Actors that Unify
Threads and Events

Philipp Haller, EPFL

joint work with Martin Odersky, EPFL



Implementing Concurrent Processes

i Thread-based

- Behavior = body of designated method
- Execution state = thread stack
- Examples: Java threads, POSIX threads

2 Event-based

- Behavior = set of event handlers
- Execution state = object shared by handlers
- Examples: Java Swing, TinyOS

06/07/07 Philipp Haller — Scala Actors 2/23



Threads

[Ousterhout96]

« Support multiple hardware cores (Good)
« Behavior = sequential program (Good)
 Heavyweight (Bad)

- High memory consumption
 Pre-allocated stacks
— Lock contention bottleneck

e Synchronization using locks error-prone, not
composable (Bad)

06/07/07 Philipp Haller — Scala Actors 3/23



Events: Remedy?
[vonBehren03]

 Lightweight (Good)
- Multiple events interleaved on single thread
- Low memory consumption

« Automatic synchronization (Good)
* No hardware support (Bad)
* Inversion of control (Bad)

- Behavior = sequential program

06/07/07 Philipp Haller — Scala Actors 4/23



Rest of this Talk

* Programming with Actors in Scala
« Unifying Threads and Events

- Programming Model
— Lightweight Execution Environment

« Composing Actors
e Selective Communication

» Experimental Results

06/07/07 Philipp Haller — Scala Actors 5/23



Actors

« Model of concurrent processes introduced by
Hewitt and Agha

« Upon reception of a message, an actor may
- send messages to other actors
— create new actors

- change its behavior/state
* Most popular implementation: Erlang

» But: No widespread adoption in languages for
standard VMs (e.g. JVM, CLR)

06/07/07 Philipp Haller — Scala Actors 6/23



Actors in Scala

« Two principle operations (adopted from Erlang)
actor ! message

receive {
case msgpat 1 => action 1

case msgpat n => action n

}
« Send is asynchronous; messages are buffered

INn actor's mailbox

* receive waits for message that matches any of
the patterns msgpat i

06/07/07 Philipp Haller — Scala Actors 7/23



Example: Producers

 Producers act like iterators, generate values
concurrently with consumer:

class InOrder(n: IntTree) extends Producer[Int] {
def produceValues = traverse(n)
def traverse(n: IntTree) = if (n !'= null) {
traverse(n. left)
produce(n.elem)
traverse(n.right) } }

* Methods produceVvalues (abstract) and produce
inherited from class Producer

06/07/07 Philipp Haller — Scala Actors 8/23



Implementing Producers

Producers are implemented in terms of two actors.

i The producer actor runs produceValues:

abstract class Producer[T] extends Iterator[T] {
def produceValues: Unit
def produce(x: T) {
coordinator ! Some(x)
}
private val producer = actor {
produceValues; coordinator ! None

}
}

06/07/07 Philipp Haller — Scala Actors 9/23



Implementing Producers (2)

2. The coordinator actor synchronizes requests
from clients and values from the producer

val coordinator = actor {
while (true) {
receive {
case Next =>
receive {
case x: Option[ ] => client ! x

}

06/07/07 Philipp Haller — Scala Actors 10/23



Lightweight Execution Environment

@ 00
¢ () Actors (many)

Y

Task queue ‘ ‘ Worker threads (few)

06/07/07 Philipp Haller — Scala Actors 11/23



Creating Actors

actor
{ /) boy  Closure =>T3
}
T1
T2
T3

06/07/07 Philipp Haller — Scala Actors 12/23



Thread Mode: recelive

1 Scan messages in mailbox

receive 2. If no message matches any
{ - of the patterns, suspend
case Msg(x) =>
/] handle msg worker thread
L 3. Otherwise, process first
-]

matching message

™~

06/07/07 Philipp Haller — Scala Actors 13/23

Actor remains active



Event Mode: react

i Register message handler

react 2' Become passive
{ (temporarily)

case Msg(x) =>
// handle msgqg
}

[

™~

06/07/07 Philipp Haller — Scala Actors 14/23

Actor becomes inactive



Suspend in Event Mode

Task Ti: Exception:
eact " Unwinds stack of
{ actor/worker thread
case Msg(x) => o
// handle msg 2 Finishes current task
} // do nothing

}

def react(f: PartialFunction[Any, Unit]): Nothing = {
mailbox.dequeueFirst(f.isDefinedAt) match {
case None => continuation = f; suspended = true

case Some(msg) => ...

}

throw new SuspendActorException

}

06/07/07 Philipp Haller — Scala Actors 15/23




Resume in Event Mode

Actor a waits for
{

case Msg(x) =>
// handle msg

}

wt executes Ti

Ti+

Task Ti: 1+2

é.i Msqg(42)

Ti+2: .apply(Msg(42))

06/07/07 Philipp Haller — Scala Actors

16/23



Thread Pool Resizing

A suspended Iin B suspended
receive in |i '
 cose Msg(x) =>... } in library (e.g. wait())
wi1 wi2
T1
T1: o Executing T1 would
A Msgx) unblock wt1!

06/07/07 e Philipp Haller — Scala Actors

17/23



Implementing Producers (3)

Economize one thread in Producer by changing
receive In the coordinator actor 10 react

val coordinator = actor {
Loop {
react {
case Next =>
react {
case x: Option[ ] => client ! x
}

06/07/07 Philipp Haller — Scala Actors 18/23



Composing Actors

« Composing event-driven code non-trivial

- react may unwind stack at any point
- Normal sequencing does not work

« Composition operators for common uses

- a andThen b runs a followed by b
- def loop(body: => Unit) = body andThen Lloop(body)

06/07/07 Philipp Haller — Scala Actors 19/23



Channels

trait OutputChannel[-Msg] {
def !(msg: Msg): Unit
def forward(msg: Msg): Unit

}
trait InputChannel[+Msg] {

receive[R](f: PartialFunction[Msg, R]): R
react(f: PartialFunction[Msg, Unit]): Nothing

, .

class Channel[Msg] extends InputChannel[Msg]
with OutputChannel[Msqg]

trait Actor extends OutputChannel[Any] {

} .

06/07/07 Philipp Haller — Scala Actors 20/23



Selective Communication

e Generalize receive/react:

receive {
case DataCh ! data = ...
case CtrlCh ! cmd => ...

}

« Composing alternatives using orElse:

receive {
case DataCh ! data = ...
case CtrlCh ! cmd => ...
} orElse super.reactions

06/07/07 Philipp Haller — Scala Actors

21/23



Experimental Results

Number of token passes per second In ring of processes.

1e+06
C Sc l Actor 2 5 0 —+— ]
Jaw Th ads —s<— 4
SHLSH 1 1.1

. 1ooooo
1]
T
—
0]
1]
o
1)}
]
[wi
[
o1
=
]
o
[T
(]
o
o]
0
£
]
= 10000 — —

1000

0 10000 20000 30000 40000 50000 60000 T0000 80000 30000 100001
Mumber of processes

06/07/07 Philipp Haller — Scala Actors 22/23



Conclusion

« Threads and events can be unified under an
abstraction of actors

« receive/react allows programmers to trade-off
efficiency for flexibility

* Implemented in Scala Actors library (
http://www.scala-lang.org/)

» Real-world usage: /ift web framework

06/07/07 Philipp Haller — Scala Actors 23/23


http://www.scala-lang.org/

Thread Pool Resizing (2)

(cf. SEDA [Welsh01])

« Sample task queue

« Add thread when gueue length exceeds
threshold (up to max. number of threads)

 Remove thread when idle for specified period of
time

06/07/07 Philipp Haller — Scala Actors 24/23



I Fib Scala Acltors —t

Integ Scala Actors ---x---
Fib FJ ---%---_.-T
Integ FJ -2

Experimental Results (2)

Speed-up

L
7 8

1 1
4 5 6
Number of threads

« Micro benchmarks run on 4-way dual-core Opteron

machine (8 cores total)
« Compared to Doug Lea's FJTask framework for Java

06/07/07 Philipp Haller — Scala Actors

25/23



Programming with Events

def httpFetch(queryURL: String) = {
val req = new XmlHttpRequest
req.addOnReadyStateChangedListener(new PropertyChangelListener() {

override def propertyChange(evt: PropertyChangeEvent) {
if (evt.getNewValue() == ReadyState.LOADED) {
val response = reg.getResponseText()
httpParseResponse(response)
}
}
})

try {
req.open(Method.GET, new URL(queryURL))

req.send()
} catch {
case e: Throwable => ...

} Typical asynchronous
HTTP document fetch

06/07/07 Philipp Haller — Scala Actors 26/23



06/07/07

Inversion of Control

Client

val
res =
evt...

Server

Philipp Haller — Scala Actors

27/23



Problems of Inversion of Control

* Hard to understand control-flow
- reconstruct entire call-graph
 Manual stack management

- handler code not defined where event is handled
- local variables, parameters etc. not accessible

« Managing resources (files, sockets) becomes
even harder
- often long-lived, used in several event handlers
- when is a missing close() a leak?

06/07/07 Philipp Haller — Scala Actors 28/23



06/07/07

Blocking-style Code

Client

val
res =
evt...

3

Philipp Haller — Scala Actors

Message sends

Server

29/23



Concurrency is Indispensable

o Software is concurrent

- Interactive applications
- Web services
— Distributed software

« Hardware is concurrent
- Hyper-threading
— Multi-cores, Many-cores
- Grid computing

06/07/07 Philipp Haller — Scala Actors 30/23



