
Adding support for CLR Generics

Adding support for CLR Generics

Miguel Garcia
http://lamp.epfl.ch/~magarcia

LAMP, EPFL

2011-09-06

1 / 16

http://lamp.epfl.ch/~magarcia

Adding support for CLR Generics

Outline

Status
The original plan: Two easy steps
What is “Partial Erasure”

Next steps
What’s missing 1 of 4: “Type var bridges for inner classes”
What’s missing 2 of 4: Changes in AddInterfaces
What’s missing 3 of 4: “Type var bridges for local defs”
What’s missing 4 of 4: “Type var bridges for abstract type bindings”

Interplay Generics-Statics (mixin, cleanup)
Background
cleanup and non-fixed formals

Ideas for further work

2 / 16

Adding support for CLR Generics

Status

Outline

Status
The original plan: Two easy steps
What is “Partial Erasure”

Next steps
What’s missing 1 of 4: “Type var bridges for inner classes”
What’s missing 2 of 4: Changes in AddInterfaces
What’s missing 3 of 4: “Type var bridges for local defs”
What’s missing 4 of 4: “Type var bridges for abstract type bindings”

Interplay Generics-Statics (mixin, cleanup)
Background
cleanup and non-fixed formals

Ideas for further work

3 / 16

Adding support for CLR Generics

Status

The original plan: Two easy steps

Step 1: Breaking up AddInterfaces and Erasure:

...
explicitouter
"addifaces"
lazyvals
"full-erasure" (without AddInterfaces)
lambdalift
...

Step 2: Add “partial-erasure”, do “full-erasure” last:

...
explicitouter
"addifaces"
lazyvals
"partial-erasure"
lambdalift
...
cleanup
"full-erasure"
...

4 / 16

Adding support for CLR Generics

Status

What is “Partial Erasure”

The p-erasure |T| of a type T is:

1. For a constant type, itself. For every other singleton type, the p-erasure of its supertype.

2. For other (non-array) typerefs, as follows. When the typeref is to:

2.1 Any, AnyVal, scala.Singleton, or scala.NotNull, its p-erasure is AnyRef.
2.2 Unit, its p-erasure is scala.runtime.BoxedUnit.
2.3 P.C[Ts] where C refers to a class, its p-erasure is |P|.C. (where P is first rebound, see ticket 2585)
2.4 a non-empty type intersection (possibly with refinement): the p-erasure of its intersection dominator (Scala) or

of its first parent (Java)
2.5 else apply(sym.info) // alias type or abstract type

3. For “quantified types” (polymorphic or existential), the p-erasure of its result type.

4. For method types:

4.1 For a method type (Fs)scala.Unit, (|Fs|)scala#Unit
4.2 For any other method type (Fs)T, (|Fs|)|T|.

5. For a type intersection (possibly with refinement)

5.1 Non-empty: In Scala, the p-erasure of the intersection dominator. In Java, the p-erasure of the first parent.
5.2 Empty: java.lang.Object (because the intersection dominator of Nil is AnyRef)

6. For an annotated type, the p-erasure of its underlying type (where underlying is the type without the annotation)

7. For the classinfo type of

7.1 java.lang.Object or a Scala value class, the same type without any parents.
7.2 Array, the same type with only AnyRef as parent.
7.3 any other classinfo type with parents Ps, the same type with parents |Ps|, without duplicate Object refs.

8. for all other types, the type itself (with any sub-components erased)

5 / 16

Adding support for CLR Generics

Status

Actually only the following differs from full-erasure

Actually only the following differs from full-erasure:

I in the TypeMap:
I For array typerefs, Array[|T|].

I in transformInfo():
I a type var gets a TypeBounds info, with upper bound partially

erased and Nothing as lower bound.

As we’ll see next, partial erasure is necessary but not sufficient . . .

6 / 16

Adding support for CLR Generics

Next steps

Outline

Status
The original plan: Two easy steps
What is “Partial Erasure”

Next steps
What’s missing 1 of 4: “Type var bridges for inner classes”
What’s missing 2 of 4: Changes in AddInterfaces
What’s missing 3 of 4: “Type var bridges for local defs”
What’s missing 4 of 4: “Type var bridges for abstract type bindings”

Interplay Generics-Statics (mixin, cleanup)
Background
cleanup and non-fixed formals

Ideas for further work

7 / 16

Adding support for CLR Generics

Next steps

What’s missing 1 of 4: “Type var bridges for inner classes”

In CLR, “type params aren’t visible in nested types”.

class O[T] {
class I { def f(): T = f(); def m(arg: T) {} }
def g(i: I): T = i.f()

}

I BTW, the reference to T inside I has no prefix.

I Solution: Add “bridging type vars”. A dedicated phase right
before explicitouter seems advantageous (tentative name:
“tvarbridges4inner”)

class O[T] {
class I[U] { def f(): U = f(); def m(arg: U) {} }
def g(i: I[T]): T = i.f()

}

8 / 16

Adding support for CLR Generics

Next steps

What’s missing 2 of 4: Changes in AddInterfaces

trait Lst[+T] {
def append[U >: T](other: U): Lst[U] = append(this)
def append[U](other: Lst[U]): Lst[U] = other

}
class CLst[T] extends Lst[T]

Changes needed in AddInterfaces (specifically,
LazyImplClassType) because . . .

[[syntax trees at end of addifaces]]
. . .
/*- PROBLEM: dangling T */
abstract trait Lst$class extends java.lang.Object
with ScalaObject with Lst[T] {

def /*Lst$class*/$init$(): Unit = { () };

def append[U >: T <: Any](other: U): Lst[U] =
Lst$class.this.append[T](Lst$class.this);

def append[U >: Nothing <: Any](other: Lst[U]): Lst[U] = other
}

9 / 16

Adding support for CLR Generics

Next steps

What’s missing 3 of 4: “Type var bridges for local defs”

A local def uses a non-local type param

object Obj {
def ownsTypeParamAndLocalClass[T](t: T): T = {

class LC { def lcm(lcmarg: T): T = lcmarg }

(new LC).lcm(t)
}

}

A new phase right before lambdalift (tentative name:
typevarbridges4local):

object Obj {
def ownsTypeParamAndLocalClass[T](t: T): T = {

class LC[U /*- bridge to T */] { def lcm(lcmarg: U): U = lcmarg }

(new LC[T]).lcm(t)
}

}

10 / 16

Adding support for CLR Generics

Next steps

What’s missing 4 of 4: “Type var bridges for abstract type bindings”

abstract class C { type T; def t(): T; }

object Obj2 {
def f(x: C): String = {
class D { def m(t: x.T): String = t.toString(); }

(new D).m(x.t()) /*- path-dependence allows concluding that
the actual arg to m’s invocation conforms to the param’s declared type. */
}

}

Another phase, this time before partial erasure, transforming as
follows:

abstract class C[T] { def t(): T; }

object Obj2 {
def f[T](x: C[T]): String = {
class D { def m(t: T): String = t.toString(); }

(new D).m(x.t()) /*- No path-dependence here. */
}

}

Separate compilation? (Say, Obj2.f() not accessing C#T)

11 / 16

Adding support for CLR Generics

Interplay Generics-Statics (mixin, cleanup)

Outline

Status
The original plan: Two easy steps
What is “Partial Erasure”

Next steps
What’s missing 1 of 4: “Type var bridges for inner classes”
What’s missing 2 of 4: Changes in AddInterfaces
What’s missing 3 of 4: “Type var bridges for local defs”
What’s missing 4 of 4: “Type var bridges for abstract type bindings”

Interplay Generics-Statics (mixin, cleanup)
Background
cleanup and non-fixed formals

Ideas for further work

12 / 16

Adding support for CLR Generics

Interplay Generics-Statics (mixin, cleanup)

Background

Statics are per-type-instantiation on CLR. From C# 2.0 spec:
A static variable in a generic class declaration is shared amongst all instances of
the same closed constructed type, but is not shared amongst instances of different
closed constructed types . . . regardless of whether the type of the static variable
involves any type parameters or not.

The CLR way: class-level type-params are visible in static members.
For example, the following C# program prints 0050:

class Gen<T> { public static int X = 0; }
class Test {
static void Main() {
Console.Write(Gen<int>.X); Console.Write(Gen<string>.X);
Gen<int>.X = 5;
Console.Write(Gen<int>.X); Console.Write(Gen<string>.X);

}
}

1. Consequences for mixin: TODO

2. More on CLR Generics:
http://lamp.epfl.ch/~magarcia/ScalaNET/slides/TourCLRGenerics.pdf

13 / 16

http://lamp.epfl.ch/~magarcia/ScalaNET/slides/TourCLRGenerics.pdf

Adding support for CLR Generics

Interplay Generics-Statics (mixin, cleanup)

cleanup and non-fixed formals

def gy[Y] (y: Y, x : { def f[T](a: T): Int }) = x.f(y)

val ostr = new { def f(a: String) = 4 }
val oint = new { def f(a: Int) = 4 }
val oobj = new { def f(a: Object) = 4 }
val ogen = new { def f[T](a: T) = 4 }

If T binds to a concrete type at a callsite, we have fixed-types for
formals. However, T can also bind to another type var (Y in the
example). Looks like that should be rejected. Some cases:

error: type mismatch;
found : Test.oint.type (with underlying type java.lang.Object{def f(a: Int): Int})
required: AnyRef{def f[T](a: T): Int}

gy(123, oint)
^ /*- similarly for ostr and oobj. */

gy(null, null) /*- accepted, NullPointerException at runtime. */
gy(null, ogen) /*- runs ok. */
gy(null, oobj.asInstanceOf[AnyRef{ def f[T](a: T): Int }]) /*- runs ok too. */

Details on how to avoid cache fragmentation at
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q3/cleanup2.pdf

14 / 16

http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q3/cleanup2.pdf

Adding support for CLR Generics

Ideas for further work

Outline

Status
The original plan: Two easy steps
What is “Partial Erasure”

Next steps
What’s missing 1 of 4: “Type var bridges for inner classes”
What’s missing 2 of 4: Changes in AddInterfaces
What’s missing 3 of 4: “Type var bridges for local defs”
What’s missing 4 of 4: “Type var bridges for abstract type bindings”

Interplay Generics-Statics (mixin, cleanup)
Background
cleanup and non-fixed formals

Ideas for further work

15 / 16

Adding support for CLR Generics

Ideas for further work

Once partially erased types are available,

1. types can be checked for CLR suitability right after
lambdalift (they won’t get any simpler afterwards)

2. perhaps specialize has an easier time running later in the
pipeline (thus handling simpler AST shapes)

3. program verification tools can get more precise information all the
way to ICode.

16 / 16

	Status
	The original plan: Two easy steps
	What is ``Partial Erasure''

	Next steps
	What's missing 1 of 4: ``Type var bridges for inner classes''
	What's missing 2 of 4: Changes in AddInterfaces
	What's missing 3 of 4: ``Type var bridges for local defs''
	What's missing 4 of 4: ``Type var bridges for abstract type bindings''

	Interplay Generics-Statics (mixin, cleanup)
	Background
	cleanup and non-fixed formals

	Ideas for further work

