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Abstract. We design and study νObj, a calculus and dependent type
system for objects and classes which can have types as members. Type
members can be aliases, abstract types, or new types. The type system
can model the essential concepts of Java’s inner classes as well as virtual
types and family polymorphism found in BETA or gbeta. It can also
model most concepts of SML-style module systems, including sharing
constraints and higher-order functors, but excluding applicative functors.
The type system can thus be used as a basis for unifying concepts that so
far existed in parallel in advanced object systems and in module systems.
The paper presents results on confluence of the calculus, soundness of
the type system, and undecidability of type checking.

1 Introduction

The development in object and module systems has been largely complementary.
Module systems in the style of SML or Caml excel in abstraction; they allow
very precise control over visibility of names and types, including the ability to
partially abstract over types. Object-oriented languages excel in composition;
they offer several composition mechanisms lacking in module systems, including
inheritance and unlimited recursion between objects and classes. On the other
hand, object-oriented languages usually express abstraction only in a coarse
grained way, e.g. through modifiers private or protected which limit accessibility
of a name to some predetermined part of a system. There is usually no ana-
logue to the signatures with abstract types in module systems, which can hide
information about a binding outside the unit defining it.

Recently, we see a convergence of the two worlds. Module systems have acquired
a form of inheritance through mixin modules [18,2,3,9,7], first-class modules
[37] can play a role similar to objects, and recursive modules are also being
investigated [16]. On the object side, nested classes with virtual or abstract types
[30,39,12] can model the essential properties of signatures with abstract types
in ML-like module systems [29]. In principle, this is not a new development.
Class nesting has been introduced already in Simula 67 [17], whereas virtual or
abstract types are present in BETA [31], as well as more recently in gbeta [19],



Rune [42] and Scala [33]. An essential ingredient of these systems are objects
with type members. There is currently much work that explores the uses of
this concept in object-oriented programming [38,40,20,36]. But its type theoretic
foundations are just beginning to be investigated.

As is the case for modules, dependent types are a promising candidate for a
foundation of objects with type members. Dependent products can be used to
represent functors in SML module systems as well as classes in object systems
with virtual types [26]. But where the details in ML module systems build on
a long tradition, the corresponding foundations of object systems with abstract
and virtual types have so far been less well developed. One possible approach
would be to extend the formalizations of ML module systems to object systems,
but their technical complexity makes this a difficult task. An alternative would
be to apply the intuitions of dependent types to a smaller calculus of objects and
classes, with the aim of arriving on a combined foundation for objects and classes
as well as modules. This is what we want to achieve in this paper. Our main
contribution is a formal study of a type theory for objects based on dependent
types. The theory developed here can be used as a type-theoretic foundation for
languages such as BETA, gbeta or Scala, as well as for many concepts that
have so far been presented only in an informal way.

A characteristic of our calculus and type system is that it is nominal. Nominality
comes into play in two respects. First, objects are given unique names in the
reduction system. It is always the name of an object which is passed, instead
of a copy of the object itself. A name passing strategy for objects is necessary
because our regime of dependent types is based on object identity: If L is a type
label then x.L and y.L are the same type only if x and y can be shown to refer to
the same object. If objects were copied, type equalities would not be maintained
during reduction.

Second, we introduce a nominal binding for types: L ≺ T defines L as a name
of a new type which unfolds to type T . Two such definitions always define two
different types, even if they unfold to the same type. This corresponds closely
to the notion of interfaces in a language like Java. An interface defines a new
type whose structure is completely known. It is possible to define values of an
interface type by giving implementations for all members of the interface. In our
type system we represent the members of an interface by a record type T . The
relationship between the interface name I and its unfolding T is then neither an
equality I = T (because then I would not represent a new type), nor is I an
abstract type I <: T (because then one could not create new values of I from
implementations of type T ). Hence, the need of the third type binding I ≺ T .

A perhaps more standard alternative to our nominal new-type bindings would
be branding. That is, one would define type equality and subtyping structurally
and introduce a binder to create new type names. Branding then means creat-
ing a new type by combining a structurally defined type and a freshly created
type name. An advantage of the branding approach is that it is orthogonal to
traditional structural type systems for objects or modules. A disadvantage is



that it corresponds less well to the definitions and implementations of existing
object-oriented languages (with the exception of Modula-3 [13]).

A more technical reason for abandoning the structural types with brands ap-
proach has to do with recursion: In a system with dependent types, type recursion
can involve terms, which means that recursive types are not necessarily regular
trees. For instance if p is a qualified identifier of an object with a term member
l and a type member L, then the type p.L might depend on the type p.l.L.
The resulting tree would then not be regular. There is little hope that practi-
cal semi-algorithms for checking equality and subtyping of non-regular trees can
be found. To sidestep these problems we follow the strategy of many existing
programming languages: we restrict ourselves to non-recursive type aliases, and
introduce a new kind of type definition that makes the defined type a subtype
of its right-hand side. Note that similar problems for type-checking are caused
by parameterized algebraic types where recursive use of a type constructor can
also lead to non-regular trees. The common approach to deal with such types is
again to make them nominal.

In summary, we design and study in this paper νObj, a core calculus and type
system for objects and classes with type members. Type members can be aliases,
abstract types, or new types. Classes are first-class and can be composed using
mixin-composition. Our type system supports via encodings:

– Most concepts of SML-style module systems, including sharing constraints
and higher-order functors, but excluding applicative functors.

– System F<: [14], with the full subtyping rule.
– Virtual types and family polymorphism [20].

Because all these constructs are mapped to the same small language core, it
becomes possible to express unified concepts. In particular, our theory promotes
the following identifications.

Object = Module
Object type = Signature
Class = Method = Functor

The same identifications are made in BETA and gbeta, where classes and meth-
ods are subsumed under the notion of “patterns”. Our own language Scala fol-
lows the same approach, except that it maintains a distinction between methods
and classes on the syntactical level. Generally, many of our intuitions are inspired
by BETA and by the work of Erik Ernst [19] and Mads Torgerson, which build
on it. A contribution of our work is the definition and study of these ideas in a
formal calculus and type system. The main technical results of the paper are

– Confluence of the reduction relation.
– Undecidability of type checking by reduction to the problem in F<:.
– Type soundness – a well-typed program that does not diverge reduces to an

answer of the same type.



Other related work This paper extends a previous workshop contribution [35].
Nominal type systems have also been formalized in the Java context, examples
are [21,27,32]. A difference between these approaches and ours is that they rely
on a global class graph that describes membership and inheritance. Another
difference is that these systems are almost completely nominal, in the sense
that most types can be described by a name (exceptions are only array types
and generic types in FGJ [27]). By contrast, classes can be local in νObj and
nominal types are just one construction in an otherwise structural type system.

There are two other attempts at formalizations of virtual or abstract types in
object-oriented programming that we are aware of. The first, by Torgersen [41],
sketches a nominal type system for virtual types. It argues informally that if
certain restrictions are imposed on the usage of virtual types (which in fact
makes them equivalent to abstract types in our terminology), type soundness
can be ensured. Igarashi and Pierce [25] proposed a foundation of virtual types
using a type system that adds dependent types to an F<: core. However, no
formal study of the type system’s properties was attempted, and in fact their
initial formalization lacked the subject reduction property (that formalization
was dropped in the journal version of their paper [26]).

The rest of this paper is structured as follows. Section 2 presents context-free
syntax, operational semantics, and type assignment rules of our object calculus,
νObj. Section 3 illustrates in a series of examples how the calculus expresses com-
mon object-oriented idioms. Section 4 presents the type structure of νObj types,
including derivation rules for well-formedness, equality and subtyping. Section 5
presents an encoding of F<: in νObj. Section 6 presents the meta-theory of νObj
with results on confluence, soundness and undecidability. Section 7 concludes.

2 The νObj Calculus

We now present a core language for objects and classes. Compared to the stan-
dard theory of objects [1], there are three major differences. First, we have classes
besides objects as a primitive concept. Classes are even “first-class” in the sense
they can result from evaluation of a term and they may be associated with a
label. Second, the calculus has a notion of object identity in that every object is
referenced by a name and it is that name instead of the object record which is
passed around. Third, we can express object types with type components, and
some of these components can be nominal.

2.1 Context-Free Syntax

Figure 1 presents the νObj calculus in terms of its abstract syntax, and its
structural equivalence and reduction relations. There are three alphabets. Proper
term names x, y, z are subject to α-renaming, whereas term labels l,m, n and
type labels L,M,N are fixed.



Syntax

x, y, z Name
l, m, n Term label

s, t, u ::= Term
x Variable
t.l Selection
νx← t ; u New object

[x :S| d] Class template
t &S u Composition

d ::= Definition
l = t Term definition
L � T Type definition

p ::= Path
x | p.l

v ::= Value

x | [x :S| d]

L, M, N Type label

S, T, U ::= Type
p.type Singleton
T •L Type selection

{x| D} Record type (=:: R)

[x :S| D] Class type
T & U Compound type

D ::= Declaration
l : T Term declaration
L �: T Type declaration

�: ::= Type binder
= Type alias
≺ New type
<: Abstract type

� ::= Concrete type binder
= | ≺

Structural Equivalence α-renaming of bound variables x, plus

(extrude) e〈νx← t ; u〉 ≡ νx← t ; e〈u〉
if x 6∈ fn(e), bn(e) ∩ fn(x, t) = ∅

Reduction

(select) νx← [x :S| d, l = v] ; e〈x.l〉 → νx← [x :S| d, l = v] ; e〈v〉
if bn(e) ∩ fn(x, v) = ∅

(mix) [x :S1| d1] &S [x :S2| d2] → [x :S| d1 ] d2]

where evaluation context

e ::= 〈〉 | e.l | e &S t | t &S e | νx← t ; e | νx←e ; t | νx← [x :S| d, l = e] ; t

Fig. 1. The νObj Calculus

A term denotes an object or a class. It can be of the following five forms.

– A simple name x, which denotes an object.
– A selection t.l, which can denote either an object or a class.
– An object creation νx← t ; u, which defines a fresh instance x of class t. The

scope of this object is the term u.
– A class template [x : S| d] where d is a sequence of definitions which associate

term labels with values and type labels with types. This acts as a template
to construct objects with the members defined by the definitions. The name



x of type S stands for “self”, i.e. the object being constructed from the
template. Its scope is the definition sequence d. A term or type can refer via
x.l to some other member of that object. No textual sequence constraint
applies to such references; in particular it is possible that a binding refers to
itself or to bindings defined later in the same record. This distinguishes our
type system from earlier type systems for records [15] or modules [23].

– A mixin composition t &S u, which forms a combined class from the two
classes to which t and u evaluate. Here, S is the type of “self” in the combined
class.

A value is a simple name or a class template. A path p is a name x followed by
a possibly empty sequence of selections, e.g. x.l1. . . . .ln.

The syntax of types in our system closely follows the syntax of terms. A type
can be of the following five forms.

– A singleton type p.type. This type represents the set of values which has as
only element the object referenced by the path p. Singleton types are the
only way a type can depend on a term in νObj.

– A type selection T •L, which represents the type component labelled L of
type T .

– A record type {x| D} where D is a sequence of declarations which can be
value bindings or type bindings. A value binding l : T associates a term label
l with its type T . Type bindings come in three different forms:
First, the binding L = T defines L to be an alias for T . Second, the binding
L ≺ T defines L to be a new type which expands to type T . That is, L is a
subtype of T which has exactly the members defined by T ; furthermore, one
can create objects of type L from a class which defines all members of T .
Third, the binding L <: T defines L to be an abstract type which is known
to be a subtype of its bound T .
We let the meta-variable � range over = and ≺, and let �: range over =, ≺,
and <:. The name x stands for “self”; its type is assumed to be the record
type itself. We let the letter R range over record types.

– A compound type T & U . This type contains all members of types T and
U . The subtyping relation for compound types is the same as the one for
intersection types [4], but the formation rules are more restrictive. Where T
and U have a member with the same label, the compound type contains the
member defined in U . That member definition must be more specific (see
Section 4) than the corresponding member definition in T .

– A class type [x : S| D], which contains as values classes that instantiate to
objects of type {x| D}, or some subtype of it. x is again the name for “self”.
It now comes with an explicit type S which may be different from {x| D}.
Definitions in S which are missing from D play the role of abstract members.
Such members can be referred to from other definitions in the class, but they
are not defined in the class itself. Instead, these members must be defined in
other classes which are composed with the class itself in a mixin composition.



Definitions which are present in D but missing in S play in some sense the
role of non-virtual members – they are not referred to via “self” from inside
the class, so overriding them does not change existing behavior. Definitions
present in both S and D play the role of virtual members.

Discussion Most notably missing from the core language are functions, including
polymorphic ones, and parameterized types. In fact, type variables are missing
completely — the only α-renameable identifiers denote ν-bound terms. However,
these omitted constructs can still be expressed in νObj using context-free en-
codings. This will be shown later in the paper. Section 3 explains how named
monomorphic functions are encoded. Section 5 generalizes the encoding to sys-
tem F<:.

The type syntax defines a singleton type p.type and a selection T •L which
operates on types T . More conventional would have been a type selection p.L
which operates on terms p instead of types. The latter selection operation can be
expressed in our syntax as p.type•L. Besides having some technical advantages,
this decomposition can express two concepts which the conventional type selec-
tion p.L cannot. First, the self-type of a class can be expressed as a singleton
type this.type. This can accurately model covariant self-types. For contravariant
self-types one would need a matching operation [11,10] instead of – or in addi-
tion to – the subtyping relation that we introduce. Second, an inner class of the
kind it exists in Java [22,24] can be referenced by a type selection Outer• Inner
where Outer and Inner are types. Such a selection risks being non-sensical in
the presence of abstract type members in the outer class Outer. Consequently,
our typing rules prevent formation of the type T •L if L’s definition depends on
some abstract member of T . Note that this is not a problem for Java, which
does not have abstract type declarations.

Syntactic Sugar

1. The type p.L is a shorthand for p.type•L.
2. The class type [x| D] is a shorthand for [x :{x| D}| D].
3. The class template [x| d] is a shorthand for [x : {x| D}| d] where D is the

most specific set of declarations matching definitions d.
4. The types {D}, [D] and the term [d] are shorthands for {x| D}, [x| D] and

[x| d] where x does not appear in D or d.
5. new t is a shorthand for νx← t ; x.
6. t1 & t2 is a shorthand for t1 &S1 & (S2 & {x| D1]D2}) t2 if ti has least type

[x : Si| Di] for i ∈ 1..2.

The last shorthand implements an overriding behavior for mixin composition
where a concrete definition always overrides an abstract definition of the same
label. Furthermore, between two abstract definitions or between two concrete
definitions of the same label it is always the second which overrides the first.



This scheme, which corresponds closely with the rules in Zenger’s component
calculus [44], is often more useful than the straight “second overrides first” rule
of systems where mixins are seen as functions over classes [8,21,5].

2.2 Operational Semantics

Figure 1 specifies a structural equivalence and a small-step reduction relation
for our calculus. Both relations are based on the notion of an evaluation context,
which determines where in a term reduction may take place. The grammar for
evaluation contexts given in Figure 1 does not yet yield a deterministic reduction
relation, but still leaves a choice of a strict or lazy evaluation strategy, or some
hybrid in-between. Particular evaluation strategies are obtained by tightening
the grammar for evaluation contexts.

Notation We write a for a sequence of entities a1, . . . , an. We implicitly identify
all permutations of such a sequence, and take the empty sequence ε as a unit for
(,). The domain dom(d), dom(D) of a sequence of definitions d or declarations
D is the set of labels it defines. The restriction d|L, D|L of definitions d or decla-
rations D to a set of labels L consists of all those bindings in d or D that define
labels in L. The ] operator on definitions or declarations denotes concatenation
with overwriting of common labels. That is, a ] b = a|dom(a)\dom(b), b.

A name occurrence x is bound in a type T , a term t, a definition d, a declaration
D, or an evaluation context e if there is an enclosing object creation νx←u ; t,
a class template [x : S| d], a class type [x : S| D], or a record type {x| D} which
has the occurrence in the scope of the name x. The free names fn(X) of one
of the syntactic classes X enumerated above is the set of names which have
unbound occurrences in X. The bound names bn(e) of an evaluation context e
are all names x bound by a subterm of e such that the scope of x contains the
hole 〈〉 of the context.

Structural Equivalence As usual we identify terms related by α-renaming. We
also postulate a scope extrusion rule (extrude), which allows us to lift a ν-binding
out of an evaluation context, provided that this does not cause capture of free
variable names. Formally, α-renaming equivalence ≡α is the smallest congruence
on types and terms satisfying the four laws

νx← t ; u ≡α νy← t ; [y/x]u if y 6∈ fn(u)
[x :S| d] ≡α [y :S| [y/x]d] if y 6∈ fn(d)

[x :S| D] ≡α [y :S| [y/x]D] if y 6∈ fn(D)
{x| D} ≡α {y| [y/x]D} if y 6∈ fn(D)

Structural equivalence ≡ is the smallest congruence containing ≡α and satisfying
the (extrude) law in Figure 1.



(Var)
x :T ∈ Γ

Γ ` x : T

Γ ` t : T, T 3 (l : U)

Γ ` t.l : U
(Sel)

(VarPath)
Γ ` x : R

Γ ` x : x.type

Γ ` t : p.type, t.l : R

Γ ` t.l : p.l.type
(SelPath)

(Sub)
Γ ` t : T, T ≤ U

Γ ` t : U

Γ ` t : [x :S| D], S ≺ {x| D}
Γ, x :S ` u : U x 6∈ fn(U)

Γ ` (νx← t ; u) : U

(New)

(Class)

Γ ` S wf Γ, x :S ` D wf, ti : Ti

ti contractive in x (i ∈ 1..n)

Γ ` [x :S| D, li = t i∈1..n
i ] : [x :S| D, li :T

i∈1..n
i ]

(&)
Γ ` ti : [x :Si| Di] Γ ` S wf, S ≤ Si (i = 1, 2)

Γ ` t1 &S t2 : [x :S | D1 ]D2]

Fig. 2. Type assignment

Reduction The reduction relation → is the smallest relation that contains the
two rules given in Figure 1 and that is closed under structural equivalence and
formation of evaluation contexts. That is, if t ≡ t′ → u′ ≡ u, then also e〈t〉 →
e〈u〉. The first reduction rule, (select), connects a definition of an object with
a selection on that object. The rule requires that the external object reference
and the internal “self” have the same name x (this can always be arranged
by α-renaming). The second rule, (mix), constructs a class from two operand
classes by mixin composition, combining the definitions of both classes with
the ] operator. Multi-step reduction →→ is the smallest transitive relation that
includes ≡ and →.

2.3 Type Assignment

Figure 2 presents the rules for assigning types to terms. These are expressed as
deduction rules for type judgments Γ ` t : T . Here, Γ is a type environment,
i.e. a set of bindings x : T , where all bound names x are assumed to be pairwise
different.

There are the usual tautology and subsumption rules. Rule (Sel) assigns to a se-
lection t.l the type U provided t’s type has a member l : U . Rules (VarPath) and
(SelPath) assign singleton types p.type to terms which denote unique objects.

Rule (New) types a ν-expression νx← t ; u. The term t needs to have a class
type [x : S | D] such that the self type S expands to a record type which
contains exactly the declarations D. This means that all declarations present in



S must be defined in D, with the same type. In particular, classes with abstract
members cannot be instantiated. The body u is then typed under an augmented
environment which contains the binding x : S. The type of u is not allowed to
refer to x.

Rule (Class) types class templates. All term definitions li = ti in the template
are typed under a new environment which includes a binding x : S for the self-
name of the class. However, it is required that all terms ti are contractive in self.
This means that they do not access self during the instantiation of an object of
the class. Contractiveness is defined formally as follows.

Definition. The term t is contractive in the name x if one of the following holds.

– x 6∈ fn(t), or
– t is a class template [y : S| d], or
– t is a mixin composition t1 &S t2 and t1, t2 are contractive in x, or
– t is an object creation νy← t1 ; t2, x 6∈ fn(t1) and t2 is contractive in x.

The contractiveness requirement prevents accesses to fields of an object before
these fields are defined. In conventional object-oriented languages this would
correspond to the requirement that self can be accessed only from methods, not
from initializers of object fields. More liberal schemes are possible [6], but require
additional technical overhead in the type assignment rules. One can also envisage
to allow accesses to self without restrictions, preinitializing fields to some default
value, or raising a run-time exception on access before definition.

The last rule, (&) types compositions of class terms. The self type S of the
composition is required to be a subtype of the self types of both components.
The definitions of the composed class are then obtained by concatenating the
definitions of the components.

These deduction rules are based on several other forms of judgments on types,
specifically the well-formedness judgment Γ ` T wf, the membership judgment
Γ ` T 3 D, the expansion judgment Γ ` T ≺ T ′, and the subtyping judgment
Γ ` T ≤ T ′. Deduction rules for these judgments are motivated in Section 4
and given in full in an accompanying technical report [34].

As usual, we assume that terms can be alpha-renamed in type assignments in or-
der to prevent failed type derivations due to duplicate variables in environments.
That is, if Γ ` t : T and t ≡α t′ then also Γ ` t′ : T .

The type assignment judgment is extended to a judgment relating definitions
and declarations as follows.

Definition. A declaration D matches a definition d in an environment Γ written
Γ ` d : D, if one of the following holds:

Γ ` (l = t) : (l : T ) if Γ ` t : T .
Γ ` (L � T ) : D if Γ ` (L � T ) ≤ D (see Section 4.5 for a definition of
≤ on declarations).



3 Examples

Before presenting the remaining details of the theory, we demonstrate its usage
by means of some examples. Since the νObj calculus is quite different from
standard object-oriented notations, we first present each example in the more
conventional object-oriented language Scala [33]. Scala’s object model is a
generalization of the object model of Java. The extensions most important for
the purposes of this paper are abstract types, type aliases, and mixin composition
of classes. A subset of Scala maps easily into νObj, and we will restrict the
example code to that subset. Other constructs, such as higher-order functions,
generics, or pattern matching can be defined by translation into the subset, and,
ultimately, into the object calculus.

3.1 Modules, Classes, and Objects

We start with a class for representing points in a one dimensional space. Class
Point is defined as a member of the singleton object pt. In Scala, such top-level
singleton objects play the role of modules. In addition to the coordinate x, class
Point defines a method eq for comparing a point with another point.

object pt {
abstract class Point {

def x : Int;
def eq(p : Point): Boolean = (x == p.x);

}
}

In the subset of Scala used here, classes do not have explicit constructor pa-
rameters. Instead, parameters are represented as abstract class members. For
creating an object, one has to subclass Point and provide concrete implementa-
tions for the abstract members. In the following code we do this twice by using
a mixin composition of class Point with an anonymous class that defines the
missing coordinate x.

val a = new pt.Point with { def x = 0; };
val b = new pt.Point with { def x = 1; };
a.eq(b)

We now devise a translation of the previous Scala code into our calculus. In
addition to the syntax defined in Figure 1, we also make use of λ-abstractions and
applications. Later in this section we will explain how to encode these constructs
in νObj.

ν pt ← [pt |
Point ≺ {x : Int, eq : pt.Point → Boolean},
point = [this : pt.Point | eq = λ (p : pt.Point) p.x == this.x ]

];
ν a ← pt.point &pt.Point [x = 0];
ν b ← pt.point &pt.Point [x = 1];
a.eq(b)



A class is represented by two entities: an object type that is used to type instances
of the class and a class value, which is used to construct objects. We use the
name of the class as the name of the type and the same name, but starting with
a lower-case letter, as the name of the class value. While the type includes the
signatures of all class members, the class value only provides implementations
for the non-abstract members. In general, abstract members are present in the
self-type S of a class [x : S| d], but are missing from the class definitions d.
Non-abstract members are present in both S and d.

3.2 Functions

For encoding λ-abstractions and applications we use a technique similar to the
one for passing parameters during class instantiations. A λ-abstraction λ(x : T ) t
is represented as a class with an abstract member arg for the function argument
and a concrete member fun which refers to the expression for computing the
function’s result:

[x : {arg : T} | fun = [res = t′]]

where t′ corresponds to term t in which all occurrences of x get replaced by
x.arg. As explained in Section 2, we cannot access arg directly on the right-
hand-side of fun. Therefore fun packs the body of the function into another
class. The instantiation of this class will then trigger the execution of the func-
tion body. For instance, function λ (p : pt.Point) p.x == this.x could be en-
coded as a class [p : {arg : pt.Point} | fun = [res = p.arg.x == this.x]] of type
[p : {arg : pt.Point} | fun : [res : Boolean]] that contains an abstract member arg
and a concrete member fun.

In νObj, an application g(e) gets decomposed into three subsequent steps:

ν gapp ← g & [arg = e];
ν geval ← gapp.fun;
geval.res

First we instantiate function g with a concrete argument yielding a thunk
gapp. Then we evaluate this thunk by creating an instance geval of it. Fi-
nally we extract the result by querying field res of geval. For instance,
the call to function eq from the previous code could be encoded as
ν gapp ← a.eq & [arg = b];ν geval ← gapp.fun; geval.res.

3.3 Abstract Types

Suppose we would now like to extend the Point class for defining a new class Col-
orPoint that includes color information. Since extended classes define subtypes
in Scala, we cannot override method eq contravariantly such that the parame-
ter of eq now has type ColorPoint. But exactly this would allow us to compare
ColorPoints only with ColorPoints. Instead, we have to refactor our code and



abstract over the parameter type explicitly in anticipation of future extensions.
The following code fragment defines an abstract type This in class Point with
bound Point which gets covariantly refined in subclasses like ColorPoint.

object pt {
abstract class Point {

type This <: Point;
def x : Int;
def eq(p : This): Boolean = (x == p.x);

}
}
object cpt {

abstract class ColorPoint extends pt.Point {
type This <: ColorPoint;
def col : String;
override def eq(p : This): Boolean = (x == p.x) && (col == p.col);

}
}

We now make use of the two classes and define a Point and two ColorPoint
instances.
val c = new pt.Point with

{type This = pt.Point; def x=0;};
val d = new cpt.ColorPoint with

{type This = cpt.ColorPoint; def x=1; def col=”blue”;};
val e = new cpt.ColorPoint with

{type This = cpt.ColorPoint; def x=2; def col=”green”;};

The type system has to ensure that we are able to compare only compatible
objects; i.e. we have to be able to execute d.eq(e) and e.eq(d) as well as c.eq(d)
and c.eq(e), whereas terms like d.eq(c) are ill-typed and therefore rejected by
the typechecker.

An encoding of the previous two classes in our object calculus is given by the
following term.

ν pt ← [pt |
Point ≺ {this | This <: pt.Point, x : Int, eq : this.This → Boolean},
point = [this : pt.Point | eq = λ (p : this.This) p.x == this.x]

];
ν cpt ← [cpt |

ColorPoint ≺ pt.Point & {This <: cpt.ColorPoint, col : String},
colorPoint = [this : cpt.ColorPoint |

eq = λ (p : this.This) p.x == this.x && p.col == this.col]
];
ν c ← pt.point & [This = pt.Point, x = 0];
ν d ← cpt.colorPoint & [This = cpt.ColorPoint, x = 1, col = ”blue”];
c.eq(d)

This example does not only explain how to use abstract types, it also shows that
our calculus is expressive enough to model virtual types in a type-safe way.



3.4 Generic Types

We now present a more evolved example that shows how to use νObj to encode
generic classes. The following code defines a “module” lst which contains an
implementation for generic lists consisting of three classes List, Nil, and Cons.

object lst {
abstract class List {

type T <: scala.Object;
def isEmpty : Boolean;
def head : T;
def tail : List with {type T = List.this.T;};

}
abstract class Nil extends List {

def isEmpty = true;
def head : T = error;
def tail : List with {type T = Nil.this.T;} = error;

}
abstract class Cons extends List {

def isEmpty = false;
}

}

Since classes are neither parameterized by values nor types, we model the element
type of a list with an abstract type T in class List. Similarly, class parameters
like the head and the tail of a cons-cell are represented by abstract functions.
Note that the type of the tail value of a list object is a mixin composition of List
with a record type which consists of the type binding {type T = List.this.T}.
This forces the element type of a list and its tail to be the same. 1 In general,
mixin composition with type bindings subsumes in expressive power the sharing
constraints of SML module systems [28].

Class Nil provides all the abstract functions of its superclass List. For the im-
plementation of head and tail we make use of a predefined value error that
produces errors at run-time when accessed. error is of any type. Even though
our formal treatment does not include such a bottom type, adding one would be
straightforward.

Class Cons only defines function isEmpty. The other abstract functions consti-
tute constructor parameters and have to be provided at instantiation time.

Here is an example how the list abstraction is applied. The following code frag-
ment constructs two lists of integers [ ] and [ 1 ] and returns the head of the
second list. Again, we use a mixin class composition to emulate parameter pass-
ing.

val x0 = new lst.Nil with {type T = Int;};
val x1 = new lst.Cons with {type T = Int; def head = 1; def tail = x0;};
x1.head

1 Like in Java, Outer.this denotes the identity of an enclosing Outer object in the
scope of an inner class of Outer.



Here is the translation of the previous Scala code into our object calculus.

ν lst ← [lst |
List ≺ {this |

T <: {}, isEmpty : Boolean, head : this.T, tail : lst.List & {T = this.T}},
Nil ≺ lst.List,
Cons ≺ lst.List,
nil = [this : lst.Nil | isEmpty = true, head = error, tail = error],
cons = [this : lst.Cons | isEmpty = false]

];
ν x0 ← lst.nil & [T = Int];
ν x1 ← lst.cons & [T = Int, head = 1, tail = x0];
x1.head

We now augment class List of the previous example with a function len that
computes the length of the list. In Scala, this can be done without changing
the source code of List, by using a class as a mixin:

object llst {
abstract class ListWithLen extends lst.List {

def tail : ListWithLen with { type T = ListWithLen.this.T; };
def len(): Int = if (this.isEmpty) 0 else 1 + this.tail.len();

}
}

Class ListWithLen extends class List. It adds a new len member and narrows
the type of the existing tail member to ListWithLen. To build lists with len
members, we add this class as a mixin. Here is an example usage:

val y0 = new lst.Nil with {
type T = Int;
def tail : ListWithLen with {type T = Int;} = error;

} with llst.ListWithLen;
val y1 = new lst.Cons with {

type T = Int;
def head = 1;
def tail = y0;

} with llst.ListWithLen;
y1.len()

The translation of this program into νObj is given in the following code fragment.
Please note that this time, we encode function len directly as a class, similar to
the description given before. This time we can use a slightly simpler encoding
since our function is not parameterized.

ν llst ← [llst |
ListWithLen ≺ lst.List & {this |

tail : llst.ListWithLen & {T = this.T},
len : [res : Int ]

},
listWithLen = [this : llst.ListWithLen |

len = [res = if (this.isEmpty) 0 else 1 + (ν t ← this.tail.len; t.res)]]
];



ν y0 ← lst.nil & [T = Int] & llst.listWithLen;
ν y1 ← lst.cons & [T = Int, head = 1, tail = y0] & llst.listWithLen;
ν l ← y1.len;
l.res

Note that type ListWithLen is represented as a composition of type List and
a record type containing added and overridden members. This turns type List-
WithLen into a subtype of type List.

4 Type Structure

The type structure of νObj is defined by deduction rules for the following kinds
of judgments:

Γ ` T wf Type T is well-formed.
Γ ` D wf Declaration D is well-formed.

Γ ` T 3 D Type T contains declaration D.

Γ ` T = U Types T and U are equal.

Γ ` T ≺ U Type T expands to type U .
Γ ` T <: U Type T is upper-bounded by type U .

Γ ` T ≤ U Type T is a subtype of type U .
Γ ` D1 ≤ D2 Declarations D1 are more specific than declarations D2.

Compared to standard type systems there are three non-standard forms of judg-
ments: First, the membership judgment Γ ` T 3 D factors out the essence of
path-dependent types. Second, the expansion judgment Γ ` T ≺ U captures
the essential relation between a new type and its unfolding. Third, the upper-
binding judgment Γ ` T <: U provides exact type information about which
record type is a supertype of a given type. This information is needed for the
correct treatment of type bindings in records. The essential typing rules for all
these judgments are discussed in the following.

Notation We sometimes write judgments with several predicates on the right of
the turnstile as an abbreviation for multiple judgments. E.g. “ Γ ` T wf, T ′ wf
” is an abbreviation for the two judgments “ Γ ` T wf ” and “ Γ ` T ′ wf ”.

4.1 Membership

The membership judgment Γ ` T 3 D states that type T has a member
definition D. The judgment is derived by the following two rules, which capture
the principles of path-dependent types.

(Single-3)
Γ ` p.type <: {x| D′, D}

Γ ` p.type 3 [p/x]D



(Other-3)
Γ, x : T ` x.type 3 D x 6∈ fn(Γ,D)

Γ ` T 3 D

Rule (Single-3) defines membership for singleton types. In this case, the self-
reference x in the definition is replaced by the path p. Rule (Other-3) defines
membership for arbitrary types in terms of (Single-3). To determine a member
D of a type T which is not a singleton, invent a fresh variable x of type T and
determine the corresponding member of type x.type. The resulting member is
not allowed to depend on x. Note that, if T is a singleton type, rule (Other-3)
either fails or yields the same judgments as rule (Single-3).

Example Consider the type T ≺ {x : T | L <: { }, l1 : x.L, l2 : Int}. Further
consider a path p and some other term t which is not a path, both of type T .
Then p contains the definitions L <: { }, l1 : p.L, and l2 : Int. On the other
hand, t contains only the definitions L <: { } and l2 : Int since rule (Other-3)
does not derive a binding for l1. Indeed, substituting t for the self reference x in
the binding for l1 would yield the type t.L which would not be well-formed.

4.2 Equality

The type equality judgment Γ ` T = T ′ states that the two types T and T ′

are the same or aliases of each other. Type equality is the smallest congruence
which is closed under the following two derivation rules.

(Alias-=)
Γ ` T 3 (L = U), T wf

Γ ` T •L = U

Γ ` p : q.type
Γ ` p.type = q.type

(Single-=)

Rule (Alias-=) is standard; it states that type T •L is equal to U , provided T
has an alias member definition L = U . Rule (Single-=) expresses the following
property: if a path p has a singleton type q.type, we know that p and q are
aliases, hence the singleton types p.type and q.type should be equal. Without
the rule, one would only have that p.type is a subtype of q.type.

4.3 Expansion

The type expansion judgment Γ ` T ≺ T ′ states that type T expands (or:
unfolds) into type T ′. Expansion is the smallest transitive relation which contains
type equality and is closed under the following three derivation rules.

(Tsel-≺)
Γ ` T 3 (L ≺ U)

Γ ` T •L ≺ U

Γ ` T ≺ T ′, U ≺ U ′

Γ ` T & U ≺ T ′ & U ′ (&-≺)

(Mixin-≺)
Γ, x : {x| D1 ]D2} ` D2 ≤ D1|dom(D2)

Γ ` {x| D1} & {x| D2} ≺ {x| D1 ]D2}



Rule (Tsel-≺) expresses expansion of type selections in the usual way. Rule
(Mixin-≺) states that the combination of two record types R1 and R2 expands
to a record type containing the concatenation of the definitions in R1 and R2.
If some label is defined in both R1 and R2, the definition in R2 overrides the
definition in R1. In this case we must have that the definition in R2 is more
specific than the definition in R1.

4.4 Upper Bounds

The upper bound judgment Γ ` T <: T ′ states that T ′ is an expansion of T or
a (tight) upper bound of it. The primary use of this relation is in determining
for a type T the least record type which is a supertype of T . This information
is needed for deriving the membership judgment by rule (Single-∈).

Upper-binding is the smallest transitive relation which contains expansion and
which is closed under the following three derivation rules.

(Tsel-<:)
Γ ` T 3 (L <: U)

Γ ` T •L <: U

x : T ∈ Γ

Γ ` x.type <: T
(Var-<:)

(Sel-<:)
Γ ` p.type 3 (l : U)
Γ ` p.l.type <: U

The first rule (Tsel-<:) defines upper bounds of abstract types in the usual way.
The other two rules take as the upper bound of a singleton type p.type the type
which p has in the current environment. Note that we could not have replaced
these two rules by a simpler rule which states that Γ ` p.type <: T , provided
Γ ` p : T . The reason is that the subsumption for type assignments would allow
one to forget information about a path’s type. Hence, one could not guarantee
with the simpler rule that upper bounds are tight.

4.5 Subtyping

The subtyping judgment Γ ` T ≤ T ′ states that T is a subtype of T ′. Subtyping
is the smallest transitive relation that contains upper-binding (<:) and that is
closed under the following four rules.

(&-≤)
Γ ` T1 & T2 ≤ T1

Γ ` T1 & T2 ≤ T2

Γ ` T ≤ T1, T ≤ T2

Γ ` T ≤ T1 & T2

(≤-&)

(Rec-≤)
Γ, x : {x| D,D′} ` D ≤ D′′

Γ ` {x| D,D′} ≤ {x| D′′}

(Class-≤)
Γ ` R wf, S & R ≤ S′, S′ ≤ S Γ, x :S′ ` D ≤ D′

Γ ` [x : S| D] ≤ [x : S′| D′]



Rules (&-≤) and (≤-&) state that & behaves like type intersection in subtyping:
That is, the type T1 & T2 is a subtype of both T1 and T2 and to show that a
type U is a subtype of T1 & T2 one needs to show that U is a subtype of both
T1 and T2.

The remaining two rules (Rec-≤) and (Class-≤) determine subtyping for record
and class types. For record types, subtyping is covariant in the declarations D,
and declarations in the subtype may be dropped in the supertype. For class types,
subtyping is contravariant in the self-type S and covariant in the declarations
D. However, both premises are restricted for type checking reasons.

First, unlike for record types, a class type always declares the same labels as its
supertypes, so declared labels may not be forgotten. This ensures that the type
of labels in a composition is fully determined. For instance, in [l = 1] &{} [l =
“abc′′] the label l is always known to be bound to a string, not an integer.
If labels could be forgotten, the second operand of the composition could be
widened via subsumption to the empty class, which would assign l the integer
in an alternative typing derivation of the composite class term.

Second, contravariance of self types is limited so that the smaller self type S′

must result from the larger self type S composed with some record type. On
the other hand, it is not allowed to take as S′ some nominal subtype of S. This
restriction is necessary to ensure that there is always a least type that can be
assigned to instances created from a class in a ν-expression.

The (≤) relation is also defined between declarations. D ≤ D′ means that dec-
laration D is more specific than declaration D′. This predicate is expressed by
the following two derivation rules.

(Bind-≤)
Γ ` T ≤ T ′

Γ ` (l : T ) ≤ (l : T ′)
Γ ` T ≤ T ′

Γ ` (L �: T ) ≤ (L <: T ′)
(Tbind-≤)

Subtyping on value declarations is defined as usual. For type labels one has that
an arbitrary type declaration L �: T is more specific than an abstract type
declaration L <: T , provided T ≤ T ′. Hence, abstract types can be overridden
with other abstract or concrete types as long as the overriding type conforms to
the abstract type’s bound. Aliases and new types, on the other hand, cannot be
overridden.

4.6 Well-formedness

The well-formedness judgment is of the form Γ ` T wf. Roughly, a type is
well-formed if it refers only to names and labels which are defined and if it does
not contain any illegal cyclic dependencies. These requirements are formalized
in the four rules given below. The remaining rules propagate these requirements
over all forms of types; they are given in full in the accompanying technical
report [34].



(Single-wf)
Γ ` p : R

Γ ` p.type wf

Γ ` T wf, T 3 (L = U), U wf

Γ ` T •L wf
(Tsel-wf1)

(Tsel-wf2)
Γ ` T wf, T 3 (L ≺ U), U ≺ R

Γ ` T •L wf

(Tsel-wf3)
Γ ` T 3 (L <: U), U <: R

Γ ` T •L wf

Rule (Single-wf) states that p.type is well-formed if p is a path referring to
some object. The next three rules cover well-formedness of a type selection T•L.
They distinguish between the form of definition of L in T .

If L is defined to be an alias of some type U , T •L is well-formed only if U
is well-formed. This requirement excludes recursive types, where a type label
is defined to be an alias of some type containing itself. Such a recursive type
would not have a finite proof tree for well-formedness. On the other hand, if L
is defined to be a new type which expands to some type U , one requires only
that U in turn expands to some record type. This requirement excludes cyclic
definitions such as {x| L ≺ x.L & R}. But recursive references to the label from
inside a record or class are allowed; e.g. {x| L ≺ {next : x.L}}. Finally, if L is
defined to be an abstract type bounded by U , one requires that U in turn is
bounded by a record type. This requirement excludes situations where a type is
bounded directly or indirectly by itself, such as in {x| L1 <: x.L2, L2 <: x.L1}.
But it admits F-bounded polymorphism, where the abstract type appears inside
its bound, as in {x| L <: {next : x.L}}.

5 Relationship with F<:

System F<: can be encoded in νObj by the translation 〈〈·〉〉, which is defined on
types, terms, and environments. The translation of F<: types into νObj types is
defined as follows.

〈〈∀X <: S.T 〉〉 = {val : [ X : {Arg <: 〈〈S〉〉}| fun : [res : 〈〈T 〉〉] ]}
〈〈T → U〉〉 = {val : [ x : {arg : 〈〈T 〉〉}| fun : [res : 〈〈U〉〉] ]} (x fresh)
〈〈X〉〉 = X.Arg
〈〈>〉〉 = { }

The translation of F<: terms into νObj terms is defined as follows.

〈〈λx : T.t〉〉 = new [ val = [ x : {arg : 〈〈T 〉〉}| fun = [res = 〈〈t〉〉] ] ]
〈〈t u〉〉 = ν x←〈〈t〉〉.val & [arg = 〈〈u〉〉] ; ν y←x.fun ; y.res
〈〈ΛX <: S.t〉〉 = new [ val = [ X : {Arg <: 〈〈S〉〉}| fun = [res = 〈〈t〉〉] ] ]
〈〈t[T ]〉〉 = ν x←〈〈t〉〉.val & [Arg = 〈〈T 〉〉] ; ν y←x.fun ; y.res
〈〈x〉〉 = x.arg



Finally, here is the translation of F<: environments into νObj environments.

〈〈x : T 〉〉 = x : {arg : 〈〈T 〉〉}
〈〈X <: T 〉〉 = X : {Arg <: 〈〈T 〉〉}
〈〈ε〉〉 = ε
〈〈Γ, Σ〉〉 = 〈〈Γ 〉〉, 〈〈Σ〉〉

In the translation, we use letters x and X for names, words consisting of lower-
case letters for value labels, and words consisting of upper-case letters for type
labels. Specifically, arg labels a value parameter, Arg labels a type parameter,
res labels a function result, and val labels a class value.

Given this translation, here is how F<:’s polymorphic identity function ΛX <:
>.λx : X.x is expressed in our calculus.

new [val = [X : {Arg <: {}} |
fun = [res = new [val = [x : {arg : X.Arg} | fun = [res = x.arg]]]]]]

To give some sense to our encoding we can easily show the following properties.

Lemma 1 For any environment Γ , types T and U , term t in F<::

1. Γ `F<: T <: U implies 〈〈Γ 〉〉 ` 〈〈T 〉〉 ≤ 〈〈U〉〉.
2. Γ `F<: t : T implies 〈〈Γ 〉〉 ` 〈〈t〉〉 : 〈〈T 〉〉.

Lemma 2 `F<: t : T and t → u implies 〈〈t〉〉 →+ eG〈〈〈u〉〉〉, where eG is a
“garbage context” of the form νx1←u1 ; . . . ; νxn←un ; 〈〉 such that no name
xi is free in 〈〈u〉〉.

The introduction of the garbage context eG in the previous lemma is neces-
sary because translation of λ-abstraction and λ-application involves the creation
of objects, which are persistent, contrary to the λs that disappear during the
lambda reduction rule.

Lemma 3 〈〈t〉〉 → implies t→.

The reduction relation→ that we use for F<: in 3 is the call-by-value small-step
semantics, i.e. we never reduce under the λs and an argument has to be reduced
to a value before being passed to a function. Together with the previous lemma,
this lemma has as corollary that if a well-typed term reduces to an irreducible
term then its translation reduces to the translation of this term, which is also
irreducible.

6 Meta-Theory

In this chapter, we establish three results for νObj. First, that the reduction
relation is confluent. Second, that the typing rules are sound with respect to
the operational semantics. Third, that the subtyping relation (and with it type
checking) is undecidable. For reasons of space we refer to an accompanying
technical report [34] for proofs.



6.1 Confluence

Theorem 6.1 The →→ relation is confluent: If t →→ t1 and t →→ t2 then there
exists a term t′ such that t1 →→ t′ and t2 →→ t′.

6.2 Type Soundness

We establish soundness of the νObj type system using the syntactic technique of
Wright and Felleisen [43]. We first show a subject reduction result which states
that typings are preserved under reduction. We then characterize a notion of
evaluation result called an answer and show that every well-typed, non-diverging
term reduces to an answer that has the same type as the original term.

Theorem 6.2 [Subject Reduction] Let Γ be an environment. Let t, t′ be terms
such that bn(t, t′) ∩ dom(Γ ) = ∅ and let T be a type. If Γ ` t : T and t → t′,
then Γ ` t′ : T .

To establish type soundness from subject reduction, we still need to show that
well-typed non-diverging terms reduce to answers. These notions are defined as
follows.

Definition. A term t diverges, written t ⇑ if there exists an infinite reduction
sequence t→ t1 → . . .→ tn → . . . starting in t.

Definition. An answer is a value, possibly nested in ν-binders from classes all
of whose definitions are fully evaluated. Thus, the syntax of answers a is:

a ::= v | νx← [x :S| f ] ; a
f ::= l = v | L � T .

Theorem 6.3 [Type Soundness] If ε ` t : T then either t⇑ or t→→ a, for some
answer a such that ε ` a : T .

6.3 Undecidability of Type Checking

Theorem 6.4 There exists no algorithm that can decide if a judgment Γ ` t :
T is derivable or not.

7 Conclusion

This paper develops a calculus for reasoning about classes and objects with type
members. We define a confluent notion of reduction, as well as a sound type
system based on dependent types.



There are at least three areas where future work seems worthwhile. First, there
is the problem of undecidablility of νObj. We need to develop decidable sub-
systems, or describe type reconstruction algorithms that are incomplete but can
be shown to work reasonably well in practice. Second, we would like to explore
extensions of the calculus, such as with imperative side effects or with richer
notions of information hiding. Third, we would like to study in more detail the
relationships between νObj and existing object-oriented languages and language
proposals. We hope that the work presented here can be used as a foundation
for these research directions.
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