
The Scala Experiment – Can We Provide Better Language
Support for Component Systems?

(Invited Talk Abstract)

Martin Odersky
EPFL

Categories and Subject Descriptors: D.3.3 [Program-
ming Languages]: Language constructs and features �
Classes and objects; modules; polymorphism; recursion.

General Terms: Languages

1 Introduction
Progress in component systems has been slowed down by

shortcomings in the programming languages used to de�ne
and integrate components. In particular, the following tasks
are often di�cult to perform with today's mainstream tech-
nologies:

• Extending a system with new data variants as well as
new operations,

• combining several extensions of a common base,

• abstracting over required services of a component,

• de�ning libraries that are as usable as domain-speci�c
languages.

With Scala [3] we aimed to develop a language that makes
type-safe component abstraction and composition simple and
natural. Our work started from two hypotheses: First,
languages for components need to be scalable, in that the
same concepts should be able to describe small as well as
large parts. Second, this form of scalability can be achieved
by unifying and generalizing constructs from functional and
object-oriented programming.
Scala is both an object-oriented and functional language.

It is a pure object-oriented language in the sense that ev-
ery value is an object. Types and behavior of objects are
described by classes. Classes can be composed using mixin
composition. Scala is designed to work seamlessly with two
less pure but mainstream object-oriented languages � Java
and C#.
Scala is a functional language in the sense that every func-

tion is a value. Nesting of function de�nitions and higher-
order functions are naturally supported. Scala also supports
a general notion of pattern matching which can model the
algebraic types used in many functional languages.
In the following, we outline with three small examples how

a tight integration of functional and object-oriented pro-
gramming leads to synergies and enables new constructions
that were so far di�cult to express.

Copyright is held by the author/owner(s).
POPL’06January 11–13, 2006, Charleston, South Carolina, USA.
1-59593-027-2/06/0001

abstract class Term[T];
case class Lit(x: int) extends Term[int];
case class Succ(t: Term[int]) extends Term[int];
case class IsZero(t: Term[int]) extends Term[boolean];
case class If[T](c: Term[boolean],

t1: Term[T],
t2: Term[T]) extends Term[T];

def eval[T](t: Term[T]): T = t match {
case Lit(n) => n
case Succ(u) => eval(u) + 1
case IsZero(u) => eval(u) == 0
case If(c, u1, u2) => eval(if (eval(c)) u1 else u2)

}

Listing 1: A statically typed evaluator

2 Objects and Pattern Matching
Many functional languages have algebraic data types, with

values that are decomposed via pattern matching. Object-
oriented languages have instead class hierarchies and virtual
methods. It is well-known that the two notions have com-
plementary strengths and weaknesses when it comes to ex-
tending a system: The functional approach makes it easy to
add new operations, whereas the object-oriented approach
makes it easy to add new data variants. Scala combines both
approaches using case classes. A case class is like a normal
class except that instance constructors can be recovered by
pattern matching. Figure 1 shows as an example a typed
evaluator of simple arithmetic expressions with condition-
als.
There is an abstract base class Term that represents arith-

metic expressions. Every term carries in its type parameter
T the type of the expression it denotes. The subclasses Lit
and Succ denote terms of type int, whereas the subclass
isZero denotes a term of type boolean. The last subclass,
If, is itself polymorphic; it can denote a term of type int or
boolean depending on its arguments.
The second half of Figure 1 shows an evaluator of expres-

sions. Function eval takes a term t of type Term[T] and
returns a value of type T. It operates by a pattern match on
the possible constructors of a term.
In this example, the object-oriented inheritance gives us

for free a heterogeneous type hierarchy where type param-
eters can vary in subclasses. Functional pattern matching
provides a simple way to decompose terms and to recover
the heterogeneity of the type arguments. The combination
of both techniques gives the full power of GADT's [6] which
have been recently explored in functional languages.



class Auction(seller: Actor, minBid: int, closing: Date)
extends Actor {
override def run() = {
var maxBid = 0;
var maxBidder: Actor = null;
var running = true;
while (running) {
val now = new Date();
val remaining = closing.getTime() - now.getTime();
receiveWithin (remaining) {
case Offer(bid, client) =>
if (bid > maxBid) {
maxBid = bid; maxBidder = client;

}
case Inquire(client) =>
client send Status(maxBid, maxBidder, closing)

case TIMEOUT =>
running = false;
seller send Status(maxBid, maxBidder, closing)

}
}

}
}

Listing 2: An auction class

3 Objects and Functions
Scala is an object-oriented language in that every value

is an object. It is also a functional language in that func-
tions are �rst-class values. It follows that functions in Scala
must be themselves objects. For instance, a unary func-
tion from S to T is an instance of the standard Scala class
scala.Function1[S, T], which is de�ned as follows:

package scala;
abstract class Function1[-S, +T] {
def apply(x: S): T

}

As can be seen from this de�nition, functions are objects
with apply methods. The apply method invocation can be
elided in a function call; i.e. if f is a function object then
f(e) is equivalent to f.apply(e). The signs in front of the
type parameters of class Function1 are variance annotations.
They specify that functions are contravariant in their argu-
ment type and covariant in their result type.
Because function types are classes, it is possible to form

specialized subclasses. One obvious specialization are ar-
rays, which are mutable functions over the integers with ad-
ditional length and update methods. Another specialization
are partial functions which have besides the apply method
also a method isDefinedAt which tests whether a function
is de�ned for a given argument. Pattern matching blocks
such as the one in the body of the eval function of Figure 1
are instances of partial functions: they can be applied to
a selector value, and one can also test whether there is a
pattern which matches a given selector value.
An interesting application of partial functions is message-

based process communication in the style of Erlang [1]. The
Scala libraries de�nes a class of Actors, which are threads
that communicate via messages. Messages are instances of
arbitrary case classes. The a.send(m) method call sends a
message m to an actor a. Messages are queued in a mailbox,
which the receiving actor can query using methods receive
and receiveWithin. Both of these methods take as argument

a partial function that maps patterns of messages to actions.
They will select from the mailbox the �rst queued message
that matches any of the patterns in the partial function.
As an example of this style of process communication,

Listing 2 presents an auction process that communicates
with bidders via messages Offer and Inquire. The process
repeatedly invokes a receiveWithin method that waits for
messages and processes them. A special TIMEOUT message is
generated once the closing date of the auction is reached.
This style of process communication has been extensively

applied in Erlang projects. The point we make with Scala
is that a tight integration of object-oriented and functional
constructs enables new ways of expression that make Er-
lang's native operations de�nable in a library. For this it is
necessary to combine �rst-class functions with function type
specialization via inheritance.

4 Objects and Modules
Traditionally, object systems and module systems are sep-

arate entities. Module systems are used to de�ne and link
components whereas object systems are used to de�ne com-
ponent implementations. The problem with this approach
is its scalability. The result of a complicated component
composition might be seen as a simple object or class on the
next level of program integration. For instance, the Scala
compiler itself results from the composition of some fairly
complicated components, but seen as an Eclipse [2] plugin,
it is a class which can be instantiated � possibly several times
� to a compiler object.
To address scenarios like this, Scala uni�es the object and

module systems. Components are classes that can be com-
posed using mixin composition. Required components and
services are expressed as abstract members of a class, or by
abstracting over the type of self in a class. Objects (i.e. class
instances) take on the double duty of modules.
This style of component abstraction and composition is

enabled by three programming language constructs: ab-
stract type members, explicit selftypes, and modular mixin
composition. All three constructs have their foundation in
the νObj calculus [4]. Together, they enable us to transform
an arbitrary assembly of static program parts with hard ref-
erences between them into a system of reusable components.
The transformation maintains the structure of the original
system. A detailed account of these constructions is given
in a separate paper [5].

5 REFERENCES
[1] J. Armstrong, R. Virding, C. Wikström, and

M. Williams. Concurrent Programming in Erlang.
Prentice-Hall, second edition, 1996.

[2] Object Technology International. Eclipse Platform
Technical Overview, Feb. 2003. www.eclipse.org.

[3] M. Odersky et al. An Overview of the Scala
Programming Language, TR IC/2004/64, EPFL.

[4] M. Odersky, V. Cremet, C. Röckl, and M. Zenger. A
nominal theory of objects with dependent types. In
Proc. ECOOP 2003, Springer LNCS 2743, July 2003.

[5] M. Odersky and M. Zenger. Scalable component
abstractions. In Proc. OOPSLA 2005, Oct. 2005.

[6] H. Xi, C. Chen, and G. Chen. Guarded recursive
datatype constructors. In Proc. 30th Symp. on
Principles of Programming Languages, pages 224�235,
January 2003.


	Introduction
	Objects and Pattern Matching
	Objects and Functions
	Objects and Modules
	REFERENCES -9pt 

