
Just trying to generate faster code faster under -optimise

Just trying to generate faster code faster
under -optimise

Miguel Garcia
http://lamp.epfl.ch/~magarcia

LAMP, EPFL

2011-11-22

1 / 17

http://lamp.epfl.ch/~magarcia

Just trying to generate faster code faster under -optimise

Outline
Stats about inlining (“short-term”)

Why focus on the inliner?
Inlining of “external” methods
Inlining of “internal” methods
Dealing with multiple inlinings of the same callee

Early inlining of anonymous closures (“medium-term”)
AST shapes of interest
Example 2: Range.foreach
Advantages

Ideas for the future (“long-term”)
Dedicated early-inlining to avoid NonLocalReturns
Inlining using a stackless IR requires zero type-flow analyses

Wrap-up

2 / 17

Just trying to generate faster code faster under -optimise

Stats about inlining (“short-term”)

Outline
Stats about inlining (“short-term”)

Why focus on the inliner?
Inlining of “external” methods
Inlining of “internal” methods
Dealing with multiple inlinings of the same callee

Early inlining of anonymous closures (“medium-term”)
AST shapes of interest
Example 2: Range.foreach
Advantages

Ideas for the future (“long-term”)
Dedicated early-inlining to avoid NonLocalReturns
Inlining using a stackless IR requires zero type-flow analyses

Wrap-up

3 / 17

Just trying to generate faster code faster under -optimise

Stats about inlining (“short-term”)

Why focus on the inliner?

[inliner 231708ms] 68% of compiler run
[inlineException... 7753ms] 2%
[closelim 4043ms] 1%
[dce 17837ms] 5%
. . .
[total 336324ms]

Useful distinction:

I External (ie, library) methods that are inlined
in methods being compiled

I Methods being compiled that are inlined
in methods being compiled

An external method is a callee whose ICode is loaded from bytecode.

4 / 17

Just trying to generate faster code faster under -optimise

Stats about inlining (“short-term”)

Inlining of “external” methods

Inlining of “external” methods:

times (%) symbol
----- ------- ------
264 (16.5%) scala.Predef$ArrowAssoc.$minus$greater
258 (16.1%) scala.Predef.assert
132 (8.2%) scala.Predef.augmentString
128 (8.0%) scala.Option.getOrElse
97 (6.0%) scala.Option.map
83 (5.2%) scala.Predef.println
83 (5.2%) scala.runtime.ScalaRunTime.inlinedEquals
75 (4.7%) scala.LowPriorityImplicits.intWrapper
68 (4.2%) scala.collection.immutable.Range.foreachmVcsp
67 (4.2%) scala.Option.foreach
63 (3.9%) scala.runtime.RichInt.until
62 (3.9%) scala.collection.immutable.Range.apply
43 (2.7%) scala.Option.flatMap
37 (2.3%) scala.Predef.any2ArrowAssoc
30 (1.9%) scala.Predef.any2stringadd
. . .
15 (0.9%) scala.collection.immutable.Range.foreach

Other inlinings (fewer than ten times each): 64
5 / 17

Just trying to generate faster code faster under -optimise

Stats about inlining (“short-term”)

Inlining of “internal” methods

Methods being compiled that were inlined in methods being compiled:

I Times that getters/setters were inlined: 374

I Number of inlined anon-closure apply(): 2584 (292 $sp).

Breakdown of the rest:

I Each callee inlined at least ten times:

times (%) symbol
----- ------- ------
214 (27.4%) scala.tools.nsc.Global.debuglog
174 (22.3%) scala.tools.nsc.Global.log
111 (14.2%) scala.reflect.internal.SymbolTable.atPhase
43 (5.5%) scala.tools.nsc.interactive.Global.debugLog
39 (5.0%) scala.reflect.internal.Symbols$Symbol.setFlag
35 (4.5%) scala.reflect.internal.Symbols$Symbol.fullName
22 (2.8%) scala.tools.nsc.interpreter.repldbg
16 (2.0%) scala.reflect.internal.Symbols$Symbol.isOverloaded
. . .

I Inlinings for callees inlined fewer than ten times each: 1489
6 / 17

Just trying to generate faster code faster under -optimise

Stats about inlining (“short-term”)

Dealing with multiple inlinings of the same callee

Dealing with multiple inlinings of the same callee.
Example 1: Range.foreach():

I Solution 1: Reformulate to invoke just once (cf. p. 10)

I Solution 2, Compiler-supported:
Share inlined BasicBlocks across control paths
(provided covered by the same exception handlers).
An extra var can be used to JUMP to the right successor
(inlineExceptionHandlers does something similar)

7 / 17

Just trying to generate faster code faster under -optimise

Early inlining of anonymous closures (“medium-term”)

Outline
Stats about inlining (“short-term”)

Why focus on the inliner?
Inlining of “external” methods
Inlining of “internal” methods
Dealing with multiple inlinings of the same callee

Early inlining of anonymous closures (“medium-term”)
AST shapes of interest
Example 2: Range.foreach
Advantages

Ideas for the future (“long-term”)
Dedicated early-inlining to avoid NonLocalReturns
Inlining using a stackless IR requires zero type-flow analyses

Wrap-up

8 / 17

Just trying to generate faster code faster under -optimise

Early inlining of anonymous closures (“medium-term”)

AST shapes of interest

Applicability conditions:

1. In some cases, we can know for a callsite what concrete method
will be dispatched at runtime.

2. Say, before uncurry,

I for a callsite receiving a Function AST node as last argument
(anon-closure),

I where the Function’s body is an expression (no return)
and

I that argument is used at a single place in the concrete method
(to invoke apply(). Therefore, the closure doesn’t escape).

3. Two cases: we have the AST of the concrete method (“internal”),
or bytecode can be loaded (and decompiled into an Scala,
not ICode, AST). BTW, can you live with GOTOs in ASTs?

Things like: atOwner, withClosed, etc.
If “all that” holds then . . .

9 / 17

Just trying to generate faster code faster under -optimise

Early inlining of anonymous closures (“medium-term”)

Example 2: Range.foreach

Example 1: Range.foreach

val rv = <coll>
if (rv.length > 0) {
val sentinel = rv.last
var closuVar = rv.start
var loopCond = true
while (loopCond) {
<closuBody>
if(closuVar == sentinel) loopCond = false
else closuVar += rv.step

}
}

I rv is the range instance
I closuBody is the original closure body with usages of the

closure param substituted with usages of the variable that gets
assigned the range’s elements (called “closuVar” above).

https://lampsvn.epfl.ch/svn-repos/scala/scala-experimental/
trunk/earlyinline

10 / 17

Just trying to generate faster code faster under -optimise

Early inlining of anonymous closures (“medium-term”)

Advantages

Advantages:

I The “special case” just described takes a heavy load off
Inliner’s shoulders (and results in a smaller jar).

I Early-inlining means less work for other phases, too:
I lambdalift: fewer captured variables, no indirection for them
I specialize
I faster copy-propagation when eliminating dead closures

I It’s OK to leave untouched those “higher-order callsites” that
inliner won’t attempt to inline anyway.

11 / 17

Just trying to generate faster code faster under -optimise

Ideas for the future (“long-term”)

Outline
Stats about inlining (“short-term”)

Why focus on the inliner?
Inlining of “external” methods
Inlining of “internal” methods
Dealing with multiple inlinings of the same callee

Early inlining of anonymous closures (“medium-term”)
AST shapes of interest
Example 2: Range.foreach
Advantages

Ideas for the future (“long-term”)
Dedicated early-inlining to avoid NonLocalReturns
Inlining using a stackless IR requires zero type-flow analyses

Wrap-up

12 / 17

Just trying to generate faster code faster under -optimise

Ideas for the future (“long-term”)

Dedicated early-inlining to avoid NonLocalReturns

def nonLocalReturnExample(a: Int, b: Int): Boolean = {
for (i <- 2 to b) if (a % i != 0) return false;
true

}

Currently lowered to:

def nonLocalReturnExample(a: Int, b: Int): Boolean = {
<synthetic> val nonLocalReturnKey1: Object = new Object();
try {
scala.this.Predef.intWrapper(2).to(b).foreach[Unit]({
@SerialVersionUID(0) final <synthetic> class $anonfun
extends scala.runtime.AbstractFunction1[Int,Unit] with Serializable {
def this(): anonymous class $anonfun = { $anonfun.super.this(); () };
final def apply(i: Int): Unit = {
if (a.%(i).!=(0))
throw new scala.runtime.NonLocalReturnControl[Boolean(false)](
nonLocalReturnKey1, false)

else ()
}

};
(new anonymous class $anonfun(): Int => Unit)

});
true

} catch {
case (ex @ (_: scala.runtime.NonLocalReturnControl[C._])) =>
if (ex.key().eq(nonLocalReturnKey1)) ex.value().asInstanceOf[Boolean]()
else throw ex

}
}

13 / 17

Just trying to generate faster code faster under -optimise

Ideas for the future (“long-term”)

Dedicated early-inlining to avoid NonLocalReturns

I Without early-inlining but with -optimise
approx. 170 ICode instructions

blocks: [1,7,16,15,26,28,27,25,9,12,10,13,18,19,20,17,11,8,14,22,23,29,24,21,3,4,2,5]

Exception handlers:
catch (NonLocalReturnControl) in ArrayBuffer(7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28) starting at: 3
consisting of blocks: List(6, 5, 4, 3)
with finalizer: null

I With early-inlining and -optimise
approx. 65 ICode instructions

blocks: [1,2,5,6,9,11,12,13,4]

Exception handlers:

14 / 17

Just trying to generate faster code faster under -optimise

Ideas for the future (“long-term”)

Inlining using a stackless IR requires zero type-flow analyses

Inlining using a stackless IR requires zero type-flow analyses:

I Splicing the CFG of a callee into its caller (both as stackless IR)
can be done without worrying about type-stacks at all.

I Conversion into 3-addr and back into expr-language
already available (for post-CleanUp Scala ASTs, not ICode):

http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q4/PartialEval3A.pdf

I In that prototype, an “if” looks visually nested, e.g.

if(c1) {
if(c2) {
stmt;

}
}

I but there’s a one step desugaring to “truly” CFG-based stackless
IRs (your choice of SSA or three-address code)

If(Ident(c1)) GOTO(label)

15 / 17

http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q4/PartialEval3A.pdf

Just trying to generate faster code faster under -optimise

Wrap-up

Outline
Stats about inlining (“short-term”)

Why focus on the inliner?
Inlining of “external” methods
Inlining of “internal” methods
Dealing with multiple inlinings of the same callee

Early inlining of anonymous closures (“medium-term”)
AST shapes of interest
Example 2: Range.foreach
Advantages

Ideas for the future (“long-term”)
Dedicated early-inlining to avoid NonLocalReturns
Inlining using a stackless IR requires zero type-flow analyses

Wrap-up

16 / 17

Just trying to generate faster code faster under -optimise

Wrap-up

It’s hard to pick just one of the options below because
both stand to benefit all Scala programs . . .

1. Improving the current Inliner. Details at
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q4/Inliner.pdf

2. Early inlining of anonymous closures

The next one requires brainstorming, planning, and some knowledge
of McGill’s Soot (i.e., most likely a master thesis):

3. Optimizations based on stackless IR

17 / 17

http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q4/Inliner.pdf

	Stats about inlining (``short-term'')
	Why focus on the inliner?
	Inlining of ``external'' methods
	Inlining of ``internal'' methods
	Dealing with multiple inlinings of the same callee

	Early inlining of anonymous closures (``medium-term'')
	AST shapes of interest
	Example 2: Range.foreach
	Advantages

	Ideas for the future (``long-term'')
	Dedicated early-inlining to avoid NonLocalReturns
	Inlining using a stackless IR requires zero type-flow analyses

	Wrap-up

