JDK-based JDK-based .NET-ready .NET-ready
library main library main
sources [\ T sources sources [N T T sources
| | | |
v : & :
, i jdk2ikvm [i
[DK [-——mmmmm- I] 11747 [I
| |
Contents

A preview of Scala. NET:
Cross-platform development the Scala way

(© Miguel Garcia, LAMP, EPFL
http://lamp.epfl.ch/~magarcia

Updated March 6", 2012

Abstract

Although Scala.NET hasn’t achieved yet feature parity with the flagship
Scala compiler, it nonetheless already knows one neat trick: how to target
JDK and .NET from a single codebase. The open-source tools used for
this task on the Scala side are pre-release yet mature enough that the
daily build of Scala.NET results from the same sources used to build
Scala on JVM. Given that Scala.NET is a .NET-only compiler (no cross-
compilation, just linking and emitting assemblies) there was a need to
convert the JDK-based sources of the original compiler to use NET APIs.
That conversion applies the same recipe as the IKVM compiler (ikvmc),
with the difference that ikvmc is a bytecode-level tool while jdk2ikvm
is source-level. In these notes, we show (a) how to develop Scala.NET
apps from scratch; as well as (b) how to re-target the sources of Scala
applications from JDK to .NET, with near-zero manual steps.

1 Cross-plattorm development the Scala wa;

[2_Developing Scala.NET apps from scratch|
2 An interim solution for IDE support] « v v vovv oo

|3 Porting apps originally developed for JDK]|

.................................
[3-2~ What jdk2ikvm does behind the scenes|.

4 Debugging in Visual Studio|

F_Turther resources|

http://lamp.epfl.ch/~magarcia

1 Cross-platform development the Scala way

Platform migration has never been easy but the rewards are apparent, especially
for automated, continuous migration from a single codebase (leaving out just one
of these features makes costs skyrocket, due to the delays and error-proneness
associated with manual steps).

For all their benefits, software platforms like JDK and the .NET Frame-
work don’t contribute by themselves to making migration any easier (they have
increased the reward however) because of two factors: (a) lack of a unified pro-
gramming language across platforms; and (b) large contact surface in terms of
APIs offered by JDK and .NET. Regarding the first item, there wasn’t much
developers could do (short of writing C programs). Addressing the second item
(for example, by encapsulating platform dependencies in well-defined compo-
nents) has proved elusive in practice: depedencies have the tendency to creep
in (including those of the com.sun.* variety).

Our approach to migration addresses both concerns above: Scala compil-
ers are in the unique position of supporting the exact same language on both
plaftorms. If the language is the same then porting an existing application is
just a matter of replacing JDK calls with .NET ones, right? Yes, exactly, not
as a one-time effort performed by someone well-versed in the intricacies of both
platforms, but automatically, upon changesets on the single codebase.

That brings us to the IKVM library. It’s an implementation of JDK for NET,
excelling at two seemingly competing goals: first and foremost, faithfully pre-
serving JDK semantics, all while shunning software emulation in favor of CLR
capabilities for better performance. As an example of the latter, Java strings
are not emulated but native System.String instances are used. Same goes for
exceptions and arrays. This desirable feature has a ripple effect throughout the
API exposed by IKVM, that has to be taken into account when targeting it
(don’t worry: jdk2ikvm does it for you). For example, a System.String can’t
possibly implement interface java.lang.CharSequence, unlike Java strings.

Although we focus on one particular approach to cross-platform development
with Scala, we mention that in green-field scenarios another strategy might be
preferable. There, the cost of encapsulating platform dependencies behind com-
mon APIs can be spread over the project lifetime (for example, by standardizing
from the start on scala.io as a platform-neutral facade to filesystem function-
ality). While jdk2ikvm does not help with that initial porting (in the example,
from java.io to scala.io), it does not stand in the way either, and thus an
incremental migration strategy away from JDK APIs in favor of the Scala SDK
is also possible.

1.1 Download

e The most recent sources of Scala.Net are available on GitHub:
https://github.com/magarciaEPFL/scaladotnet

e Binaries in the downloads section:
https://github.com/magarciaEPFL/scaladotnet/downloads

https://github.com/magarciaEPFL/scaladotnet
https://github.com/magarciaEPFL/scaladotnet/downloads

2 Developing Scala.NET apps from scratch

Scala.NET does not as of this writing (2011-05-16) fully support the all-important
Generics that pretty much every modern assembly relies on. What can be
compiled against are: scalalib.d1l, IKVM, and libraries containing backwards
compatible versions of generified APIs. By the way, IKVM does not use generics
because at bytecode level there are no generics in OpenJDK.

(Please be assured that if you see us writing caveats like the one above, it’s
because we're already hard at work to add Generics to Scala.NET ASAP :-)

2.1 An interim solution for IDE support

Visual Studio supports step-debugging of Scala.NET programs (Sec. 4)) but not
their editing. Until a VS extension for Scala arrives, Scala.NET programs can
be developed with an existing (JVM-based) IDE:

1. programs using just the Scala library compile unmodified on Scala.NET,
and thus a Scala IDE can be used to develop them.

2. programs using (non-generic) APIs from .NET assemblies can also be writ-
ten with the help of a JVM-based Scala IDE, provided that a stub is pro-
vided for that API. Figure[I| depicts the development experience. As long
as the IDE can be made aware about the target .NET APIs, the illusion
will work. Two “stubbing” alternatives exist: md2src and ikvmstub.

The md2src alternative is described in some depth in its write-up[}

It would be useful if .NET types could be represented in a format
consumable by current Scala IDEs. That way, a (JVM-based) IDE
can be used to develop Scala.Net apps (all navigation and editing
goodies included) offloading compilation to the Scala.Net compiler.
These notes showcase md2src, a tool that allows doing just that. For
each .dll library that an app will use, mdsrc outputs .scala files
with type stubs that keep the IDE happy. The Scala. NET compiler
instead finds out about external types in .d1lls themselves.

A precompiled version of md2src is available for downloadﬂ At the command-
line, just provide the file-path to the assembly to “stub-ify”, making sure that
mscorlib.dll can be found in the same folder as <assembly-file>:

scala -cp %MD2SRC_JAR), scala.tools.msil.md2src.Main <assembly-file>

3 Porting apps originally developed for JDK

3.1 Basic usage

A precompiled version of jdk2ikvm can be downloaded from http://lamp.epfl.
ch/~magarcia/jdk2ikvm/soft/jdk2ikvm. jar

Using jdk2ikvm to convert a tree of sources feels much like compiling them
on JDK. The template of a typical invocation looks as follows:

Thttp://lamp.epfl.ch/~magarcia/ScalaNET/2011Q2/TestDriveMD2SRC. pdf
*http://lamp.epfl.ch/~magarcia/jdk2ikvm/soft/md2src. jar

http://lamp.epfl.ch/~magarcia/jdk2ikvm/soft/jdk2ikvm.jar
http://lamp.epfl.ch/~magarcia/jdk2ikvm/soft/jdk2ikvm.jar
http://lamp.epfl.ch/~magarcia/ScalaNET/2011Q2/TestDriveMD2SRC.pdf
http://lamp.epfl.ch/~magarcia/jdk2ikvm/soft/md2src.jar

.-@- Countall. scala]
1 package iterating
2
3 import System.Collections.IList
4
5 Dobject Countall {
6 © def doCount(sample: Int, is: Ilist) = {
7 val enu = is.GetEnumerator
8 var count = @
9 while(enu.MoveNext) {
18 if(enu.Current.asInstance0f[Int] == sample) count += 1;
kil }
12 count
13 @ 1}
14 o}
15
16 éobject Main {
17 |2 def main(args: Array[String]) {
18 E val ilist = new System.Collections.Arraylist()
19 ilist.Add(1); ilist.Add(2);
28 ilist.Add
21 @ Add{value: AnyRef)
22 (1) AddRange(c: ICollection) Any
23 Choosing item with Tab will averwrite the rest of identifier after canet)
24 § scala.Console.println(CountAll.doCount(l, ilist))
5 b}
26 0}

Figure 1: Piggybacking on JVM-based IDEs to develop Scala.NET apps, Sec.

// all in one line, line-breaks inserted for readability only

scalac -Xplugin c:\myplugins\jdk2ikvm. jar
-P:jdk2ikvm:output-directory:%0UT_FOLDER), -d %O0UT_FOLDERY
-Ystop-after:superaccessors -Yrangepos
. sources

Additional compiler options are there to let scalac know where jdk2ikvm
is located and the folder that will hold converted files. Two more options
(-Ystop-after and -Yrangepos) reveal the way jdk2ikvm is implemented: it’s
a compiler pluginEl, i.e. it performs additional processing between certain com-
pilation phases (in our case, it serializes to disk adapted sources). After that,
scalac stops.

The real compilation is done with scalacompiler.exe:

scalacompiler.exe -Ydebug -d MSIL_FOLDERY,
-target:msil
-Ystruct-dispatch:no-cache -no-specialization
-Xassem-name %0UT_ASSEMBLYY,
-Xassem-extdirs %DLL_FOLDERJ,
-Xshow-class %MAIN_CLASSY
(converted) sources

Some options are specific to Scala.NET, and scalacompiler.exe -X reveals
their purpose:

-Xassem-extdirs <dirs> (Requires -target:msil) List of directories containing assemblies.

Shttp://wuw.scala-lang.org/node/140

http://www.scala-lang.org/node/140

-Xassem-name <file> (Requires -target:msil) Name of the output assembly.
-Xassem-path <path> (Requires -target:msil) List of assemblies referenced by the program.

The last option shown in the template above (-Xshow-class) is a bit idiosyn-
cratic, in that it has been borrowed from forJVM compilation mode and retooled
for another purpose: in Scala.NET it gives the fully-qualified name of the class
with the entry main method, thus indicating that an .exe should be emitted.
Leaving it out results in a .d11 being generated.

Finally, -Ydebug is there just to show compilation progress, and -d is nat-
urally the output folder, with a twist: the output of Scala.NET is a text
file with IL instructions, of the kind that the ilasm assembler knows how to
deal with (yes, that’s an additional compilation step, but usually way faster
than one might assume). A future version of Scala.NET will directly emit bi-
nary assemblies. In the meantime ...how to run ilasm is the topic of http:
//msdn.microsoft.com/de-de/library/496e4ekx.aspx

The simplest way to get started involves having in -Xassem-extdirs the same
assemblies that scalacompiler.exe requires to run (scalalib.dll, the IKVM
library, and a few others). This way, you may be getting assemblies not really
needed, but on the other hand one makes sure that none of the assemblies that
pretty much every Scala.NET program needs is missing. Additionally, after
assembling a Scala.NET program, it makes sense to run peverify (bytecode
verification) right there, before the program’s first run.

As already mentioned, precompiled versions of the Scala library and the
compiler for .NET can be obtained via SVN, in the bin folder of the preview:

svn co http://lampsvn.epfl.ch/svn-repos/scala/scala-experimental/trunk/bootstrap

3.2 What jdk2ikvm does behind the scenes

The bread and butter of jdk2ikvm transformations are callsite rewritings:

lobject HelloWeorld { lobject HelloWorld {

2 wal x = (new String(Array('h',K'e',"1',"'1","0"))] z2 wal x = (java.lang.String.instancehelper_ indexOf(
3 indexOf 2) 3 java.lang.String.newhelper |

43} | 4 Array('h','e','1l','1",'0")) , 2)

)

jdk2ikvm is only 2KLOC heavy, and thus there are a few uncommon cases
where it leaves the input as-is, and manual rewriting is needed afterwards. At
the latest, this is discovered when Scala.NET refuses to compile, but more often
jdk2ikvm will have emitted a warning beforehand:

Z:\scalaproj\src\compiler\scala\tools\ant\sabbus\CompilationFailure.scala:12:
warning: [jdk2ikvm] couldn’t substitute type at scala. ‘package‘.Exception with java.lang.Exzception
case class CompilationFailure(message: String, cause: Exception) extends Exception(message, cause)

Sometimes, the consequences of IKVM’s erased types exceed what jdk2ikvm
automates (the manually rewritten version is shown on the left):

http://msdn.microsoft.com/de-de/library/496e4ekx.aspx
http://msdn.microsoft.com/de-de/library/496e4ekx.aspx

1t private def get(key: String): List[Fileish] = J4E private def get(key: String): List[Fileish] =

47 if {cache contazinsEey key) cache.getikey) 47 if (cache containsFey key) cache._get(key)_asInstanceQ0f[List[Fileish]]

42 else Nil 48 else Nil

43 43

50 private def add(key: String, value: Fileish) = { (30 private def add(key: String, wvalue: Fileish) = {

51 if (cache contzinsKey key) 51 if {(cache containsEey key!

52 cache .replace (key, wvalue :: cache_getkey)) 52 cache.replace (key, walue :: cache.get(key)_.asInstanceOf[List[Fileish]])
B else cache.putikey, List{walue)) 53 else cache put(key, List(value))

54 | ET

55 owverride def ToString = 55 override def ToString =

S& "Spurces(%d dirs, %d jars, %d scurces)".format| S8 "Spurces(%d dirs, %d jars, %d scurces)".format(

57 dirs.size, jars.size, 7 dirs.size, jars.size,

58 cache.asScala.values map (_.length) sum cache _asScala.asInstanceOf [Map[String, List[Fileish]l]]_walues map (_-leng
53) 1

&0}

Shown below, an interplay between (a) IKVM giving array type for a re-
peated param in a JDK signature; and (b) a single argument, which was han-
dled as-is by the Scala compiler on JDK, but now has to be explicitly packed
in an array (usually, jdk2ikvm performs this rewriting, but not in this case):

52 if (completion ne NoCompletion) { 52 if {(completicn ne NoCompletion) {

53 wal argCompletor: ArgumentCompleter = 53 wal argCompletor: ArgumentCompleter =

54 new ArgumentCompleter| 54 new ArgumentCompleter|

55 new JLineDelimiter, 55 new JLineDelimiter,

13 scalaToJline (completion.completexr())) '—[56 scala.BArray (scalaToJline (completion.completer{)))}
57 argCompletor setStrict false 57 argCompletor setStrict false

=L 5B

559 this addCompleter argCompletor 53 thia addCompleter argCompletor

&0 this setButoprintThreshold 400 // max completig &0 thias setButoprintThreshold 400 // max completion candidate:
g1 } g1 }

Based on our experience porting the Scala compiler, manual retouching was
needed for less than 1% of all sources, and then only in a few places (we have
several examples to report only after porting a couple thousand files).

Rather than extending jdk2ikvm (Sec. b)) an easier strategy is “workaround-
ing”. For example, both versions below behave identically on JDK, but for some
reason a literal formulation of "%%%ds" format (NPAD-1) format s just won’t
work on IKVM. Solution: simplify the code at the source:

€% // Formatting for Some error messages g9 /4 Formatting for some error messages
70 private wal NPAD = 15 70 private wal WEAD = 15
71 def padis: String): String = 7 def pad(s: String): String =

72 "%%%ds" format (NPRD-1) format s 72 ("%"+ (NEPAD-1)+"3") format s

As a last example, the closure’s argument can’t be a wildcard when some
java.lang.String method is called:

def isScalaClass(x: AnyRef) =
Option{x.getClass.getPackage) exists (.getName startsWith "scala.™)

def isScalaClass(x: AnyRef) =
Option(x.getClass.getPackage) exists (p =» p.getName startsWith "scala.”)

because otherwise a wildcard will show up inside an actual argument (where
p.getName appears below), and that’s a no-no in Scala:

// code emitted by jdk2ikum

def isScalaClass(x: AnyRef) =
Option(_root_.java.lang.0Object.instancehelper_getClass(x) .getPackage) exists
(p => _root_.java.lang.String.instancehelper_startsWith(p.getName, "scala."))

Summing up: not many cases to manually retouch, most of them can be
patched once and for all in the files given as input to jdk2ikvm, and those
uncommon remaining cases will be clearly pointed out by Scala.NET.

4

Debugging in Visual Studio

Disassembly Consolescala btd.scala > FuiEnHll bitd

'

2 object MLine {

3 def main(args: Array[String]) {

4 scala.Console.print("a™);scala.Conscle.print("b");scala.Console.print("c");
5 val a = "a".GetHashCode;val b = "b".GetHashCodejval ¢ = "c".GetHashCode;

5 val x = ((a+b) *c) - ((h-b) / c)

7 scala.Console. print(x)

5}

9

}

In order to step-debug over Scala sources:

1.
2.

“File / New Project”
“Other Project Types / Visual Studio solutions / Blank solution”

right click on the new solution, “Add existing project” and pick myprogram.exe
(on the same folder, myprogram.pdb should be found)

From the main menu, “Debug / Options and Settings”, mark “Enable
address-level debugging”

ready to go, “Step into new instance”. Besides line breakpoints, exception
breakpoints are very useful (“Debug / Exceptions”).

Another write—ulﬂ gives details on debugging at the .msil (bytecode) level.

5

Further resources

Some venues for further exploration:

e Typically, the larger the application, the more varied its use of JDK APIs.

Although ITKVM is the most complete implementation of JDK on .NET,
it is still the case that some APIs are not supported. Details at http:
//www.ikvm.net/

e The conversion recipe of jdk2ikvm is covered in a 30-page write-upP]

e The website http://lamp.epfl.ch/~magarcia/jdk2ikvm/| points to the

Subversion repository for jdk2ikvm, and discusses how to extend or adapt
the tool to other migration scenarios (say, from java.io to scala.io).

Acknowledgement

Big thanks to Jeroen Frijters for creating IKVM, http://www.ikvm.net/.

4http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2010Q4/ikvmify4.pdf
Shttp://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2010Q4/ikvmify?2.pdf

http://www.ikvm.net/
http://www.ikvm.net/
http://lamp.epfl.ch/~magarcia/jdk2ikvm/
http://www.ikvm.net/
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2010Q4/ikvmify4.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2010Q4/ikvmify2.pdf

	Cross-platform development the Scala way
	Download

	Developing Scala.NET apps from scratch
	An interim solution for IDE support

	Porting apps originally developed for JDK
	Basic usage
	What jdk2ikvm does behind the scenes

	Debugging in Visual Studio
	Further resources

