=

TURES
PROMISES

in Scala 2.10

PHIL IPRHAL L'ER

FREDRIK EKHOLDT
with HEATHER MILLER

FUTURES/PROMISES
EXECUTION CTXS
FUTURES IN PLAY

acalo.. concurvent.

FUTURE
PROMISE

FIRST, SOME

SEVERAL IMPORTANT
LIBRARIES HAVE THEIR
OWN FUTURE/PROMISE
IMPLEMENTATION

SEVERAL IMPORTANT
LIBRARIES HAVE THEIR
OWN FUTURE/PROMISE
IMPLEMENTATION

—— FUTURE
FUTURE PROMISE

Eﬂ¥3§§ LAFUTURE

THIS MAKES IT CLEAR THAT...

THIS MAKES IT CLEAR THAT...

——>FUTURES ARE AN IMPORTANT,
POWERFUL ABSTRACTION

THIS MAKES IT CLEAR THAT...

——2 FUTURES ARE AN IMPORTANT.
POWERFUL ABSTRACTION

——==> THERE’S FRAGMENTATION IN
THE SCALA ECOSYSTEM

JAVA FUTURES NEITHER
EFFICIENT NOR COMPOSABLE

JAVA FUTURES NEITHER
EFFICIENT NOR COMPOSABLE

WE COULD MAKE FUTURES MORE
POWERFUL, BY TAKING ADVANTAGE
OF SCALA’S FEATURES

CAN BE THOUGHT OF AS A COMBINED
CONCURRENCY ABSTRACTION

<—_.}

FUTURE PROMISE

CAN BE THOUGHT OF AS A COMBINED
CONCURRENCY ABSTRACTION

FUTURE PROMISE

CAN BE THOUGHT OF AS A COMBINED
CONCURRENCY ABSTRACTION

FUTURE PROMISE

IMPORTANT OPS

v/ Start async computation V4 Assign result value
V W ait for result V Obtain associated future object

Success& Fuilure

A PROMISE p OF TYPE Promise[T]
CAN BE COMPLETED IN TWO WAYS...

val result: T = ...
p.success(result)

val exc = new (“something went wrong”)
p.failure(exc)

FUTURE

O FUTURE

@ PROMISE Gm meonmgfu/ work
@ FUTURE WITH VALUE Hweoo/ Wolhnﬁ on the
e

result of another thread

FUTURE

O FUTURE

@ PROMISE Gm meonmgfu/ work
@ FUTURE WITH VALUE Hweoo/ Wolhnﬁ on the
e

result of another thread

QO FUTURE

@ PROMISE Gﬂm meonmgfu/ work
@ FUTURE WITH VALUE fhreao’ Wo/hnﬁ on the
e

result of another thread

®
ad‘y,m':& locking
GOAL Do not block current Hvreao/ w hile waiting

for result of future

/

®
W ehing
GOAL Do not block current f/vreao’ w hile waiting

\ for result of future

Catlbacks

=== REGISTER CALLBACK which is invoked

(osynchronous/y) when future is com/o/efeo/

ASYNC COMPUTATIONS NEVER BLOCK
(excepf for manogeo/ b/ockmg)

®
W locking
GOAL Do not block current fhreoo’ w hile waiting

for result of future

Ga%ad’u

~====» REGISTER CALLBACK which is invoked

(asynchronous/y) when future is com/o/efeo/

ASYNC COMPUTATIONS NEVER BLOCK
(excepf for momaged b/ocking)

USER DOESN’T HAVE TO EXPLICITLY MANAGE

|
CALLBACKS. HIGHER- -ORDER FUNCTIONS INSTEAD!

EXAMPLE

EXAMPLE

| Thread1

SRS PROMISE

f val p = Promise[Int]() // Thread 1 (CREATE PROMISE)

EXAMPLE

' Thread1

f FUTURE PROMISE

val p = Promisel[Int]() // Thread 1 (CREATE PROMISE)
val f = p.future // Thread 1 (GET REFERENCE TO FUTURE)

EXAMPLE

Thread1

val p
val f

onSuccess
callback

FUTURE

PROMISE

Promise[Int]() // Thread 1

p.future

f onSuccess {
case x: Int => println(“Successful!”)

3

// Thread 1

(CREATE PROMISE)
(GET REFERENCE TO FUTURE)
(REGISTER CALLBACK)

EXAMPLE

Thread1

< 42
onSuccess
callback
FUTURE PROMISE
val p = Promisel[Int]() // Thread 1 (CREATE PROMISE)
val f = p.future // Thread 1 (GET REFERENCE TO FUTURE)
f onSuccess { (REGISTER CALLBACK)
case x: Int => println(“Successful!”)

g
p.success(42) // Thread 1 (WRITE TO PROMISE)

EXAMPLE

Thread1 Thread3
< 42 Successful!
el

f FUTURE PROMISE CONSOLE
val p = Promisel[Int]() // Thread 1 (CREATE PROMISE)
val f = p.future // Thread 1 (GET REFERENCE TO FUTURE)
i (C)gSucces; E // Thread 2 (REGISTER CALLBACK)

se x: Int => println(“Successful!” (EXECUTE CAL

} // Thread : Sk
p.success(42) // Thread 1 (WRITE TO PROMISE)

NOTE: onSuccess CALLBACK EXECUTED EVEN IF f HAS
ALREADY BEEN COMPLETED AT TIME OF REGISTRATION

—> COMPOSABILITY THRU HIGHER-ORDER FUNCS
—> STANDARD MONADIC COMBINATORS

defzmapESdiEhs S =208 i uturpe LS

val purchase: [Int] = rateQuote map {
quote => connection.buy(amount, quote)

¥

def filter(pred: T => Boolean): Future[T]

val postBySmith: [1=

post.filter(_.author == “

—> COMPOSABILITY THRU HIGHER-ORDER FUNCS
—> STANDARD MONADIC COMBINATORS

defzmapESdiEhs S =208 i uturpe LS

val purchase: [Int] = rateQuote map {
quote => connection.buy(amount, quote)

¥

IF MAP FAILS: purchose is comp|e+ed with unhandled exception

def filter(pred: T => Boolean): Future[T]

val postBySmith:

post.filter(_.author == “

IF FILTER FAILS: poerBySmiJrh comp|e+eo| with NoSuchE|emen+Excepﬁon

ADDITIONAL FUTURE-SPECIFIC HIGHER-
ORDER FUNCTIONS HAVE BEEN INTRODUCED

def fallbackTol[U >: T]1(that:

[T] = Future.firstCompletedOf[T](futures)

def andThen(pf:

ADDITIONAL FUTURE-SPECIFIC HIGHER-
ORDER FUNCTIONS HAVE BEEN INTRODUCED

def fallbackTol[U >: T]1(that:

"falls back” to that future in case of failure

[T] = Future.firstCompletedOf[T](futures)

returns a future Comp|e+ed with result of first Comp|e+ed future

def andThen(pf:

allows one to define a sequen+i0| execution over a chain of futures

wafa.cowmnf.
EXECUTION

CONTEXT

ARE NEEDED BY:

_) FUTURES for executing callbacks and

function argu menfts

q-> ACTORS for executing message handlers,
scheduled tasks, etc.

—> PARALLEL COLLECTIONS

for executing o’ofo—pam//e/ operations

EXECUTION
CONTEXTS

Scala 2.10 infroduces

Scala 2.10 infroduces

PROVIDE GLOBAL THREADPOOL AS
PLATFORM SERVICE TO BE SHARED BY

ALL PARALLEL FRAMEWORKS

-a-i-—-> scala.concurrent package provides global ExecutionContext

a—_> Default ExecutionContext backed |oy the most recent fork join poo|
(collaboration with Doug Leq, SUNY stego)

Asynchronous computations are executed on an
ExecutionContext which is provided imp|ici+|y.

def map[S]1(f: T => S)(implicit executor:

def onSuccess[U](pf: [T, Ul)
(implicit executor:

|m|o|iciJr parameters enable Fine—grained selection of the
ExecutionContext:

implicit val context: = customkExecutionContext

val fut2 = futl.filter(pred)
.map(fun)

def map[S]1(f: T => S)(implicit executor:

def onSuccess[U](pf: [T, Ul)
(implicit executor:

implicit val context: = customkExecutionContext
val fut2 = futl.filter(pred)
.map(fun)

THE IMPLEMENTATION

Momy operations im/o/ememLed in ferms of/oromises

def map[SI1(f: T => S): Future[S] = {
val p = Promise[S]1()

onComplete {
case result =>
try {
result match {
case Success(r) => p success f(r)
case Failure(t) => p failure t

J
} catch {
case t: Throwable => p failure t
J
¥
p.future

}

THE RECY IMPLEMENTATION

The real implementation (a) adds an implicit ExecutionContext, (b)

avoids extra object creations, and (c) catches only non-fatal exceptions:

def map[S]1(f: T => S)(implicit executor: ExecutionContext): Future[S] = {
val p = Promise[S]1()

onComplete {
case result =>
try {
result match {
case Success(r) => p success f(r)
case f: Failure[_] => p complete f.asInstanceOf[Failure[S]]

¥
} catch {
case NonFatal(t) => p failure t
¥
¥
p.future

}

@W
THE IMPLEMENTATION

Promise is the work horse of the futures im/o/emenfafion.

A Promise[T] can be in one of two states:
PENDING

No result has been written to the promise.

State represenfeo/ using a list of callbacks (inih'a//y empty).

The promise has been assigneo’ a successful result or exce/oh'on.

State represem‘ed using an instance of Try[T]

|nvoking Promise.complete triggers a fransition from state Pending to Completed

A PROMISE CAN BE COMPLETED AT MOST ONCE:

def complete(result: [T]): this.type =
if (tryComplete(result)) this

else throw new ("Promise already completed.”)

def tryComplete(value: Try[T]): Boolean = {
val resolved = resolveTry(value)
(try {
@tailrec
def tryComplete(v: Try[T]): List[CallbackRunnable[T]] = {

getState match {

case raw: List[_] =>
val cur = raw.asInstanceOf[List[CallbackRunnable[T]]1]

1f (updateState(cur, v)) cur else tryComplete(v)

case _ => null
¥

¥

tryComplete(resolved)
} finally {

synchronized { notifyAll() }
}) match {

case null => false

case rs 1f rs.isEmpty => true

case rs =>

rs.foreach(_.executeWithValue(resolved)); true

THE AWKWARD SQUAD

abstract class AbstractPromise {
private volatile Object _ref;
final static long _refoffset;

static {
try {
_refoffset =
Unsafe.instance.objectFieldOffset(
AbstractPromise.class.getDeclaredField("_ref"));
} catch (Throwable t) {
throw new ExceptionInInitializerError(t);

}
}

protected boolean updateState(Object oldState, Object newState) {
return
Unsafe.instance.compareAndSwapObject(this, _refoffset,
oldState, newState);

}

protected final Object getState() {
return _ref;

}

Futures are results of osynchronous message sends

WHEN A RESPONSE IS EXPECTED

val response: [] socialGraph ? getFriends(user)

|mp|emen+ing synchronous send (un’ryped):

def syncSend(to: ; timeout:
val fut = to ? msg
.result(fut, timeout)

= response.mapTol [

Futures are results of osynchronous message sends

WHEN A RESPONSE IS EXPECTED

val response: [] = socialGraph ? getFriends(user)

———— e [R— A— \J\\‘,,,,L

friendsFut IS EITHER COMPLETED WITH A
SUCCESSFUL RESULT OR WITH A WRAPPED

EXCEPTION IF RESPONSE TIMES OUT OR IS NOT OF
- TYPE Seq[Friend]

RECOVERING TYPES

val friendsFut: [1] = response.mapTol[[

THE PLAY

ORACLE
DATABASE

!

- OF m@aﬁp&

IS NOW

SERVICES

Sym%nomw i

IMPORTANT work

WAITING for response

Sym%nomw i

IMPORTANT work

WAITING for response

MEANS:

N requests == N threads

Sylwﬂtmmw '

IMPORTANT work

WAITING for response

MEANS:

hoohhs sochef tuwead1 thread 2

Qaynchronous .,

hoohhs sochef tuwead1 thread 2

-

We now SCO/G.I

MEANS:

101
play!

2 r D
C o s A

Client Ol C | Ci

GET / HTTP/1.1

User-Agent: ... Equgi

>
= ®

Client

HTTP/1.1: 200 Ok Result

Locatiot.... T

101

onhtroller

r\
Nt

Request

Result

C

ACTIONS IN

package controllers
//imports. ..

object extends {
def index = { request =>

("It is November 19th - there are 42 days left of the year!")
¥

SIMPLE WEBSERVICES IN

package controllers

//imports. ..
object extends {
def index = { request =>
val f: = .url("http://api.day-of-year/today”) .get

val dayOfYear = ?7??
(s"It is $dayOfYear - there are 42 days left of the year!")
¥

http://api.day-of-year/today
http://api.day-of-year/today

FUTURE IN

package controllers
//imports. ..
object Application extends Controller {

def index = Action { request =>
val f: Future[Response] = WS.url("http://api.day-of-year/today”).get
f.map { response =>

val dayOfYear = response.body

Ok(s"It is $dayOfYear - there are 42 days left of the year!")

http://api.day-of-year/today
http://api.day-of-year/today

FUTURE IN

'package controllers
//imports. ..
object Application extends Controller {

def index = Action { request =>
import play.api.libs.concurrent.Execution.Implicits._
Async {
val f: Future[Response] = WS.url("http://api.day-of-year/today").get
f.map { response =>
val dayOfYear = response.body
Ok(s"It is $dayOfYear - there are 42 days left of the year!")

b
)

}

http://api.day-of-year/today
http://api.day-of-year/today

FUTURE
COMPOSITION IN

def index = Action { request =>
import play.api.libs.concurrent.Execution.Implicits._
Async {
val futureDOYResponse: Future[Response] =
WS.url("http://api.day-of-year/today”).get
val futureDaysLeftResponse: Future[Response] =
WS.url("http://api.days-left/today"”).get

http://api.day-of-year/today
http://api.day-of-year/today
http://api.days-left/today
http://api.days-left/today

FUTURE
COMPOSITION IN

def index = Action { request =>
import play.api.libs.concurrent.Execution.Implicits._
Async {
val futureDOYResponse: Future[Response] =
WS.url("http://api.day-of-year/today”).get
val futureDaysLeftResponse: Future[Response] =
WS.url("http://api.days-left/today"”).get

futureDOYResponse.map{ doyResponse =>
val dayOfYear = doyResponse.body
futureDayslLeftResponse.map { daysLeftResponse =>
val daysLeft = dayslLeftResponse.body
Ok(s "It is $dayOfYear - there are $daysLeft days left of the year!”)

}

}

http://api.day-of-year/today
http://api.day-of-year/today
http://api.days-left/today
http://api.days-left/today

FUTURE
COMPOSITION IN

def index = { request =>
import play.api.libs.concurrent.Execution.Implicits._
{
val futureDOYResponse: =
.url("http://api.day-of-year/today”).get
val futureDaysLeftResponse: =
url("http://api.days-left/today”).get

futureDOYResponse.map{ doyResponse =>
val dayOfYear = doyResponse.body
futureDayslLeftResponse.map { daysLeftResponse =>
val daysLeft = dayslLeftResponse.body
(s "It 1s $dayOfYear - there are $daysLeft days left of the year!")

http://api.day-of-year/today
http://api.day-of-year/today
http://api.days-left/today
http://api.days-left/today

FUTURE
COMPOSITION IN

def index = Action { request =>
import play.api.libs.concurrent.Execution.Implicits._
Async {
val futureDOYResponse: Future[Response] =
WS.url("http://api.day-of-year/today”).get
val futureDaysLeftResponse: Future[Response] =
WS.url("http://api.days-left/today"”).get

futureDOYResponse. flatMap{ doyResponse =>
val dayOfYear = doyResponse.body
futureDayslLeftResponse.map { daysLeftResponse =>
val daysLeft = dayslLeftResponse.body
Ok(s "It is $dayOfYear - there are $daysLeft days left of the year!”)

}

}

http://api.day-of-year/today
http://api.day-of-year/today
http://api.days-left/today
http://api.days-left/today

}

FUTURE
COMPOSITION IN

def index = Action { request =>
import play.api.libs.concurrent.Execution.Implicits._

Async {

val futureDOYResponse: Future[Response

WS.url("http://api.day-of-year/today”).get

val futureDaysLeftResponse: Future[Response
WS.url("http://api.days-left/today"”).get

for {

doyResponse <- futureDOYResponse
dayOfYear = doyResponse.body
daysLeftResponse <- futureDayslLeftResponse
daysLeft = dayslLeftResponse.body
} yield {
Ok(s"It is $dayOfYear - there are $dayslLeft days left of the year!"”)

}
b

http://api.day-of-year/today
http://api.day-of-year/today
http://api.days-left/today
http://api.days-left/today

FUTURE IN

Async {
val futureDOYResponse: Future[Response] = //...
val futureDaysLeftResponse: Future[Response] = //...

val futureResult = for {
doyResponse <- futureDOYResponse
dayOfYear = doyResponse.body
daysLeftResponse <- futureDaysLeftResponse
daysLeft = daysLeftResponse.body
} yield {
Ok(s"It 1s $dayOfYear - there are $dayslLeft days left of the year!"”)

}

futureResult.recover {
case t: Throwable =>
BadRequest(s"It is 21st December 2012 - end of the world?")

CREDITS

| TYPESAFE
W PHILIPP HALLER HEATHER MILLER (R
: TYPESAFE e <

ALEX PROKOPEC ROLAND KUHN ﬁ

EPFL TYPESAFE o

&N
L2

=
5

VOJIN JOVANOVIC DOUG LEA

EPFL SUNY M

HAVOC PENNINGTON e

TYPESAFE l

QUESTIONS:

h++p://<3|ocs.sc0|0-|0 ng.org/sips/pending/:ujru res—promises.h+m|

l"al://WWW.p|Oy]CrO mework.o rg/docu mentatio n/Q.O.4/SCO|OAsy gle

http://docs.scala-lang.org/sips/pending/futures-promises.html
http://docs.scala-lang.org/sips/pending/futures-promises.html
http://www.playframework.org/documentation/2.0.4/ScalaAsync
http://www.playframework.org/documentation/2.0.4/ScalaAsync

