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Implementing Concurrent Processes

i Thread-based

- Behavior = body of designated method
- Execution state = thread stack
- Examples: Java threads, POSIX threads

2 Event-based

- Behavior = set of event handlers
- Execution state = object shared by handlers
- Examples: Java Swing, TinyOS
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Threads

[Ousterhout96]

« Support multiple hardware cores (Good)
« Behavior = sequential program (Good)
 Heavyweight (Bad)

- High memory consumption
 Pre-allocated stacks
— Lock contention bottleneck

e Synchronization using locks error-prone, not
composable (Bad)
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Events: Remedy?
[vonBehren03]

 Lightweight (Good)
- Multiple events interleaved on single thread
- Low memory consumption

« Automatic synchronization (Good)
* No hardware support (Bad)
* Inversion of control (Bad)

- Behavior = sequential program
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Rest of this Talk

* Programming with Actors in Scala
« Unifying Threads and Events

- Programming Model
— Lightweight Execution Environment

« Composing Actors
e Selective Communication

» Experimental Results
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Actors

« Model of concurrent processes introduced by
Hewitt and Agha

« Upon reception of a message, an actor may
- send messages to other actors
— create new actors

- change its behavior/state
* Most popular implementation: Erlang

» But: No widespread adoption in languages for
standard VMs (e.g. JVM, CLR)
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Actors in Scala

« Two principle operations (adopted from Erlang)
actor ! message

receive {
case msgpat 1 => action 1

case msgpat n => action n

}
« Send is asynchronous; messages are buffered

INn actor's mailbox

* receive waits for message that matches any of
the patterns msgpat i
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Example: Producers

 Producers act like iterators, generate values
concurrently with consumer:

class InOrder(n: IntTree) extends Producer[Int] {
def produceValues = traverse(n)
def traverse(n: IntTree) = if (n !'= null) {
traverse(n. left)
produce(n.elem)
traverse(n.right) } }

* Methods produceVvalues (abstract) and produce
inherited from class Producer
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Implementing Producers

Producers are implemented in terms of two actors.

i The producer actor runs produceValues:

abstract class Producer[T] extends Iterator[T] {
def produceValues: Unit
def produce(x: T) {
coordinator ! Some(x)
}
private val producer = actor {
produceValues; coordinator ! None

}
}
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Implementing Producers (2)

2. The coordinator actor synchronizes requests
from clients and values from the producer

val coordinator = actor {
while (true) {
receive {
case Next =>
receive {
case x: Option[ ] => client ! x

}
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Lightweight Execution Environment

@ 00
¢ () Actors (many)

Y

Task queue ‘ ‘ Worker threads (few)
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Creating Actors

actor
{ /) boy  Closure =>T3
}
T1
T2
T3
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Thread Mode: recelive

1 Scan messages in mailbox

receive 2. If no message matches any
{ - of the patterns, suspend
case Msg(x) =>
/] handle msg worker thread
L 3. Otherwise, process first
-]

matching message

™~
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Event Mode: react

i Register message handler

react 2' Become passive
{ (temporarily)

case Msg(x) =>
// handle msgqg
}

[

™~
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Suspend in Event Mode

Task Ti: Exception:
eact " Unwinds stack of
{ actor/worker thread
case Msg(x) => o
// handle msg 2 Finishes current task
} // do nothing

}

def react(f: PartialFunction[Any, Unit]): Nothing = {
mailbox.dequeueFirst(f.isDefinedAt) match {
case None => continuation = f; suspended = true

case Some(msg) => ...

}

throw new SuspendActorException

}
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Resume in Event Mode

Actor a waits for
{

case Msg(x) =>
// handle msg

}

wt executes Ti

Ti+

Task Ti: 1+2

é.i Msqg(42)

Ti+2: .apply(Msg(42))

06/07/07 Philipp Haller — Scala Actors

16/23



Thread Pool Resizing

A suspended Iin B suspended
receive in |i '
 cose Msg(x) =>... } in library (e.g. wait())
wi1 wi2
T1
T1: o Executing T1 would
A Msgx) unblock wt1!
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Implementing Producers (3)

Economize one thread in Producer by changing
receive In the coordinator actor 10 react

val coordinator = actor {
Loop {
react {
case Next =>
react {
case x: Option[ ] => client ! x
}
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Composing Actors

« Composing event-driven code non-trivial

- react may unwind stack at any point
- Normal sequencing does not work

« Composition operators for common uses

- a andThen b runs a followed by b
- def loop(body: => Unit) = body andThen Lloop(body)

06/07/07 Philipp Haller — Scala Actors 19/23



Channels

trait OutputChannel[-Msg] {
def !(msg: Msg): Unit
def forward(msg: Msg): Unit

}
trait InputChannel[+Msg] {

receive[R](f: PartialFunction[Msg, R]): R
react(f: PartialFunction[Msg, Unit]): Nothing

, .

class Channel[Msg] extends InputChannel[Msg]
with OutputChannel[Msqg]

trait Actor extends OutputChannel[Any] {

} .
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Selective Communication

e Generalize receive/react:

receive {
case DataCh ! data = ...
case CtrlCh ! cmd => ...

}

« Composing alternatives using orElse:

receive {
case DataCh ! data = ...
case CtrlCh ! cmd => ...
} orElse super.reactions
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Experimental Results

Number of token passes per second In ring of processes.
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Conclusion

« Threads and events can be unified under an
abstraction of actors

« receive/react allows programmers to trade-off
efficiency for flexibility

* Implemented in Scala Actors library (
http://www.scala-lang.org/)

» Real-world usage: /ift web framework
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http://www.scala-lang.org/

Thread Pool Resizing (2)

(cf. SEDA [Welsh01])

« Sample task queue

« Add thread when gueue length exceeds
threshold (up to max. number of threads)

 Remove thread when idle for specified period of
time
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Experimental Results (2)

Speed-up
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« Micro benchmarks run on 4-way dual-core Opteron

machine (8 cores total)
« Compared to Doug Lea's FJTask framework for Java
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Programming with Events

def httpFetch(queryURL: String) = {
val req = new XmlHttpRequest
req.addOnReadyStateChangedListener(new PropertyChangelListener() {

override def propertyChange(evt: PropertyChangeEvent) {
if (evt.getNewValue() == ReadyState.LOADED) {
val response = reg.getResponseText()
httpParseResponse(response)
}
}
})

try {
req.open(Method.GET, new URL(queryURL))

req.send()
} catch {
case e: Throwable => ...

} Typical asynchronous
HTTP document fetch
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Inversion of Control

Client

val
res =
evt...

Server
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Problems of Inversion of Control

* Hard to understand control-flow
- reconstruct entire call-graph
 Manual stack management

- handler code not defined where event is handled
- local variables, parameters etc. not accessible

« Managing resources (files, sockets) becomes
even harder
- often long-lived, used in several event handlers
- when is a missing close() a leak?
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Blocking-style Code

Client

val
res =
evt...

3
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Message sends

Server
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Concurrency is Indispensable

o Software is concurrent

- Interactive applications
- Web services
— Distributed software

« Hardware is concurrent
- Hyper-threading
— Multi-cores, Many-cores
- Grid computing
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