Programming Language |mplementation

Objects + Views = Components?

Martin Odersky
EPFL

Abstract State Machines - ASM 2000

ASM, March 2000 Martin Odersky, EPFL 1

Components

+ Components have become all the rage in software construction.
+ Everybody talks about them, but hardly anybody uses them.

+ Why is that?

ASM, March 2000 Martin Odersky, EPFL 2

Programming Language |mplementation

What is a Component?

* A component is a part of a greater assembly - either another
component or a whole program.

* The purpose of a component is to be composed with other
components.

* Typically, the other components and the composition is not known at
the time a component is constructed.

* "Pluggable parts"; a component's plugs are its interfaces.

ASM, March 2000 Martin Odersky, EPFL 3

What Makes a Component Composable?

* To support composition in flexible ways, components should be
adaptable and their plugs should be first class values.

+ Adaptable: The ability to change an interface of a component after
the component has been constructed and delivered.

- Changes are typically additions of hew methods.
- Changes to a component may not affect the original source code.

* First-class: The ability to treat plugs of components as normal
values. In particular,

- Plugs can be parameters to functions.

- It should be possible to construct data structures with plugs as
elements.

ASM, March 2000 Martin Odersky, EPFL

Programming Language |mplementation

Example for Adaptation: Symbol Tables

+ Consider the task of writing a symbol table component for a
compiler.

* What attributes should a symbol have?
Name
Type
Location
If there is a code generator: Address ?
If there is a browser: Usage info ?
Anything else?

* There is no good a-priori answer to these questions!

* What's needed is a minimal implementation of symbols which can be
customized by the client.

ASM, March 2000 Martin Odersky, EPFL 5

Example for First-Class Plugs: Printing

+ Say we want to provide ways to display the information associated
with a symbol.

+ But we don't know a priori on what device the contents should be
printed.

* This is easy to solve: Simply provide in the symbol an
implementation of the interface

type Printable = {

def toString: String
}

* Then we can define for each device a general print service
def print (t: Printable) = ...

ASM, March 2000 Martin Odersky, EPFL

Programming Language |mplementation

Printing a Symbol Table

* The printing service can be invoked as follows:

sym: Symbol
dev.print (sym)

+ Of course, this assumes that symbols are values that can be passed
to the print function.

* In particular the type Symbol must be compatible with the type
Printable.

* (The notation we use here is Funnel/, the functional net language
which is currently being developed in our group).

ASM, March 2000 Martin Odersky, EPFL 7

State of the Art

not first-class

/ Structured Programming ~ not adaptable
- / \ e
ASM

oorp
OOP + Generics ASM + Type Classes

NS

Objects + Views

ASM, March 2000 Martin Odersky, EPFL 8

Programming Language |mplementation

Structured Modular Programming

* Programs are partitioned into modules.

* Modules define data types and functions or procedures which
access data.

* Modules can hide data by means of abstract types (e.g. in Modula-2:
opaque types).

* Is this structure adaptable?

ASM, March 2000 Martin Odersky, EPFL 9

Symbol Table Module

* Here's a definition of a module for symbol tables. We use Funnel as
notation, but restrict ourselves to concepts found in Modula-2.

val SymTab = {
type Scope
type Symbol = {
def name: String
def type: Type
def location: Scope
}
def lookup (scope: Scope, name: String): Symbol
def enter (scope: Scope, sym: Symbol): Boolean
def newScope(outer: Scope): Scope

}

Question: What changes are necessary to add address fields to
symbols, which are to be maintained by a code generator module?
ASM, March 2000 Martin Odersky, EPFL 10

Programming Language |mplementation

Classical Modules Do Not Produce Adaptable
Components

+ Customization of symbol tables requires changing their code.
* We need to add new fields to the definition of Symbol.

= Classical modules are not adaptable.

* Classical modules do not have first-class plugs either.

+ It is not possible to pass a Symbol as parameter o a function which
takes a Printable.

* This is not an accident, as subtyping would require dynamic binding.

ASM, March 2000 Martin Odersky, EPFL 11

Gaining Adaptability - The ASM Approach

+ ASM's reverse the usual relationship of state and data. Rather
than having mutable state as part of a data structure, we have
immutable data as domains of mutable functions.

* This makes use of the equality
xf = f(x)

- In other words, field selectors can be seen as functions over the
data they select.

* The analogy makes sense for mutation as well:
xfi=E = f(x):=E

(the idea goes back to Algol W (1965), has been largely ignored since).
ASM, March 2000 Martin Odersky, EPFL 12

Programming Language |mplementation

The ASM View Helps in Proofs

- It's very hard to prove properties of programs which contain
assignments to fields accessed via references such as

x.f := E.

* Hoare-logic does not apply, since references violate the substition
principle for assignment:

{[E/x]P} x:=E {P}

* The above equation holds as long as x is a simple variable, but
breaks down if x is a field accessed via a reference.

ASM, March 2000 Martin Odersky, EPFL 13

* Of course, nothing is gained per se by renaming x.f to f(x).
* But there is one important difference between the two forms:

« The ASM form f (x) := E allows x to have structure (for instance x
could be a value of an inductively defined type).

* We can make use of that structure in program proofs, using
structural induction over indices, analogously to the use of range
induction in programs that use linear arrays.

+ See: "Programming with Variable Functions", ICFP 1998.

ASM, March 2000 Martin Odersky, EPFL 14

Programming Language |mplementation

The ASM View Helps in Program Structuring

* The fields of a record all have to be defined in the same place.
(we simplify for the moment by disregarding inheritance).

+ On the other hand, mutable functions over a common domain can be
placed anywhere, not necessarily where the domain is defined.

* In particular, new mutable functions can be defined after an index
structure is defined and shipped as part of component

= Components are adaptable!

ASM, March 2000 Martin Odersky, EPFL 15

Example: Address Fields for Symbols

* To add address information to symbols, we simply define:

var adr (sym: Symbol): Int

* This definition can be placed in the code generator module; no
change to the symbol table module is necessary.

+ Address attributes can be be encapsulated in the code generator
module, they need not be visible outside of it.

* So we have gained both adaptability and better encapsulation.
+ But: components are still not first class.

* For instance, it's still not possible to pass a symbol to a generic
print function.

ASM, March 2000 Martin Odersky, EPFL 16

Programming Language |mplementation

First-Class Components - The OOP Approach

* A plug which is packaged as an object is a first class value.

* Example: Symbols

class SymTab = {
class Symbol extends Printable = {
... (fields as before) ...
def toString: String = ...

}
}

+ Then we can write

val sym = new SymTab.Symbol

dev.print (sym)

ASM, March 2000 Martin Odersky, EPFL 17

Are Objects Adaptable?

* One might think they are, because of /inheritance:

class CodeGen = {
class Symbol extends SymTab.Symbol = {
var adr: Int

}

-

+ Symbols in CodeGen inherit the fields and methods of symbols in
SymTab, and add the CodeGen-specific field adr.

+ Can this work?

ASM, March 2000 Martin Odersky, EPFL 18

Programming Language |mplementation

Problem: Types

+ SymTab.lookup still retuns Symtab.Symbols not CodeGen.Symbols:
class SymTab = {

class Symbol ...
def lookup (scope: Scope, name: String): Symbol = ...

}

* Hence, a dynamic type cast is needed to extract the extra address
information from a symbol table.

ASM, March 2000 Martin Odersky, EPFL 19

Problem: Object Creation

* Furthemore, symbols are typically created in another component
(say class Attr).

class Attr ={

new SymTab.Symbol (name, type)

}

* Symbols thus created do not have adr fields.

+ If we want to add them for supporting a code generator we have to
change the Attr component.

* So adaptability is lost.

ASM, March 2000 Martin Odersky, EPFL 20

10

Programming Language |mplementation

Objects + Generic Types

+ We can solve the typing problem by making all participants generic
over the actual types of symbols used.

* Example:

type Symbol = { ... (fields as before) ... }
class SymTab [ST <: Symbol] = {

def lookup (scope: Scope, name: String): ST = ...
def enter (scope: Scope, sym: ST): Boolean = ...

}

+ Some gluing is needed at top-level:
val symTab = new SymTab [CodeGen.Symbol]

* The payoff is that no type casts are needed.

ASM, March 2000 Martin Odersky, EPFL

Factories

* We can solve the creation problem by using the Factory design
pattern.

* The idea is that all components which create symbols will be
parameterized with a factory object which does the actual
creation. Example:

type Factory [T] ={ def make: T}
class Attr [ST <: Symbol] (symFactory: Factory [ST]) ={

symFactory.make (name, type)

}

+ Even more gluing is needed at top-level:
attr = new Attr [CodeGen.Symbol] (CodeGen.symFactory)

ASM, March 2000 Martin Odersky, EPFL

Programming Language |mplementation

Evaluation of OOP

+ Some degree of adaptability can be achieved by using generic types
and design patterns with OOP.

* However: This requires a lot of planning.
* Need to parameterize by both types and factory objects.

* Multiple coexisting extensions can be supported by stacking, but
this requires even more planning.

ASM, March 2000 Martin Odersky, EPFL 23

ASM Structure + Type Classes

* Rather than trying to make OOP more adaptable, we can also try to
emulate first-class plugs in the ASM structure.

+ This approach has been pioneered by Haskell's type classes.
* A type class represents a property of a type.

* The property states that a type supports a given set of methods.

ASM, March 2000 Martin Odersky, EPFL 24

12

Programming Language |mplementation

Type Classes

* Here's a declaration of a type class (Haskell uses just class instead
of type class):
type class Printable a where {

toString:: a - String
}

* This says that a type T belongs to Printable if there is a function
toString, which takes a T and yields a String.

* Types have to be declared explicitly as members of a type class:

instance Printable Symbol where {
toString (sym) = ...
}

ASM, March 2000 Martin Odersky, EPFL 25

Qualified Types

* Functions can be generic over all types which belong to a given type
class. Example:
print :: Printable a = a - ()
print x = ... toString(x) ...

* This says that function print can take any parameter which has an
instance of Printable as type.

* The call to toString in print will pick the method appropriate for
the run-time type of print’s parameter.

* The qualification Printable a = is called a context, and the type of
print is called a gualified type.

ASM, March 2000 Martin Odersky, EPFL 26

13

Programming Language |mplementation

Do Type Classes Yield First-Class Plugs?

* Not quite, since a type class is not a type.

* Plugs can indirectly be members of type classes, but they still
cannot be values of (general) types.

* Hence it is not possible to create a list of printable objects, say.
The "type" of such a list would be List[Printable], which is not well-
formed.

* We can push this further (for instance by adding existential types)
but the concepts become rather heavy.

* Is there a simpler way?

ASM, March 2000 Martin Odersky, EPFL 27

Type Classes vs OOP

* Can we translate type classes to an OOP setting?

* Observe the analogies:

n

Type class
Type/type class instance relation
Instance declaration

Type
Type/type subtyping relation
Extends clause

0

0

+ Important difference:

- Extends clauses are given with the subclass.
- Instance declarations can appear anywhere.

* Hence, instance declarations are adaptable but extends clauses are
not.

ASM, March 2000 Martin Odersky, EPFL 28

14

Programming Language |mplementation

Views vs Type Classes

* Idea: Introduce a way to add new fields and functions to an
existing class. Example:
view (sym: Symbol): Printable = {
def toString: String = sym.name.toString ++ ":" ++ sym.type.toString

}

* This declaration makes Symbol a subtype of Printable, by giving
implementations of all methods in the supertype.

* Extends clauses can be regarded as syntactic sugar for view
declarations that come with a class.

* Like type classes, views can be declared anywhere, not just in the
component that defines their subtype.

ASM, March 2000 Martin Odersky, EPFL 29

Views vs Mutable Functions

* Views can also define fields. Example:
type Adr = { var adr: Int}
view (sym: SymTab.Symbol): Adr = {
var adr: Int
}
* This is equivalent to the mutable function

var adr (sym: Symbol):Int

+ Selection syntax is still in OO style. We use sym.adr instead of
adr(sym).

ASM, March 2000 Martin Odersky, EPFL 30

15

Programming Language |mplementation

Views and Encapsulation
* Fields defined by a view may be encapsulated by functions.

* Example:

type Adr = {
def setAdr (x: Int): unit
def getAdr: Int
}
view (sym: Symbol): Adr = {
var adr: Int
def setAdr (x: Int) = if (x >= 0) adr := x else error ("bad address")
def getAdr = adr
}

* Then sym.setAdr (x) islegal but sym.adr:=x is not.

ASM, March 2000 Martin Odersky, EPFL 31

Views are Stackable

* Let's say, we want addresses to be printed with symbols that have
them. This can be achieved as follows.

view (sym: Symbol): Printable = {
def toString = sym.name ++ ":" + sym.type ++ " at " ++ sym.adr
}

* Note that the implementation of the Printable view refers to
sym.adr, which is defined in the Adr view.

ASM, March 2000 Martin Odersky, EPFL 32

16

Programming Language |mplementation

Views can be Conditional

* Parameterized types sometimes implement views only if their
element types satisfy certain conditions.

+ Example: Define a type Comparable as follows:

type Comparable [T] ={
def equals (other: T)
def less (other: T)

}
* Then objects of a type U can be compared iff U <: Comparable [U].

* Question: Are lists comparale?

* Answer: Only if their elements are. That is,
view [T <: Comparable [T]] (xs: List [T]): Comparable [List [T]] = ...

ASM, March 2000 Martin Odersky, EPFL

33

The Small Print

1. For types A and B, let V(A,B) be the set of subtype paths
A= Ag,...,A, = B such that there exist view declarations from A, to A,,,, for all i.
We require: V(A,B) is either empty, or it has a minimum path relative to the subsequence ordering.

+ This is a global restriction, which can be checked only at link fime.
+ The restriction is necessary for ensuring coherence. (It also disallows cyclic views.)
2. View fields can appear in a selection only in those regions of the program text where the view is in scope.

+ Visibility of views is analogous to visibility of other declarations.

ASM, March 2000 Martin Odersky, EPFL

17

Programming Language |mplementation

The Small Print

1. For types A and B, let V(A ,B) be the set of subtype paths
A= A,.... A, = Bsuch that there exist view declarations from A, to
A, foralli.
We require: V(A,B) is either empty, or it has a minimum path
relative to the subsequence ordering.

* This is a global restriction, which can be checked only at link time.

* The restriction is necessary for ensuring coherence. (It also
disallows cyclic views.)

2. View fields can appear in a selection only in those regions of the
program ftext where the view is in scope.

» Visibility of views is analogous to visibility of other declarations.

ASM, March 2000 Martin Odersky, EPFL 35

Related Work

* The lack of adaptability of the object approach has been realized
by many others. It has sparked a number of proposals, among them:

- Subject-oriented programming (Harrison & Osher)
- Adaptive programming (Lieberherr)
- Aspect-oriented programming (Kiczales et al.)

* The presented work can be regarded as an instance of aspect-
oriented programming.

* But aspect-oriented programming is much more general - everything
that does not fit into the notion of components as generalized
procedures can be called an aspect.

+ Often, general aspects are realized by program ftransformations.

ASM, March 2000 Martin Odersky, EPFL 36

18

Programming Language |mplementation

Conclusion

* The combination of objects and views leads to adaptable
components with first-class plugs.

+ We are currently implementing these ideas in Funnel.

+ A paper in ESOP 2000 gives an overview of Funnel and its
underlying foundation of functional nets.

* The goal of the current implementation work is o provide flexible
concepts and tools for program composition in a Java environment.

ASM, March 2000 Martin Odersky, EPFL 37

19

