
A tour of CLR Generics from a Scala vantage point

A tour of CLR Generics from a Scala vantage point

Miguel Garcia
http://lamp.epfl.ch/~magarcia

LAMP, EPFL

2011-04-26

1 / 19

http://lamp.epfl.ch/~magarcia

A tour of CLR Generics from a Scala vantage point

Outline
Intro

Goals and non-goals
Problems and non-problems

The platform
Statics are per-type-instantiation on CLR
And that carries on to static methods
Another issue: there are non-erased APIs out there

The design space
Which syntax you like most?
What can hide behind a C# method signature

Ongoing and Future Work
Work not in progress (blocked by “Erasure for .NET”)
Generics not really required, but anyway postponed
Work in progress: Erasure for .NET (aka “generics in the backend”)

2 / 19

A tour of CLR Generics from a Scala vantage point

Intro

Outline
Intro

Goals and non-goals
Problems and non-problems

The platform
Statics are per-type-instantiation on CLR
And that carries on to static methods
Another issue: there are non-erased APIs out there

The design space
Which syntax you like most?
What can hide behind a C# method signature

Ongoing and Future Work
Work not in progress (blocked by “Erasure for .NET”)
Generics not really required, but anyway postponed
Work in progress: Erasure for .NET (aka “generics in the backend”)

3 / 19

A tour of CLR Generics from a Scala vantage point

Intro

Goals and non-goals

Now that Scala.NET is about to get its own erasure phase,
I wanted to share with you some puzzles :-)

From what I see, “erasure for .NET ” is quite different from
“emitting Java signatures”.

Goals and non-goals:

I Without compromising Scala semantics,
we want Scala.NET to be “a good citizen” on .NET, i.e.:

I not place undue barriers on using third-party assemblies
I allow using our assemblies as components from other languages

4 / 19

A tour of CLR Generics from a Scala vantage point

Intro

Problems and non-problems

The “Scala → .NET” direction is not problematic
(as long as we avoid some pitfalls described later).

Getting some non-problems out of the way:

I In terms of surface syntax, CLR type names appear to be
“overloaded” by type-params-arity.

I However, CLR-wise, type names are unique (a generic type gets
“<backquote><arity>” appended to its name)

Static members don’t result in “multiple copies” (but see later):

I RefCheck eliminates modules by emitting a class.

I As far as CLR is concerned that class is monomorphic.

I BTW, a CLR interface would also do, because unlike in C# they
can include methods with bodies, and fields.

5 / 19

A tour of CLR Generics from a Scala vantage point

The platform

Outline
Intro

Goals and non-goals
Problems and non-problems

The platform
Statics are per-type-instantiation on CLR
And that carries on to static methods
Another issue: there are non-erased APIs out there

The design space
Which syntax you like most?
What can hide behind a C# method signature

Ongoing and Future Work
Work not in progress (blocked by “Erasure for .NET”)
Generics not really required, but anyway postponed
Work in progress: Erasure for .NET (aka “generics in the backend”)

6 / 19

A tour of CLR Generics from a Scala vantage point

The platform

Statics are per-type-instantiation on CLR

The C# 2.0 spec worded it concisely:

A static variable in a generic class declaration is shared
amongst all instances of the same closed constructed type,
but is not shared amongst instances of different closed
constructed types . . . regardless of whether the type of the
static variable involves any type parameters or not.

For example, the following prints 0050:

// C# code
class Gen<T> { public static int X = 0; }

class Test {
static void Main() {
Console.Write(Gen<int>.X); Console.Write(Gen<string>.X);
Gen<int>.X = 5;
Console.Write(Gen<int>.X); Console.Write(Gen<string>.X);

}
}

7 / 19

A tour of CLR Generics from a Scala vantage point

The platform

And that carries on to static methods

And that carries on to static methods:

// F#

> type SomeType<’t> = static member M(a, b) = (a + b) ;;

type SomeType<’t> =
class
static member M : a:int * b:int -> int

end

> SomeType.M(1, 1);;

SomeType.M(1, 1);;
^^^^^^^^^^

stdin(6,1): warning FS1125: The instantiation of the generic type ’SomeType’
is missing and can’t be inferred from the arguments or return type of this member.
Consider providing a type instantiation when accessing this type, e.g. ’SomeType<_>’.

val it : int = 2

> typedefof<SomeType<_>>.Equals(typedefof<SomeType<obj>>);; /*- testing for object identity */
val it : bool = true

The CLR way: class-level type-params are visible in static members.

8 / 19

A tour of CLR Generics from a Scala vantage point

The platform

Another issue: there are non-erased APIs out there

Another issue. There are non-erased APIs out there:

That’s over there, and this is over here:

9 / 19

A tour of CLR Generics from a Scala vantage point

The design space

Outline
Intro

Goals and non-goals
Problems and non-problems

The platform
Statics are per-type-instantiation on CLR
And that carries on to static methods
Another issue: there are non-erased APIs out there

The design space
Which syntax you like most?
What can hide behind a C# method signature

Ongoing and Future Work
Work not in progress (blocked by “Erasure for .NET”)
Generics not really required, but anyway postponed
Work in progress: Erasure for .NET (aka “generics in the backend”)

10 / 19

A tour of CLR Generics from a Scala vantage point

The design space

Which syntax you like most?

Accessing static members
I don’t want to adopt C#-isms that amount to invalid Scala syntax.
I Thus, no way: “Gen[Int].x”

More examples where new syntax would make code non-portable
in the CLR → JVM direction:

I jdk2ikvm supports migration via source-to-source conversion.
I Even with a similar tool for the CLR → JVM direction, its focus

should be API mapping, not language mapping!
11 / 19

A tour of CLR Generics from a Scala vantage point

The design space

What can hide behind a C# method signature

What can hide behind a C# method signature (1 of 2):

public class Person {}
public class Employee : Person {}

public class CSharpSub : IComparable<Employee>, IComparable<Person> {
int IComparable<Employee>.CompareTo(Employee that) { return 2; }
int IComparable<Person>.CompareTo(Person that) { return 1; }

}

Transliterating into Scala: error: trait IComparable is inherited twice.
How to consume (if at all) types like the above?

trait IComparable[-T] { def CompareTo(that: T): Int }
class Person
class Employee extends Person

/*- error: trait IComparable is inherited twice */
class ScalaSub extends IComparable[Employee] with IComparable[Person] {

def CompareTo(that: Employee) = 2
def CompareTo(that: Person) = 1

}

12 / 19

A tour of CLR Generics from a Scala vantage point

Ongoing and Future Work

“Per type-instantiation overrides” don’t add a special case to CLR method orverloading: per convention, the C# compiler

disambiguates by (effectively) mangling method names (shown below). Callsites (which look like overloads in C#) follow “C# 3.0

§7.4.3 Overload resolution” (and the mangling convention). In terms of ILAsm, callsites make explicit the “instantiated

(overridden) method signature”, where no name-mangling is needed as each method signature is unique within its declaring

interface (not shown).

.class public auto ansi beforefieldinit Sub
extends [mscorlib]System.Object
implements class [mscorlib]System.IComparable‘1<class Employee>,

class [mscorlib]System.IComparable‘1<class Person>
{
.method private hidebysig newslot virtual final

instance int32 ’System.IComparable<Employee>.CompareTo’(class Employee that) cil managed
{
.override method instance int32

class [mscorlib]System.IComparable‘1<class Employee>::CompareTo(!0)
// . . .

} // end of method Sub::’System.IComparable<Employee>.CompareTo’

.method private hidebysig newslot virtual final
instance int32 ’System.IComparable<Person>.CompareTo’(class Person that) cil managed

{
.override method instance int32

class [mscorlib]System.IComparable‘1<class Person>::CompareTo(!0)
// . . .

} // end of method Sub::’System.IComparable<Person>.CompareTo’
// . . .

} // end of class Sub
13 / 19

A tour of CLR Generics from a Scala vantage point

Ongoing and Future Work

Outline
Intro

Goals and non-goals
Problems and non-problems

The platform
Statics are per-type-instantiation on CLR
And that carries on to static methods
Another issue: there are non-erased APIs out there

The design space
Which syntax you like most?
What can hide behind a C# method signature

Ongoing and Future Work
Work not in progress (blocked by “Erasure for .NET”)
Generics not really required, but anyway postponed
Work in progress: Erasure for .NET (aka “generics in the backend”)

14 / 19

A tour of CLR Generics from a Scala vantage point

Ongoing and Future Work

Work not in progress (blocked by “Erasure for .NET”)

Tasks waiting for “Erasure for .NET” becoming available:

1. a standard library without IKVM dependencies

2. Visual Studio plugin

3. emitting binary assemblies (using CCI or IKVM.Reflection)

15 / 19

A tour of CLR Generics from a Scala vantage point

Ongoing and Future Work

Generics not really required, but anyway postponed

Part A, (Some) knowledge about compiler internals required:

4. REPL for Scala.NET

5. Compiler plugin loading using .NET reflection

6. Extending Scaladoc to emit API docs following .NET format.

Part B, Familiarity with IKVM is enough:

7. Porting partest and the test suite (mostly done by
jdk2ikvm). BTW, a form of “behavioral equivalence testing”
(cross-compiler vs. scalacompiler.exe) already runs1.

Part C, For the community to tackle:

8. field testing jdk2ikvm on apps in the “Scala Corpus”2

1Sec. 6 in lamp.epfl.ch/~magarcia/ScalaNET/2011Q2/BootstrapDIY.pdf
2
http://github.com/alacscala/scala-corpus

16 / 19

lamp.epfl.ch/~magarcia/ScalaNET/2011Q2/BootstrapDIY.pdf
http://github.com/alacscala/scala-corpus

A tour of CLR Generics from a Scala vantage point

Ongoing and Future Work

Work in progress: Erasure for .NET (aka “generics in the backend”)

Adapting erasure to .NET:

I Desirable (not mandatory) to erase minimally (simplifies using
from other languages the assemblies emitted by Scala.NET).

I First, let’s see what most likely will change
(next slide: what stays the same)

- For a typeref scala.Any or scala.AnyVal, System.Object.

- For a typeref P.C[Ts] where C refers to a class, |P|.C[|Ts|].
(Where P is first rebound to the class that directly defines C.)

- For an empty type intersection, System.Object.

- For the class info type of System.Object,
the same type without any parents.

17 / 19

A tour of CLR Generics from a Scala vantage point

Ongoing and Future Work

Work in progress: Erasure for .NET (aka “generics in the backend”)

- For a constant type, itself.
- For a type-bounds structure, the erasure of its upper bound.
- For every other singleton type, the erasure of its supertype.
- For a typeref scala.Array+[T] where T is an abstract type, AnyRef.
- For a typeref scala.Array+[T] where T is not an abstract type,
scala.Array+[|T|].

- For a typeref scala.Unit, scala.runtime.BoxedUnit.
- For a typeref P.C[Ts] where C refers to an alias type, the erasure of C’s alias.
- For a typeref P.C[Ts] where C refers to an abstract type, the
erasure of C’s upper bound.

- For a non-empty type intersection (possibly with refinement),
the erasure of its first parent.

- For a method type (Fs)scala.Unit, (|Fs|)scala#Unit.
- For any other method type (Fs)Y, (|Fs|)|T|.
- For a polymorphic type, the erasure of its result type.
- For a class info type of a value class, the same type
without any parents.

- For any other class info type with parents Ps,
the same type with parents |Ps|, but with duplicate references
of Object removed.

- For all other types, the type itself
(with any sub-components erased)

18 / 19

	Intro
	Goals and non-goals
	Problems and non-problems

	The platform
	Statics are per-type-instantiation on CLR
	And that carries on to static methods
	Another issue: there are non-erased APIs out there

	The design space
	Which syntax you like most?
	What can hide behind a C# method signature

	Ongoing and Future Work
	Work not in progress (blocked by ``Erasure for .NET'')
	Generics not really required, but anyway postponed
	Work in progress: Erasure for .NET (aka ``generics in the backend'')

