
A Core Calculus for Scala Type Checking

Martin Odersky, EPFL
joint work with Francois Garillot, Vincent Cremet, andSergue�� Lenglet.

Invited Talk,Mathematical Foundations of Computer Science (MFCS), Star�a Lesn�a,Slovakia, August 31, 2006.
1

Scala
Scala is an object-oriented and functional language which is
completely interoperable with Java and .NET.
It removes some of the more arcane constructs of these
environments and adds instead:
(1) a uniform object model,
(2) pattern matching and higher-order functions,
(3) novel ways to abstract and compose programs.

2

Example: Peano Numbers
To give a feel for the language, here's a Scala implementation of
natural numbers that does not resort to a primitive number type.

trait Nat fdef isZero : boolean;def pred : Nat;def succ : Nat = new Succ(this);def + (x : Nat): Nat = if (x.isZero) this else succ + x.pred;def � (x : Nat): Nat = if (x.isZero) this else pred � x.pred;g
Here are the two canonical implementations of Nat:

class Succ(n : Nat) extends Nat f object Zero extends Nat fdef isZero : boolean = false; def isZero : boolean = true;def pred : Nat = n def pred : Nat =throw new Error("Zero.pred");g g
3

Components
Scala provides new ways to build component systems.
A component is a program part, to be combined with other parts in
larger applications.
Requirement: Components should be reusable.
To be reusable in new contexts, a component needs interfaces
describing its provided as well as its required services.
Most current components are not very reusable.
Most current languages can specify only provided services, not
required services.

Note: Component 6= API !

4

No Statics!
A component should refer to other components not by hard links,
but only through its required interfaces.
Another way of expressing this is:

All references of a component to others should be via its
members or parameters.

In particular, there should be no global static data or methods that
are directly accessed by other components.
This principle is not new.
But it is surprisingly di�cult to achieve, in particular when we
extend it to classes.

5

Functors
One established language abstraction for components are SMLfunctors.
Here,

Component =̂ Functor or Structure
Interface =̂ Signature
Required Component =̂ Functor Parameter
Composition =̂ Functor Application

Sub-components are identi�ed via sharing constraints.
Shortcomings:
� No recursive references between components� No inheritance with overriding� Structures are not �rst class.

6

Modules are Objects
In Scala:

Component =̂ Class
Interface =̂ Abstract Class, or Trait
Required Component =̂ Abstract Member or \Self"
Composition =̂ Modular Mixin Composition

Advantages:
� Components instantiate to objects, which are �rst-class values.
� Recursive references between components are supported.
� Inheritance with overriding is supported.
� Sub-components are identi�ed by name
) no explicit \wiring" is needed.

7

Language Constructs for Components
Scala has three concepts which are particularly interesting in
component systems.
� Abstract type members allow to abstract over types that are
members of objects.

� Self-type annotations allow to abstract over the type of \self".
� Modular mixin composition provides a
exible way to compose
components and component types.

Theoretical foundations: �Obj calculus [Odersky et al., ECOOP03],
Featherweight Scala [this conference].
Scala's concepts subsume SML modules.
More precisely, (generative) SML modules can be encoded in �Obj,
but not vice versa.

8

Abstract Types
Here is a type of \cells" using object-oriented abstraction.

trait AbsCell ftype Tval init : Tprivate var value : T = initdef get : T = valuedef set(x : T): unit = f value = x gg
The AbsCell class has an abstract type member T and an abstract
value member init. Instances of that class can be created by
implementing these abstract members with concrete de�nitions.

val cell = new AbsCell f type T = int; val init = 1 gcell.set(cell.get � 2)
The type of cell is AbsCell f type T = int g.

9

Path-dependent Types
It is also possible to access AbsCell without knowing the binding ofits type member.
For instance: def reset(c : AbsCell): unit = c.set(c.init);
Why does this work?
{ c.init has type c.T{ The method c.set has type c.T) unit.{ So the formal parameter type and the argument type coincide.

c.T is an instance of a path-dependent type.
2
64

In general, such a type has the form x0:; : : : ; :xn:t, where� x0 is an immutable value� x1; : : : ; xn are immutable �elds, and� t is a type member of xn.

3
75

10

Safety Requirement
Path-dependent types rely on the immutability of the pre�x path.
Here is an example where immutability is violated.

var
ip = falsedef f(): AbsCell = f
ip = !
ipif (
ip) new AbsCell f type T = int; val init = 1 gelse new AbsCell f type T = String; val init = "" ggf().set(f().get) // illegal!
Scala's type system does not admit the last statement, because the
computed type of f().get would be f().T.
This type is not well-formed, since the method call f() is not a
path.

11

Foundations
� A language like Scala is complicated.
� How do we know we have the right design?
� How can we convince ourselves that types are sound and can
be computed?

� We would like to have a small calculus which captures the
\essence" of Scala, in particular the things which are relatively
new.

12

The �Obj Calculus
�Obj [ECOOP 2003] is a calculus for a Scala-like language.
It contains a nominal (i.e. declaration-based) type system with
� abstract types,
� mixin composition,
� nested classes,
� explicit self types.

It also contains a construct not present in Scala: �rst-class classes,
i.e. classes may be treated as other values.
This calculus can encode F<:.
For that reason, type-checking in �Obj is known to be undecidable.

13

Featherweight Scala
The undecidability result for �Obj relies on �rst-class classes.
These are absent in Scala, so Scala type checking might still be
decidable!
To explore these issues, we studied a new system: FS, for
Featherweight Scala.
Featherweight Scala is designed to be a minimal subset of Scala
that still captures its essence.
Featherweight Scala is a subset of real Scala: Every FS program is
also a legal Scala program.

14

FS: Syntax
Alphabets x; y; z; ' Variable

a Value label
A Type label

Member decl M;N ::= val a : T = t Field decl / defdef a �y : S� : T = t Method decl / deftypeA = T Type decl / deftraitA extendsT �' jM	 Class def
Term s; t; u ::= x Variable

t:a Field selection
s:a �t� Method callvalx = new T ; t Object creation

Path p ::= x j p:a
Type S; T; U ::= p:A Type selection

p:type Singleton type
T �' jM	 Type signature

15

Example: Peano Numbers revisited
trait Nat extends f this0 jdef isZero(): Booleandef pred(): Nattrait Succ extends Nat f this1 jdef isZero(): Boolean = falsedef pred(): Nat = this0gdef succ(): Nat = (val result = new this0.Succ; result)def +(other : Nat): Nat =if (this0.isZero()) other else this0.pred().+(other.succ())def �(other : Nat): Nat =if (other.isZero()) this0 else this0.pred().�(other.pred())gval zero = new Nat f this0 jdef isZero(): Boolean = truedef pred(): Nat = error("zero.pred")g

16

Example: Generic Lists
trait List extends Any f this0 jtype Elemtype ListOfElem = List f this1 j type Elem = this0.Elem gdef isEmpty(): Booleandef head(): this0.Elemdef tail(): this0.ListOfElemg
trait Nil extends List f this0 j trait Cons extends List f this0 jdef isEmpty(): Boolean = true val hd : this0.Elemdef head(): this0.Elem = val tl : this0.ListOfElemerror("Nil.head") def isEmpty(): Boolean = falsedef tail(): this0.ListOfElem = def head(): this0.Elem = hderror("Nil.tail") def tail(): this0.ListOfElem = tlg g
val list2 = new Cons f this0 j // List(2)type Elem = Natval hd : Nat = zero.succ().succ()val tl : this0.ListOfElem = new Nil f type Elem = Nat g g

17

Type Assignment
x : T 2 �
� ` x : T (path-var)

� ` t : S � ` S 3 val a : T = u
� ` t:a : T (select)

� ` p : T
� ` p : p:type (singleton)

� ` s : S
� ` t : T 0 � ` T 0 <: T

� ` S 3 def a �x : T � : U = u
� ` s:a �t� : U (method)

�; x : T ` t : S x 62 fn(S)
� ` T �' Mc � ` T wf

� ` valx = new T ; t : S(new)

18

Expansion and Membership
8 i; � ` Ti �' Ni

� ` T �' jM	 �'
�U

iNi
�]M(�-signature)

� ` p:type 3 typeA = T
� ` T �' M
� ` p:A �' M(�-type)

� ` p:type 3 traitA extendsS
� ` S �' N
� ` p:A �' N(�-class)

� ` p : T
� ` T �' M

� ` p:type 3 [p=']Mi(3-singleton)
� ` T �' M
' =2 fn(Mi)
� ` T 3Mi

(3-other)

19

Subtyping is re
exive, transitive, and obeys:
� ` p : T

� ` p:type <: T(singleton-<:)
� ` p:type 3 typeA = S

� ` p:A <: S(type-<:)
� ` p:type 3 traitA extendsS

� ` p:A <: S(class-<:)
� ` T �' jM	 <: Ti (sig-<:)

� ` p : q:type
� ` q:type <: p:type

(<:-singleton)
� ` p:type 3 typeA = S

� ` S <: p:A
(<:-type)

8i; � ` S <: Ti � ` S �' M
�; ' : T �' jN	 `M � N

� ` S <: T �' jN	
(<:-sig)

20

See Paper for ...
{ Judgements for member subtyping � and well-formedness wf.
{ An operational semantics.
{ An algorithmic formulation of the calculus, with the following
di�erences:
� Some judgement forms have been split.� Transitivity has been eliminated in the subtyping rules� A notion of used de�nitions was added to the rules which
act as locks to prevent cycles in typing derivations.

� A proof of the decidability of typing and subtyping in
Algorthmic FS

21

Future Work
1. Soundness proof for operational semantics (hopefully �nished
soon)
2. The lock-free version of the calculus is more expressive than the
algorithmic one. There are programs that type-check lock-free but
fail due to a cycle in the locking version.

- Can we re�ne locks so that the two versions become
equivalent?

3. Extensions of the calculus, with
- Polymorphic methods
- Type bounds
- Abstract inheritance/higher-order polymorphism

4. A call-by-value version of the calculus
22

Relationship between Scala and Other
Languages
Main in
uences on the Scala design:
� Java, C# for their syntax, basic types, and class libraries,� Smalltalk for its uniform object model,� Beta for systematic nesting,� ML, Haskell for many of the functional aspects.� OCaml, OHaskell, PLT-Scheme, as other combinations of FPand OOP.� Pizza, Multi-Java, Nice as other extensions of Java withfunctional ideas.

(Too many in
uences in details to list them all)
Scala also seems to in
uence other new language designs, see forinstance the closures and comprehensions in C# 3.0.

23

Related Language Research
Mixin composition : Bracha (linear), Duggan, Hirschkowitz

(mixin-modules), Schaerli et al. (traits), Flatt et al. (units,
Jiazzi), Zenger (Keris).

Abstract type members : Even more powerful are virtual classes
(Cook, Ernst, Ostermann)

Explicit self-types : Vuillon and R�emy (OCaml)

24

Conclusion
� Despite 10+ years of research, there are still interesting thingsto be discovered at the intersection of functional andobject-oriented programming.
� Much previous research concentrated on simulating some of Xin Y , where X;Y 2 fFP, OOPg.
� More things remain to be discovered if we look at symmetriccombinations.
� Scala is one attempt to do so.
Try it out: scala.ep
.ch

Thanks to the (past and present) members of the Scala team:

Philippe Altherr, Vincent Cremet, Julian Dragos, Gilles Dubochet,

Burak Emir, Sean McDermid, St�ephane Micheloud, Nikolay

Mihaylov, Michel Schinz, Lex Spoon, Erik Stenman, Matthias Zenger.

25

