Programming Language |mplementation

Functional Nets

Martin Odersky
EPFL

ESOP 2000, Berlin

ESOP, March 2000 Martin Odersky, EPFL

What's a Functional Net?

* Functional nets arise out of a fusion of key ideas of functional
programming and Petri nets.

* Functional programming: Rewrite-based semantics with function
application as the fundamental computation step.

* Petfri nets: Synchronization by waiting until all of a given set of
inputs is present, where in our case

input = function application.

+ A functional net is a concurrent, higher-order functional program
with a Petri-net style synchronization mechanism.

+ Theoretical foundation: Join calculus.

ESOP, March 2000 Martin Odersky, EPFL

Programming Language |mplementation

Thesis of this Talk

Functional nets are a simple, intuitive model

imperative
of functional programming.

concurrent

Functional nets combine well with OOP.

ESOP, March 2000 Martin Odersky, EPFL

Elements

Functional nets have as elements:

functions
objects
parallel composition

They are presented here as a calculus and as a programming notation.

Calculus: (Object-based) join calculus

Notation: Funnel! (alternatives are Join or JoCAML)

L "Funnel" is still named "Silk" in the paper; we changed the name because of the
similarity in pronounciation to "Cilk", the concurrent C dialect.

ESOP, March 2000 Martin Odersky, EPFL

Programming Language |mplementation

The Principle of a Funnel

ALe

wuturrency Objects

[—

Functiona] Nets

ESOP, March 2000 Martin Odersky, EPFL

Stage 1: Functions

* A simple function definition:

def ged (%, y) =
if (y==0)x
else gcd (y, x % y)

+ Function definitions start with def.
* Operators as in C/Java.

* Usage:

val x = gcd (a, b)
print (X * x)

* Call-by-value: Function arguments and right-hand sides of val
definitions are always evaluated.

ESOP, March 2000 Martin Odersky, EPFL

Programming Language |mplementation

Stage 2: Objects

* One often groups functions to form a single value. Example:

def makeRat (x, y) = {
val g = gcd (x, y)

{ defnumer = x/g
def denom = y/g
defaddr = makeRat (
numer * r.denom + r.numer * denom,
denom * r.denom)
}

}

+ This defines a record with functions numer, denom, add, ...
+ We identify: Record = Object, Function = Method
* For convenience, we admit parameterless functions such as numer.

ESOP, March 2000 Martin Odersky, EPFL

Functions + Objects Give Algebraic Types

* Functions + Records can encode algebraic types

» Church Encoding
> Visitor Pattern

* Example: Lists are represented as records with a single method,
match.

+ match takes as parameter a vis/tor record with two functions:

{ def Nil = ...
def Cons (x, xs) = ... }

+ match invokes the Nil method of its visitor if the List is empty,
the Cons method if it is nonempty.

ESOP, March 2000 Martin Odersky, EPFL

Programming Language |mplementation

Lists

* Here is an example how match is used.

def append (xs, ys) =
xs.match {
def Nil = ys
def Cons (x, xs1) = List.Cons (x, append (xs1, ys))
}

+ It remains to explain how lists are constructed.

ESOP, March 2000 Martin Odersky, EPFL 9

Lists

* Here is an example how match is used.

def append (xs, ys) =
xs.match {
def Nil =ys
def Cons (x, xs1) = List.Cons (x, append (xs1, ys))
}

* It remains to explain how lists are constructed.

* We wrap definitions for Nil and Cons constructors in a List
“module". They each have the appropriate implementation of match.
val List = {
def Nil {def match v ="2???}
def Cons (x, xs) = {def matchv="???}

}

ESOP, March 2000 Martin Odersky, EPFL 10

Programming Language |mplementation

Lists

* Here is an example how match is used.

def append (xs, ys) =
xs.match {
def Nil = ys
def Cons (x, xs1) = List.Cons (x, append (xs1, ys))
}

+ It remains to explain how lists are constructed.

+ We wrap definitions for Nil and Cons constructors in a List

"module". They each have the appropriate implementation of match.

val List = {
def Nil = {def match v=v.Nil }
def Cons (x, xs) = {def match v=v.Cons (X, xs) }
}
ESOP, March 2000 Martin Odersky, EPFL 11
Stage 3: Concurrency
* Principle :

Function calls model events.
& means conjunction of events.
- = means left-to-right rewriting.

- & can appear on the right hand side of a= (fork)
as well as on the left hand side (jorn).

* Analogy to Petri-Nets :

call = place
equation transition

u

ESOP, March 2000 Martin Odersky, EPFL

12

Programming Language |mplementation

fl&&f = 91&&9n

corresponds fo

n O

or

* Functional Nets are more powerful:
- parameters,
- nested definitions,
- higher order.

ESOP, March 2000

Martin Odersky, EPFL

13

Example : One-Place Buffer

Functions : put, get (external)
empty, full (internal)
Definitions :
def putx & empty = () & full x
get &fullx = x &empty

Usage :

val x = get ; put (sqgrt x)

* An equation can now define more than one function.

ESOP, March 2000 Martin Odersky, EPFL

14

Programming Language |mplementation

Rewriting Semantics

* A set of calls which matches the left-hand side of an equation is
replaced by the equation 's right-hand side (after formal
parameters are replaced by actual parameters).

* Calls which do not match a left-hand side block until they form part
of a set which does match.

* Example:
put10 & get & empty
0 & get & full 10
10 & empty
ESOP, March 2000 Martin Odersky, EPFL 15

Objects and Joins

+ We'd like to make a constructor function for one-place buffers.

+ We could use tuples of methods:

def newBuffer = {
def put x & empty
get & fullx
(put, get) & empty

() & fullx,
X & empty

val (bput, bget) = newBulffer ; ...

* But this quickly becomes combersome as number of methods grows.

* Usual record formation syntax is also not suitable

- we heed to hide function symbols
- we need to call some functions as part of initialization.

ESOP, March 2000 Martin Odersky, EPFL 16

Programming Language |mplementation

Qualified Definitions

* Idea: Use qualified definitions:

def newBuffer = {
def this.put x & empty
this.get & full x
this & empty

) & fullx,
X & empty

}

val buf = newBuffer ; ...

+ Three names are defined in the local definition:

this - a record with two fields, get and put.
empty - a function
full - a function

» this is returned as result from newBuffer; empty and full are hidden.

ESOP, March 2000 Martin Odersky, EPFL 17

* The choice of this as the name of the record was arbitrary; any
other name would have done as well.

+ We retain a conventional record definition syntax as an
abbreviation, by inserting implicit prefixes. E.g.
{ def numer = x/g
def denom=y/g}
is equivalent to

{ def r.numer=x/g,rdenom=y/g;r}

ESOP, March 2000 Martin Odersky, EPFL 18

Programming Language |mplementation

Mutable State

« A variable (or reference cell) with functions

read, write (external)
state (internal)

is created by the following function:

def newRef init = {
def this.read & state x = x & state X,

this.write y & state x = () & statey
this & state init

}

* Usage:

val r = newRef 0 ; r.write (r.read + 1)

ESOP, March 2000 Martin Odersky, EPFL 19

Stateful Objects

* An object with methods m,,...m, and /instance variables x,,...,x, can
be expressed such :

def this.m; & state (x,,...,x) = ...; state (y;,...,Y,),

this.m_ & state (x,,...,.x,) = ...; state (z;,...,z,);

this & state (init,,..., init,)

AN ™~

« Result » « initial state »

* The encoding enforces mutual exclusion, makes the object into a
monitor.

ESOP, March 2000 Martin Odersky, EPFL 20

10

Programming Language |mplementation

Synchronization

* Functional nets are very good at expressing many process
synchronization techniques.

+ Example: Readers/Writers Synchronization.

+ Specification: Implement operations startRead, startWrite, endRead,
endWrite such that:
- there can be multiple concurrent reads,
- there can be only one write at one time,
- reads and writes are mutually exclusive,

- pending write requests have priority over pending reads, but don 't
preempt ongoing reads.

ESOP, March 2000 Martin Odersky, EPFL 21

First Version

* Introduce two auxiliary state functions

readers n - the number of active reads
writers n - the number of pending writes
- Equations:

def startRead & writers O
startReadl & readers n

startRead1,
() & writers 0 & readers (n+1),

startWrite & writers n
startWritel & readers O

startWritel & writers (n+1),
0.

endRead & readersn
endWrite & writers n

readers (n-1),
writers (n-1) & readers 0

readers 0 & writers O

* Note the almost-symmetry between startRead and startWrite, which
reflects the different priorities of readers and writers.
ESOP, March 2000 Martin Odersky, EPFL 22

11

Programming Language |mplementation

Final program
* The previous program was is not yet legal Funnel since it contained
numeric patterns.
* We can get rid of value patterns by partitioning state functions.
def startRead & noWriters

startReadl & noReaders
startReadl & readers n

startRead1,
() & noWriters & readers 1,
() & noWriters & readers (n+1),

startWrite & noWriters
startWrite & writers n
startWritel & noReaders

startWritel & writers 1,
startWritel & writers (n+1),

0,

endRead & readersn
endWrite & writers n

if (n == 1) noReaders else (readers (n-1)),
noReaders &
(if (n == 1) noWriters else writers (n-1))

noWriters & noReaders

ESOP, March 2000 Martin Odersky, EPFL 23

Summary : Concurrency

* Functional nets support an event-based model of concurrency.

+ Channel based formalisms such as CCS, CSP or 1 - Calculus can be
easily encoded.

* High-level synchronization a la Petri-nets.
* Takes work to map to instructions of hardware machines.

* Options:
- Search patterns linearly for a matching one,

- Construct finite state machine that recognizes patterns,
- others?

ESOP, March 2000 Martin Odersky, EPFL 24

12

Programming Language |mplementation

Foundations

* We now develop a formal model of functional nets.

* The model is based on an adaptation of join calculus (Fournet &
Gonthier 96)

* Two stages: sequential, concurrent.

ESOP, March 2000 Martin Odersky, EPFL

25

A Calculus for Functions and Objects

* Name-passing, continuation passing calculus.

+ Closely resembles intermediate language of FPL compilers.

Syntax:
Names X,Y,2
Identifiers i,j, k= x | ix
Terms M, N = ijldefD; M
Definitions D = L=M|D,D|O
Left-hand Sides L = i X

Reduction:

defD,ix=M;..ij.. - defD,ix=M; .. [j/xIM..

ESOP, March 2000 Martin Odersky, EPFL

26

13

Programming Language |mplementation

A Calculus for Functions and Objects

* The dots are made precise by a reduction context.

+ Same as Felleisen's evaluation contexts but there's no evaluation here.

Syntax:
Names X,Y,Z
Identifiers i,j. ks x| i.x
Terms M,N = ijldefD; M
Definitions D = L=M|D,D|O
Left-hand Sides L ns i X
Reduction Contexts R s [1ldefD:R

Reduction:
defD,ix=M;R[ij] - defD,ix=M;R[[j/xIM]

ESOP, March 2000 Martin Odersky, EPFL 27

Structural Equivalence

* Alpha renaming

+ Comma is AC, with the empty definition O as identity

D:.. D, = D,. D,
Dy, (D,, D3) = (D1.D,). D3
0,D = D
ESOP, March 2000 Martin Odersky, EPFL 28

14

Programming Language |mplementation

Properties

* Name-passing calculus - every value is a (qualified) name.
* Mutually recursive definitions are built in.
* Functions with results are encoded via a CPS transform (see paper).
* Value definitions can be encoded:
valx=M;N = defkx=N:;kM

* Tuples can be encoded:

f (. j) = (defijfst() =i, ijsnd()=j: fij)
f(x,y)=M = fxy=(val x=xy.fst();valy=xysnd(): M)
ESOP, March 2000 Martin Odersky, EPFL 29

A Calculus for Functions, Objects and
Concurrency

Syntax:

Names X,Y, 2

Identifiers ij. ko= ox|ix

Terms M,N == ijldefD:M|[M&M

Definitions D = L=M|D,D]|O

Left-hand Sides L n= ix|L&L

Reduction Contexts R = []|ldefD;R|R&M|M&R
Reduction:

defD,i;x; & ... & i, x, = M R[ijj; & ... &y jn]

o def D, i x; & o &y Xy = M R [[j/Xgju/%,] M]

ESOP, March 2000 Martin Odersky, EPFL 30

Programming Language |mplementation

Structural Equivalence

+ Alpha renaming

+ Comma is AC, with the empty definition O as identity:

+ &is AC:
M., M, = M;, M,
M, (M;, M3) = (M1.M;), My
* Scope Extrusion:
(def D; M)&N = defD; M&N
ESOP, March 2000 Martin Odersky, EPFL 31

Relation to Join Calculus

* Strong connections to join calculus.

- Polyadic functions
+ Records, via qualified definitions and accesses.

* Formulated here as a rewrite system, whereas original join
uses a reflexive CHAM.

* The two formulations are equivalent.

ESOP, March 2000 Martin Odersky, EPFL 32

16

Programming Language |mplementation

Conclusions

* Functional nets provide a simple, intuitive way to think about
functional, imperative, and concurrent programs.

* They are based on join calculus.
* Mix-and-match approach: functions (+objects) (+concurrency).

+ Close connections to

- sequential FP (a subset),
- Petri-nets (another subset),
- Calculus (can be encoded easily).

* Functional nets admit a simple expression of object-oriented
concepts.

ESOP, March 2000 Martin Odersky, EPFL 33

State ofWork

Done :

- Design of Funnel,
- experimental Hindley/Miler style type system,

- First, dynamically typed, implementation (available from
http://1 ampww. epfl . ch).

« Current :

- More powerful type System,

- Efficient compilation strategies,

- Encoding of objects

- Funnel as a composition language in a Java environment.

- Collaborators : Philippe Altherr, Matthias Zenger,
Christoph Zenger (EPFL)

Stewart Itzstein (Uni South Australia).

ESOP, March 2000 Martin Odersky, EPFL 34

17

