
Poor Man's Type Classes

Martin Odersky
EPFL

IFIP WG2.8 working group meeting
Boston, July 2006.

1



Goals

Type classes are nice.

A cottage industry of Haskell programmers has sprung up around

them.

Should we add type classes to OO-languages, speci�cally Scala?

Problem: Conceptual expense

� We have already spent the keywords type and class!
� Type classes are essentially implicitly passed dictionaries, and

dictionaries are essentially objects.

� Don't want to duplicate that.

Idea: Concentrate on the delta between OO classes and type

classes: implicits

2



Life without Type Classes

Some standard classes for SemiGroup and Monoid:

abstract class SemiGroup[a] f
def add(x : a, y : a): a

g
abstract class Monoid[a] extends SemiGroup[a] f

def unit : a
g

Two implementations of monoids:

object stringMonoid extends Monoid[String] f
def add(x : String, y : String): String = x.concat(y)
def unit : String = ""

g
object intMonoid extends Monoid[int] f

def add(x : Int, y : Int): Int = x + y
def unit : Int = 0

g

3



A sum method which works over arbitrary monoids:

def sum[a](xs : List[a])(m : Monoid[a]): a =
if (xs.isEmpty) m.unit
else m.add(xs.head, sum(xs.tail)(m)

One invokes this sum method by code such as:

sum(List("a", "bc", "de"))(stringMonoid)
sum(List(1, 2, 3))(intMonoid)

4



Implicit Parameters: The Basics

The following slight rewrite of sum introduces m as an implicit

parameter.

def sum[a](xs : List[a])(implicit m : Monoid[a]): a =
if (xs.isEmpty) m.unit
else m.add(xs.head, sum(xs.tail)(m))

� Can combine normal and implicit parameters.

� However, there may only be one implicit parameter list, and it

must come last.

5



implicit can also be used as a modi�er for de�nitions:

implicit object stringMonoid extends Monoid[String] f
def add(x : String, y : String): String = x.concat(y)
def unit : String = ""

g
implicit object intMonoid extends Monoid[int] f

def add(x : Int, y : Int): Int = x + y
def unit : Int = 0

g

Arguments to implicit parameters can be inferred:

sum(List(1, 2, 3))

This expands to:

sum(List(1, 2, 3))(intMonoid)

6



Inferring Implicit Arguments

If an argument for an implicit parameter of type T is missing, it is

inferred.

An argument value is eligible to be passed, if

� it is itself labelled implicit,
� it's type is compatible with T ,

� one of the following holds:

1. x is accessible at the point of call by a simple identi�er (i.e.

it is de�ned in same scope, inherited or imported)

2. x is de�ned as a static value in (some superclass of) T .

If several arguments are eligible, choose most speci�c one.

If no most speci�c eligible argument exists, type error.

7



Locality

A consequence of implicit argument resolution is that one can have

several instance de�nitions of the same operation at the same types.

We always pick the one which is visible at the point of call.

This is an important di�erence between implicits and type classes.

Rules to keep coherence:

� Scala has functions (which are objects) and methods (which

are not).

� Partially applied methods are automatically converted to

functions.

� Only methods can contain implicit parameters.

� Implicit parameters are instantiated where a method value is

eliminated (either applied or converted to a function).

8



Conditional Implicits

Implicit methods can themselves have implicit parameters.

Example:
implicit def listMonoid[a](implicit m : Monoid[a]) =

new Monoid[List[a]] f
def add(xs : List[a], ys : List[a]): List[a] =

if (xs.isEmpty) ys
else if (ys.isEmpty) xs
else m.add(xs.head, ys.head) :: add(xs.tail, ys.tail)

def unit = List()
g

Then:

println(sum(List(List(1, 2, 3), List(1, 2))))
translates to
println(sum(List(List(1, 2, 3), List(1, 2)))(listMonoid(intMonoid))
==>
List(2, 4, 3)

9



External Extensibility

Often, we like to add some new functionality to a pre-existing type.

trait Ordered[a] f
def compare(that : a): Int;
def < (that : a): Boolean = (this compare that) < 0
def > (that : a): Boolean = (this compare that) > 0
def � (that : a): Boolean = (this compare that) � 0
def � (that : a): Boolean = (this compare that) � 0

g

Want to make Int, String, etc ordered.

Want to make lists ordered if their elements are.

Common solution: \open classes".

10



Implicit Conversions

An implicit conversion is a unary function from S ot T , which is

labelled implicit.

Example:
implicit def int2ordered(x : int) = new Ordered[int] f

def compare(y : int) = if (x < y) �1 else if (x > y) 1 else 0
g

def sort[a](xs : Array[a])(implicit c : a ) Ordered[a]): Array[a] =
if (xs.length � 1) xs
else f

val pivot = xs(xs.length / 2)
Array.concat(

sort(xs �lter (pivot >))
xs �lter (pivot ==),

sort(xs �lter (pivot <)))g
val xss : Array[List[int]]
sort(xss)

11



Translation

def sort[a](xs : Array[a])(implicit c : a ) Ordered[a]): Array[a] =
if (xs.length � 1) xs
else f

val pivot = xs(xs.length / 2)
Array.concat(

sort(xs �lter (c(pivot) >))
xs �lter (pivot ==),

sort(xs �lter (c(pivot) <)))
g

val xss : Array[List[int]]
sort(xss)(list2ordered(int2ordered))

12



Applications of Implicit Conversions

An implicit conversion is applied to a term e if,

� e is not compatible with its expected type:

val x : Ordered[int] = 1
==>
val x : Ordered[int] = int2ordered(1)

� In a selection e:m, if e does not have a member m.

x.<(1)
==>
int2ordered(x).<(1)

� In an application e:m(a1; : : : ; an), if e does not have a member

m which can be applied to (a1; : : : ; an):
val x = BigInt(10);
1 + x
==>
BigInt(1) + x

13



Summary

Scala implements the following analogies:

type class = class

instance declaration = implicit de�nition

context in a clas = inheritance

context in a type = implicit parameter

dictionary = object

default method in class = concrete member

method signature in class = abstract member

14



Conclusion

Implicit parameters are poor man's type classes.

� Conceptually lightweight.

� Piggy-backed on object system.

� Implemented in Scala version 2,

� Can also model

+ multi-parameter type classes

+ parametric type classes (but no general functional

dependencies).

+ associated types

+ constructor classes (via encodings, make this convenient

we should add higher-kinded type variables)

15


