Future[Response] =
 WS.url("http://api.day-of-year/today").get
 val futureDaysLeftResponse: Future[Response] =
 WS.url("http://api.days-left/today").get
 for {
 doyResponse <- futureDOYResponse
 dayOfYear = doyResponse.body
 daysLeftResponse <- futureDaysLeftResponse
 daysLeft = daysLeftResponse.body
 } yield {
 Ok(s"It is $dayOfYear - there are $daysLeft days left of the year!")
 }
 }
 }

PlayFuture
CompoSITION IN 2

http://api.day-of-year/today
http://api.day-of-year/today
http://api.days-left/today
http://api.days-left/today

 Async {
 val futureDOYResponse: Future[Response] = //...
 val futureDaysLeftResponse: Future[Response] = //...

 val futureResult = for {
 doyResponse <- futureDOYResponse
 dayOfYear = doyResponse.body
 daysLeftResponse <- futureDaysLeftResponse
 daysLeft = daysLeftResponse.body
 } yield {
 Ok(s"It is $dayOfYear - there are $daysLeft days left of the year!")
 }

 futureResult.recover {
 case t: Throwable =>
 BadRequest(s"It is 21st December 2012 - end of the world?")
 }
 }

PlayFuture in
REcover

Credits

PHILIPP HALLER

ALEX PROKOPEC

VOJIN JOVANOVIC

VIKTOR KLANG MARIUS ERIKSEN

HEATHER MILLER

ROLAND KUHN

DOUG LEA

TYPESAFE

TYPESAFE

EPFL

EPFL

EPFL

TYPESAFE

SUNY

TWITTER

HAVOC PENNINGTON
TYPESAFE

questions?
http://docs.scala-lang.org/sips/pending/futures-promises.html

http://www.playframework.org/documentation/2.0.4/ScalaAsync

http://docs.scala-lang.org/sips/pending/futures-promises.html
http://docs.scala-lang.org/sips/pending/futures-promises.html
http://www.playframework.org/documentation/2.0.4/ScalaAsync
http://www.playframework.org/documentation/2.0.4/ScalaAsync

