
Tackling Concurrency { Language or

Library?

Martin Odersky

EPFL

1

Concurrency is indispensable

Two converging trends:

� Concurrent Programs

. Distributed Software

. Webservices

. Rich user-interactions

. Reactive systems

� Concurrent Hardware

. Multi-cores

. Hyperthreading

. GRID computing

Both require concurrency made accessible for \ordinary programmers".

2

Concurrency is hard

� State-space explosion due to interleaving

... makes it much harder to test programs exhaustively.

� Races. vs Deadlock

... \overengineering" often leads from one to the other.

� Nondeterminism

... Hard to reproduce results, including faulty ones.

3

Remedies?

No wonder, then, that a large number of solutions to the concurrency

problems have been promoted:

� (Various kinds of) locks and monitors

� STM's

� Pi-calculus and CCS

� CSP, Occam

� Asychronous Pi-calculus, Pict

� Join calculus, functional nets, JoCaml, polyphonic C#.

� Concurrent logic programming, Oz

� Actors, Erlang

� CML synchronous events

� Ada rendezvous

... just to list some examples.

4

What to do?

� At present, it seems to be too hard to predict which language

constructs (or combinations thereof) will be instrumental in

solving the concurrency problem.

� More experimentation is needed.

� To gain useful experience, we need to apply many di�erent

concepts to large, real-life problems.

� If (concept , programming language), this is expensive and slow.

� What's more, the results might be inconclusive!

5

A library-based approach

As long as we can model concurrency concepts by libraries, things are

easier.

� Less investment to try out something new.

� Easier to modify initial designs.

� Easier to mix and match di�erent approaches.

But...

� Can we get acceptable usablily and e�ciency that way?

This will depend crucially on the abstraction capabilities of the

underlying programming language.

Our claim: Scala's blend of FP and OOP provides a good foundation

for concurrency libraries.

6

The rest of this talk

� Gives an introduction to Scala,

� Shows how unifying constructs in OOP and FP gives new design

possibilities.

� Presents an implementation of Erlang's actor model in Scala.

(Erlang's actors are one of very few success stories for

concurrent programming on a large scale).

� Shows how this model can be made much more e�cient on the

JVM by trading o� thread-based and event-based

implementations.

7

Scala

Scala is an object-oriented and functional language which is

completely interoperable with Java.

(the .NET version is currently under reconstruction.)

It removes some of the more arcane constructs of these environments

and adds instead:

(1) a uniform object model,

(2) higher-order functions and pattern matching,

(3) novel ways to abstract and compose programs.

An open-source distribution of Scala has been available since Jan 2004.

Currently: � 1000 downloads per month.

8

A uni�ed object model

In Scala, every value is an object and every operation is a method

invocation.

Example: A class for natural numbers

abstract class Nat f
def isZero : boolean
def pred : Nat
def succ : Nat = new Succ(this)
def + (x : Nat): Nat = if (x.isZero) this else succ + x.pred
def � (x : Nat): Nat = if (x.isZero) this else pred � x.pred

g

Here are the two canonical implementations of Nat:

class Succ(n : Nat) extends Nat f object Zero extends Nat f
def isZero : boolean = false; def isZero : boolean = true;
def pred : Nat = n def pred : Nat = error("Zero.pred")

g g

9

Higher-order functions

� Scala is a functional language, in the sense that every function is a

value.

� Functions can be anonymous, curried, nested.

� Familiar higher-order functions are implemented as methods of

Scala classes. E.g.:

matrix exists (row) row forall (0 ==)))

� Here, matrix is assumed to be of type Array[Array[int]], using

Scala's Array class (explained below)

10

Functions in an object-oriented world

If functions are values, and values are objects, it follows that functions

themselves are objects.

In fact, the function type S) T is equivalent to

scala.Function1[S, T]

where Function1 is de�ned as follows in the standard Scala library:

trait Function1[�S, +T] f def apply(x : S): T g

(Analogous conventions exist for functions with more than one

argument.)

Hence, functions are interpreted as objects with apply methods. For

example, the anonymous \successor" function x : int) x + 1 is

expanded as follows.

new Function1[int, int] f def apply(x : int): int = x + 1 g

11

Why should I care?

Since) is a class, it can be subclassed.

So one can specialize the concept of a function.

An obvious use is for arrays { mutable functions over integer ranges.

class Array[A](length : int) extends (int) A) f
def length : int = ...
def apply(i : int): A = ...
def update(i : int, x : A) f ... g
def elements : Iterator[A] = ...
def exists(p : A) boolean): boolean = ...

g

Another bit of syntactic sugaring lets one write:

a(i) = a(i) � 2 for a.update(i, a.apply(i) � 2)

12

Partial functions

Another useful abstraction are partial functions.

These are functions that are de�ned only in some part of their domain.

What's more, one can inquire with the isDe�nedAt method whether a

partial function is de�ned for a given value.

trait PartialFunction[�A, +B] extends (A) B) f
def isDe�nedAt(x : A): Boolean

g

Scala treats blocks of pattern matching cases as instances of partial

functions.

This lets one express control structures that are not easily expressible

otherwise (see below).

13

Pattern matching

Many functional languages have algebraic data types and pattern

matching.

) Concise and canonical manipulation of data structures.

Object-oriented programmers object:

� \ADTs are not extensible!"

� \ADTs violate the purity of the OO data model!"

� \Pattern matching breaks encapsulation!"

14

Pattern matching in Scala

Scala sees algebraic data types as special cases of class hierarchies.

� No separate algebraic data types { every type is a class.

� Can pattern match directly over classes.

� A pattern can access the constructor parameters of a (case) class.

15

Example (1): A Class Hierarchy of Terms

class Term[T]
case class Lit (x : int) extends Term[int]
case class Succ (t : Term[int]) extends Term[int]
case class IsZero (t : Term[int]) extends Term[boolean]
case class If[T] (c : Term[boolean],

t1 : Term[T],
t2 : Term[T]) extends Term[T]

� The case modi�er in front of a class means you can pattern match

on it.

� Note that some subclasses instantiate the type parameter T.

� One cannot describe this hierarchy using a plain old ADT, but a

GADT would do.

16

Example (2): A Typed Evaluator

class Term[T]
case class Lit (x : int) extends Term[int]
case class Succ (t : Term[int]) extends Term[int]
case class IsZero (t : Term[int]) extends Term[boolean]
case class If[T] (c : Term[boolean],

t1 : Term[T],
t2 : Term[T]) extends Term[T]

def eval[T](t : Term[T]): T = t match f
case Lit(n)) n // T = int
case Succ(u)) eval(u) + 1 // T = int
case IsZero(u)) eval(u) == 0 // T = boolean
case If(c, t1, t2)) eval(if (eval(c)) t1 else t2)

g

Note that eval instantiates a di�erently for each case.

17

Actors

An actor is a process that communicates with other actors via message

passing.

Two principal constructs (adopted from Erlang).

actor ! message // asynchronous message send

receive f // message receive
case msgpat1) action1
...
case msgpatn) actionn

g

Send is asynchronous; messages are bu�ered in an actor's mailbox.

receive picks the �rst message in the mailbox which matches any of

the patterns mspati.

If no pattern matches, the actor suspends.

18

Actors and threads

On the JVM, actors are executed by threads.

actor f body g creates a new actor, which runs the body body.

The self method returns the currently executing actor.

Both methods are de�ned by object Actor:

trait Actor f ... g
object Actor f

def self : Actor ...
def actor f body :) unit g: Actor ...
...

g

A set of worker threads is used to execute all runnable actors.

Every Java thread is also an actor, so even the main thread can

execute receive.

19

Example: orders and cancellations

import scala.actors.Actor.

val orderManager = actor f
loop f

receive f
case Order(sender, item))

val o = handleOrder(sender, item); sender ! Ack(o)
case Cancel(o : Order))

if (o.pending) f cancelOrder(o); sender ! Ack(o) g
else sender ! NoAck

case x)
junk += x

ggg

val customer = actor f
orderManager ! myOrder
ordermanager receive f case Ack) ... gg

20

Implementing receive

Using partial functions, it is straightforward to implement receive:

object Actor f
...
def receive[A](f : PartialFunction[Message, A]): A = f

self.mailBox.extractFirst(f.isDe�nedAt) match f
case Some(msg)) f(msg)
case None) self.wait(messageSent)

g
g

g

Here,

self designates the currently executing actor,

mailBox is its queue of pending messages, and

extractFirst extracts �rst queue element matching given predicate.

21

Sender ID

Messages in the actors library carry the identity of the sender with

them.

This enables the following operations:

sender // The actor that sent the message that was last
// received by self.

reply(msg) // reply with msg to sender

a !? msg // send msg to a, wait for a reply and return it.

a forward msg // send msg to a, with current sender as sender-id

22

With these additions, the order manager can be written as follows.

val orderManager = actor f
loop f

receive f
case Order(item))

val o = handleOrder(sender, item); reply(Ack(o))
case Cancel(o : Order))

if (o.pending) f cancelOrder(o); reply(Ack(o)) g
else reply(NoAck)

case x)
junk += x

g
g

g
val customer = actor f

orderManager !? myOrder match f case Ack) ... g
g

23

Example: producers

Let's write an abstraction of producers, which act like iterators on the

outside, but which use a produce method to generate values.

A typical use case:

class InOrder(n : IntTree) extends Producer[int] f
def produceValues = traverse(n)
def traverse(n : IntTree) f

if (n != null) f
traverse(n.left)
produce(n.elem)
traverse(n.right)

ggg

� Producers implement method produceValues in class Producer.

� They call produce, which is inherited from Producer.

24

Implementing producers

Producers are implemented in terms of two actors:

A producer actor which runs produceValues ...

class Producer[T] extends Iterator[T] f
protected def produceValues
def produce(x : T) f coordinator !? Some(x) g
private val producer = actor f

produceValues
coordinator ! None

g

... and a coordinator actor which synchronizes

(1) requests form clients (messages Next and HasNext),

(2) values coming from the producer (messages Some and None).

25

Coordinators

Several strategies are possible for the coordinator actor.

The following yields maximum parallelism through an internal queue:

private val coordinator = actor f
val q = new Queue[Option[Any]]
loop f

receive f
case HasNext if !q.isEmpty)

reply(q.front != None)
case Next if !q.isEmpty)

q.dequeue match f case Some(x)) reply(x) g
case x : Option[])

q += x; reply()
ggg

Why did we not we use the coordinator's mailbox to bu�er produced

values?

26

Library or language?

A possible objection to Scala's library-based approach is:

Why de�ne actors in a library when they exist already in

purer, more optimized form in Erlang?

One good reason is that libraries are much easier to extend and adapt

than languages.

For instance, the �rst version of the Scala library attached one thread

to each Actor (just like Erlang does).

This is a problem for Java, where threads are expensive.

Erlang is much better at handling many threads, but even it can be

overwhelmed by huge numbers of actors.

27

Event-based actors

An alternative are event-based actors.

Normally, this means inversion of control, with a global rewrite of the

program.

But if actors are implemented as a library, it is easy to implement a

variation of receive (call it react) which liberates the running thread

when it blocks for a message.

The only restriction is that react should never return normally:

def react(f : PartialFunction[Message, unit]): Nothing = ...

Client-code is virtually unchanged between the multi-threaded and

event-based versions of the library.

28

Coordinators again

For instance, it is possible to economize one thread in Producer by

changing the receive in the coordinator process to a react:

private val coordinator = actor f
val q = new Queue[Option[Any]]
loop f

react f
case HasNext if !q.isEmpty)

reply(q.front != None)
case Next if !q.isEmpty)

q.dequeue match f case Some(x)) reply(x) g
case x : Option[])

q += x; reply()
ggg

Note: This depends on the way loop is implemented (see below).

29

Performance: react vs. receive

Number of token passes per second in a ring of processes.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 10 100 1000 10000

N
um

be
r o

f t
ok

en
 p

as
se

s/
s

Number of processes

threads
tba
eba

SALSA 1.0.2

30

Composing Actors

Actors can be composed for chaining and selective communication.

a orElse b // runs �rst a. If a tries to suspend,
// actor b is run instead.

a andThen b // runs a followed by b.
// This works even if a ends in a react.

The loop combinator in Actor is implemented in terms of andThen:

def loop(body :) unit) = body andThen loop(body)

Hence, the body of loop can end in a react invocation.

31

Actors and Channels

Message-based concurrency can be expressed in two forms:

Actors: messages are sent directly to an actor process

Processes and channels: messages are sent via channels.

Advantages of the actor model:

+ Simplicity, one less indirection.

+ Lax/
exible typing, types recovered through pattern matching.

+ Locality { receives are restricted to one thread.

Advantages of the process/channel model:

+ Generality { actors are a special case.

+ Strong typing.

+ Private communications.

32

Best of Both Worlds

� In the Scala API, actors are special cases of channels.

trait OutputChannel[�Msg] f
def !(msg : Msg)
def forward(msg : Msg)

g
class Channel[Msg] extends InputChannel[Msg] with OutputChannel[Msg]

trait Actor extends OutputChannel[Any] f ... g

� This allows the creation of channels separate from actors, for, e.g.

better type discrimination, or private communication.

� orElse provides for selective communication over several channels.

� Restriction to ensure locality:

Only the actor which created a channel can receive

messages from that channel.

33

Summary

� Actors are a nice structuring method for concurrent systems.

+ High-level communication through messages and pattern

matching.

+ Races are avoided by design.

� The safety of actors rests on a policy that actors communicate

only through mailboxes, not through other shared memory.

� In Erlang, this is enforced by the language.

� In the Scala API, we leave this to the programmer.

+ more
exibility, potentially better performance,

� higher risk.

Can we design a type system to control memory locality?

34

Conclusion

� Despite 10+ years of research, there are still interesting things to

be discovered at the intersection of functional and object-oriented

programming.

� Much previous research concentrated on simulating some of X in

Y , where X;Y 2 fFP, OOPg.

� More things remain to be discovered if we look at symmetric

combinations.

� Scala is one attempt to do so.

Try it out: scala.ep
.ch
Thanks to the (past and present) members of the Scala team:

Philippe Altherr, Vincent Cremet, Iulian Dragos, Gilles Dubochet, Burak
Emir, Philipp Haller, Sean McDermid, St�ephane Micheloud, Nikolay
Mihaylov, Michel Schinz, Lex Spoon, Erik Stenman, Matthias Zenger.

35

