
Bootstrapping Scala.NET via jdk2ikvm

c© Miguel Garcia, LAMP, EPFL
http://lamp.epfl.ch/~magarcia

April 24nd, 2011

Abstract

Bootstrapping the compiler on .NET requires for scalacompiler.exe to
compile its own sources. For that, scalalib.dll should also be avail-
able. Both assemblies above are obtained from sources which result from
an automated API migration, performed by jdk2ikvm. This tool takes
as input a tree of Scala source files with JDK depedencies, and emits a
mirror of that source tree, preserving the original layout except for those
places where a JDK dependency has been replaced with its IKVM coun-
terpart. Bootstrapping has been automated, and these notes describe
how that process works under the hood. If you want to use Scala.NET
then none of these details are necessary: simply downloading the (already
bootstrapped) distribution.

converted

scalalib

sources

IKVM

converted

compiler

sources

scalalib

sources

JDK

compiler

sources

jdk2ikvm

1

http://lamp.epfl.ch/~magarcia

Contents

1 Before delving into details: Summary of the whole process 3

2 Getting the source-to-source converter ready 4
2.1 How to build jdk2ikvm . 4
2.2 Running jdk2ikvm on Scala trunk 4

3 Getting sources ready for the cross-compiler 5
3.1 Changes and additions mandated by .NET and by IKVM 6
3.2 Tricks that jdk2ikvm can’t (so far) 6

4 Getting non-Scala libraries ready 7
4.1 Non-Scala sources and libraries in the distribution 7

4.1.1 Java-only libraries that can be taken as-is 7
4.1.2 jfisl and assembly roundtripping 8
4.1.3 scalaruntime.dll . 10
4.1.4 A touch of C#: CSharpFilesForBootstrap.dll 10

4.2 Other libraries in the distribution 12
4.3 IKVM and .NET pre-requisites 12

5 Cross-compiling 13
5.1 Library . 13
5.2 Compiler . 13

6 Compiling with scalacompiler.exe 15

7 And now with Mono 16
7.1 Environ variables . 16
7.2 Getting sources ready for jdk2ikvm 17
7.3 Downloading and building jdk2ikvm 17
7.4 Getting sources ready for the cross-compiler 17

7.4.1 Prepare folder to hold files converted by jdk2ikvm 17
7.4.2 Converting with jdk2ikvm the msil, library, and compiler

folders in trunk/src . 17
7.4.3 Manually applying patches that jdk2ikvm does not auto-

mate . 18
7.5 Getting dlls ready for the cross-compiler 18
7.6 Cross-compiling . 18
7.7 Assembling . 19
7.8 Troubleshooting and Debugging 19

8 After bootstrapping, the fun only starts 20
8.1 Debugging in Visual Studio . 20
8.2 Profiling . 20
8.3 A few words about Generics: Coming soon! 21
8.4 Developing Scala.NET apps from your JVM IDE 21
8.5 Acknowledgement . 22

2

1 Before delving into details: Summary of the
whole process

Once scalacompiler.exe and scalalib.dll are available, using them to compile
their own sources is also called “bootstrapping”. But that’s not the “bootstrap-
ping” described in these notes. The “bootstrapping” described here starts with
the compiler sources for its JVM version, obtaining as intermediate result the
first scalacompiler.exe (which is then used to compile its own sources). Ob-
taining scalacompiler.exe “for the first time” involves using the cross-compiler.

Scala.NET bootstrapping is easier than it seems. Specially after breaking it
up into four steps:

1. API migration. We want to boostrap the compiler, thus we need to
have Scala.NET sources to compile. For that, we need to:

(a) build and run jdk2ikvm (Sec. 2). This discussion will also be useful in
case you want to port your own projects to Scala.NET using jdkikvm.

(b) apply manually those few transformations that either can’t be au-
tomated (e.g., adding .NET-specific implicits to Predef) as well as
those that aren’t yet supported by jdk2ikvm (and for which there’s a
straightforward workaround). All this in Sec. 3.

2. Preparing pre-requisite libraries. This is a cumbersome step, as
shown by the section length. We use the following tools: ikvmc, ilasm,
and csc. The good news is that Sec. 4 attempts to convey all the relevant
details on using these tools for the task at hand.

3. Cross-compiling. With the previous items in place, we get into one-
click territory. In this step the compiler is run on JVM (cross-compilation
mode) to produce .NET assemblies, as discussed in Sec. 5.

4. Bootstrapping proper. This step takes as input the same source files
as above, except that the .NET version of the compiler and library are
run (i.e., no more cross-compilation). A behavioral-conformance test is
also performed. Details in Sec. 6.

Steps 1 and 2 are independent of each other. The rest is sequential: step 3
depends on both 1 and 2; while steps 3 and 4 must be carried out in that order.

• Secs. 3 to 6 describe bootstrapping in detail with Windows commands.

• Sec. 7 sums up the process for Mono, giving command-prompt instructions
(i.e., telling the how’s but not the why’s already included above)

• Sec. 8 discusses ideas for future work.

A note on the patches in Step 1.(b) above. They are unavoidable, even if
jdk2ikvm handled the few corner cases it overlooks now. Why they are unavoid-
able can be seen when compiling scalalib.dll. For that to work, the library
sources must include references to IKVM types. For the cross-compilation step
to work (Step 3), you’d better run on JVM with a version of the Scala library
that omits any IKVM types (because you’re running on JVM . . .). See? The
patches are what keeps both the cross-compiler and the “native compiler” happy.

3

2 Getting the source-to-source converter ready

2.1 How to build jdk2ikvm

Starting from scratch as we are, we have to download and build jdk2ikvm:

1. compile all Scala source files from:

svn co

http://lampsvn.epfl.ch/svn-repos/scala/scala-experimental/trunk/jdk2ikvm/src/scala/tools/jdk2ikvm

jdk2ikvm

2. say the resulting classfiles are found in folder myplugins\jdk2ikvm\classes

3. prepare jdk2ikvm.jar

del jdk2ikvm.jar

jar -cf jdk2ikvm.jar -C myplugins\jdk2ikvm\classes scala -C myplugins\jdk2ikvm\resources\ .

4. where myplugins\jdk2ikvm\resources contains the plugin manifest scalac-plugin.xml

<plugin>

<name>jdk2ikvm</name>

<classname>scala.tools.jdk2ikvm.JDK2IKVMPlugin</classname>

</plugin>

2.2 Running jdk2ikvm on Scala trunk

Let’s see if a picture is really worth a thousand words:

converted

scalalib

sources

IKVM

converted

compiler

sources

scalalib

sources

JDK

compiler

sources

jdk2ikvm

It all starts with the sources from trunk, where “jscala” below is used as a
mnemonic for “JDK-based Scala sources”

svn co http://lampsvn.epfl.ch/svn-repos/scala/scala/trunk@24806 jscala

All right, here’s where you’ll miss the separate branch for Scala.NET. We’ll
manually apply a few changes to overcome jdk2ikvm limitations that that
branch has already merged. But if you’re reading this, you’re into compiler
internals, right? More details in Sec. 3.2.

Please download the patches from http://lamp.epfl.ch/~magarcia/ScalaNET/

2011Q2/patches1.zip and apply them with:

4

http://lamp.epfl.ch/~magarcia/ScalaNET/2011Q2/patches1.zip
http://lamp.epfl.ch/~magarcia/ScalaNET/2011Q2/patches1.zip

patch -p0 -i ForAssemblyVisibility.patch

patch -p0 -i ForCompileByEXE.patch

patch -p0 -i TricksThatJ2KCannot.patch

ant build

As with most compiler plugins, jdk2ikvm requires a few command-line options
when run:

-Ystop:superaccessors /*- given that the plugin runs right after typer */

-sourcepath bla\bla\src

-P:jdk2ikvm:output-directory:bla\bla\out

-d bla\bla\out /*- yes, again the same output folder as given above */

-Xplugin where\to\find\jdk2ikvm.jar

-Yrangepos

The option -Yrangepos has an interesting effect on the Abstract Syntax Trees
(ASTs) that the compiler builds: nodes record the text interval (i.e., start-end
positions in the input files) for program elements. This information is used
by other tools to implement refactorings, and in general allows implementing
source-level transformations, as exemplified by jdk2ikvm.

scala.tools.nsc.interactive.RangePositions performs in validatePositions() a number of checks,

some of which fail but whose failure is nonetheless not important for jdk2ikvm.

One of my patches to RangePositions results in errors being more readable.

Whether those improved error messages are shown or not,

the important thing is that no ValidateException is thrown.

The following lines should therefore be commented out, as shown below:

/* if(validationErrors > 0)

throw new ValidateException("There were "+validationErrors+" tree-positions validation errors.") */

For the purposes of bootstrapping, the JDK-to-IKVM conversion has to be
applied to three folders in the src folder of the Scala trunk: msil, library, and
compiler.

3 Getting sources ready for the cross-compiler

After jdk2ikvm has run on jscala (and before feeding those sources to the cross-
compiler) a few patches are needed. These patches fall in two categories:

• additions mandated by .NET. These are obviously nowhere to be found
in the JDK-based sources. Sec. 3.1.

• patches to circumvent jdk2ikvm shortcomings. All right, a few corner cases
are not (yet) automated by jdk2ikvm. In the meantime, Sec. 3.2 describes
what to do.

It all boils down to having 50 files manually changed before they reach the cross-
compiler, out of 1065 files automatically converted by jdk2ikvm. The following
zip archive contains the patched sources:

http://lamp.epfl.ch/~magarcia/ScalaNET/2011Q2/patches2.zip

5

http://lamp.epfl.ch/~magarcia/ScalaNET/2011Q2/patches2.zip

3.1 Changes and additions mandated by .NET and by
IKVM

The “.NET-mandated” changes are only natural. For example, in Predef the
RHS for the String type alias is now System.String. As another example,
ScalaObject now extends System.Object.

Other changes are not so much .NET-specific but rather due to our start
situation (JDK-based Scala sources). For example, the following implicits are
added in Predef to account for the preferred reflection abstractions of JVM
and .NET:

implicit def class2type(c : java.lang.Class) : System.Type = ikvm.runtime.Util.getInstanceTypeFromClass(c)

implicit def type2class(t : System.Type) : java.lang.Class = ikvm.runtime.Util.getFriendlyClassFromType(t)

The mapping between Java and .NET exception classes also requires runtime
object wrapping:

implicit def systemExceptionToJLException(cause: System.Exception) = new java.lang.Exception(cause)

implicit def systemExceptionToJLError(cause: System.Exception) = new java.lang.Error(cause)

Arrays in .NET are instances of System.Array:

implicit def arrayToSystemArray(xs: Array[_]): System.Array = {

xs.asInstanceOf[System.Array]

}

Let’s not forget some additions to ScalaRunTime:

def _ToString(x: Product) = _toString(x)

def _GetHashCode(x: Product) = _hashCode(x)

def _Equals(x: Product, y: Any) = _equals(x, y)

The remaining additions to Predef are motivated in implementation choices
of IKVM. Most notably, representing java.lang.CharSequence not as an interface
but as a valuetype, as shown in Listing 1 on p. 23.

All this is mentioned because, being now in scalalib.dll, the above defini-
tions could also be in scope when writing your own Scala.NET programs. And
yes, given that scalalib.dll depends on the IKVM library, your Scala.NET
programs will also depend on it. It’s all a matter of transitivity, you see.

3.2 Tricks that jdk2ikvm can’t (so far)

jdk2ikvm is only 2KLOC heavy, and thus there are a few (special) cases where it
leaves the input as-is, and manual rewriting is needed afterwards (as signalled
by Scala.NET when attempting to compile those files).

In some occassions, the consequences of IKVM’s erased types exceed what
jdk2ikvm automates (red background means manually modified):

6

(The above shows that Linux has meld1, and Windows windiff.)
Othertimes, it’s IKVM’s decision to give an array type to what a JDK sig-

nature shows as a repeated param (most of the time, the required rewriting is
performed, but not in the case shown below):

4 Getting non-Scala libraries ready

As will be seen in Sec. 5, a number of libraries are required to carry out the
next step in bootstrapping (cross-compiling). How to build those libraries is the
topic of this section.

4.1 Non-Scala sources and libraries in the distribution

4.1.1 Java-only libraries that can be taken as-is

For the Java sources described below, their .jar files are converted to .dlls
using ikvmc, the bytecode-level compiler of IKVM.

• forkjoin: Contains scala.concurrent.forkjoin. These Java classes2 are
required by scala.collection.parallel and scala.actors.

• msil: The Java files under ch.epfl.lamp.compiler.msil3. Required by
GenMSIL and TypeParser.

Conversion is done simply:

ikvmc -target:library msil.jar -out:msil.dll

ikvmc -target:library forkjoin.jar -out:forkjoin.dll

1http://meld.sourceforge.net/
2http://lampsvn.epfl.ch/trac/scala/browser/scala/trunk/src/forkjoin
3http://lampsvn.epfl.ch/trac/scala/browser/scala/trunk/src/msil/ch/epfl/lamp/

compiler/msil

7

http://meld.sourceforge.net/
http://lampsvn.epfl.ch/trac/scala/browser/scala/trunk/src/forkjoin
http://lampsvn.epfl.ch/trac/scala/browser/scala/trunk/src/msil/ch/epfl/lamp/compiler/msil
http://lampsvn.epfl.ch/trac/scala/browser/scala/trunk/src/msil/ch/epfl/lamp/compiler/msil

Figure 1: Contents of ch.epfl.lamp.compiler.msil.emit in msil.dll,
Sec. 4.1.1

FYI: In the resulting msil.dll, package ch.epfl.lamp.compiler.msil.emit

(shown in Figure 1) contains “less” classes than its counterpart in msil.jar

(shown in Figure 2). That’s OK for our purposes. The “missing” classes will be
found in scalacompiler.exe: given that they are .scala classes, we’ll compile
them together with the other .scala classes that make up the compiler.

4.1.2 jfisl and assembly roundtripping

As in the previous sub-section, we use ikvmc to obtain this .dll. The only
difference is that some methods marked protected in their Java version have to
be made public in their assembly version. The contents of this .dll are shown
in Figure 3 on p. 10.

In the resulting .dll two files are found that have no Java counterpart:
scala.reflect.ScalaSignatureAttribute and scala.reflect.ScalaLongSignatureAttribute.
They are added by ikvmc, and we leave them there.

• Regarding scala.math.ScalaNumber, unlike its Java counterpart, its meth-
ods should be marked public. If only the classfile is available, after com-
piling with ikvmc those methods can still be made public, via “assembly
roundtripping” (details below). First disassemble with ildasm, patch the
resulting .msil file, and re-assemble.

• scala.runtime.ArrayRuntime: Make both the class and all its methods
public, so that they are visible from other assemblies (as for example from
scalalib.dll).

Assembly roundtripping is described in:

• Ch. 19 of the Expert .NET 2.0 IL Assembler book [1], in Secs. “Principles
of Round-Tripping” and “Creative Round-Tripping”

• http://blogs.msdn.com/b/jmstall/archive/2006/01/13/debug-roundtripping.

aspx

8

http://blogs.msdn.com/b/jmstall/archive/2006/01/13/debug-roundtripping.aspx
http://blogs.msdn.com/b/jmstall/archive/2006/01/13/debug-roundtripping.aspx

Figure 2: Contents of ch.epfl.lamp.compiler.msil.emit in msil.jar,
Sec. 4.1.1

9

Figure 3: Sec. 4.1.2

4.1.3 scalaruntime.dll

The contents of this .dll are shown in Figure 4 on p. 11. The .dll is obtained
using ikvmc as in Sec. 4.1.1. We discuss them separately because there’s no
ready-made .jar as in that section. Instead, on JVM, these files are distributed
in the .jar for the Scala library.

4.1.4 A touch of C#: CSharpFilesForBootstrap.dll

Two C# files are needed for bootstrapping (afterwards, Scala versions replace
them). They can be compiled with:

csc /target:library /out:CSharpFilesForBootstrap.dll Comparator.cs SymtabAttribute.cs

One minor caveat, though. Before compiling, please rename the only method
in Comparator to Equals:

namespace scala.runtime {

using System;

public class Comparator {

public static bool Equals(object a, object b) { /*- i.e. uppercase first letter. */

. . .

Their SVN location, and an indication why the compiler needs them (i.e,
where they are loaded into the symbol table):

1. scala.runtime.Comparator4. Needed In trait MSILPlatform:

4http://lampsvn.epfl.ch/trac/scala/browser/scala-msil/trunk/src/

dotnet-library/scala/runtime/Comparator.cs

10

http://lampsvn.epfl.ch/trac/scala/browser/scala-msil/trunk/src/dotnet-library/scala/runtime/Comparator.cs
http://lampsvn.epfl.ch/trac/scala/browser/scala-msil/trunk/src/dotnet-library/scala/runtime/Comparator.cs

Figure 4: Sec. 4.1.3

11

lazy val externalEquals = getMember(ComparatorClass.companionModule, nme.equals_)

where ComparatorClass is defined in Definitions.scala:

lazy val ComparatorClass = getClass("scala.runtime.Comparator")

under section “.NET backend” of that file.

2. scala.runtime.SymtabAttribute5 Needed in CLRTypes.scala:

SCALA_SYMTAB_ATTR = getTypeSafe("scala.runtime.SymtabAttribute")

val bytearray: Array[Type] = Array(Type.GetType("System.Byte[]"))

SYMTAB_CONSTR = SCALA_SYMTAB_ATTR.GetConstructor(bytearray)

SYMTAB_DEFAULT_CONSTR = SCALA_SYMTAB_ATTR.GetConstructor(Type.EmptyTypes)

4.2 Other libraries in the distribution

In order to bootstrap Scala on JVM, a few extra .jars from other open-source
projects are needed. For bootstrapping on CLR, those libraries are converted to
.dlls using ikvmc. How will the resulting .dlls be used (or not) by Scala.NET
at runtime? Let’s see:

• ant: Required by the Ant tasks defined in scala.tools.ant

• fjbg: Required by GenJVM. It’s unlikely that scalacompiler.exe will be used
in forJVM mode, but given that we are compiling all trunk/src/compiler
sources we also need fjbg.dll (at least, at compile time).

• jline: Required by the REPL, scala.tools.nsc.interpreter. The sources
of jline are hosted in Scala trunk6.

4.3 IKVM and .NET pre-requisites

The sources emitted by jdk2ikvm contain in general dependencies on IKVM
and .NET .dlls. For the Scala library and compiler, those dependencies are as
follows:

1. The folder shown in Figure 5 contains those IKVM .dlls that are referred
from the sources output by jdk2ikvm. Feel free to add more IKVM .dlls.
Not surprisingly, those files are named starting with ‘IKVM’.

2. As to .NET, the dependencies are (I’m using ver 2:0:0:0):

• mscorlib.dll.

• System.dll and System.configuration.dll.

• System.Xml.dll. Needed after converting the scala.xml package.

5http://lampsvn.epfl.ch/trac/scala/browser/scala-msil/trunk/src/

dotnet-library/scala/runtime/SymtabAttribute.cs
6http://lampsvn.epfl.ch/trac/scala/browser/scala/trunk/src/jline

12

http://lampsvn.epfl.ch/trac/scala/browser/scala-msil/trunk/src/dotnet-library/scala/runtime/SymtabAttribute.cs
http://lampsvn.epfl.ch/trac/scala/browser/scala-msil/trunk/src/dotnet-library/scala/runtime/SymtabAttribute.cs
http://lampsvn.epfl.ch/trac/scala/browser/scala/trunk/src/jline

5 Cross-compiling

We’re half-way through the bootstrapping process. By the end of this step,
we’ll have assemblies for the Scala library and compiler. These assemblies will
be used in Sec. 6 to compile their own sources.

5.1 Library

At this point we have:

• Scala sources that contain only dependencies on the .NET Framework and
IKVM libraries (Sec. 3).

• .dlls for the Java source files in the distribution (Sec. 4.1), libraries
from other open-source projects (Sec. 4.2), and some libraries from IKVM
and .NET (Sec. 4.3).

With that, the cross-compiler can process all source files that constitute the
Scala library.

Assuming the required libraries (Figure 5) are found in folder DirA, the
following allows obtaining scalalib.msil, which can be assembled afterwards
with ILAsm. We invoke scalac in forJVM mode (the default).

scalac

-sourcepath %OUT_TOP%\src\library /*- one of the three output folders of jdk2ikvm */

-d %MSIL_OUT% /*- folder where the textual file scalalib.msil will be written */

@%OUT_TOP%\out-src-library.txt /*- a listing of all .scala files converted by jdk2ivkm from \src\library */

-target:msil -Ystruct-dispatch:no-cache -no-specialization

-Xassem-name scalalib -Xassem-extdirs DirA

-Ydebug /*- to better appreciate compilation progress */

Upon invoking the ILAsm assembler, we ask also for debug symbols to be
generated in scalalib.pdb. To use a visual debugger, the .pdb file is placed
alongside the assembly to debug (Sec. 8.1).

ilasm /DLL /DEBUG scalalib.msil

5.2 Compiler

In addition to the libraries shown in Figure 5, the compiler sources contain
references to the Scala library. That’s why this time the cross-compilation run
will use -Xassem-extdirs DirB, where “DirB” contains the same libraries as DirA

plus scalalib.dll (the output from Sec. 5.1).
The command to obtain scalacompiler.msil is very similar to that in the

previous section:

scalac

-d %MSIL_OUT%

@%OUT_TOP%\out-src-compiler.txt /*- a listing of all .scala files converted by jdk2ivkm from \src\compiler */

@%OUT_TOP%\out-src-msil.txt /*- a listing of all .scala files converted by jdk2ivkm from \src\msil */

-target:msil -Ystruct-dispatch:no-cache -no-specialization

-Xassem-name scalacompiler

-Xassem-extdirs DirB

-Ydebug

13

Figure 5: Non-Scala libraries (“DirA”), Sec. 5.1

14

-Xshow-class scala.tools.nsc.Main /*- for now, there’s no dedicated option to indicate the ’entry class’

(i.e., the class with the entry point: def main(args: Array[String]))

so we reuse for this purpose one of the many options that scalac offers. */

The ILAsm invocation to obtain the executable and its debug symbols:

ilasm /EXE /DEBUG scalacompiler.msil

TODO

scala.tools.nsc.ast.TreeBrowsers relies on Swing and AWT,

which IKVM supports (partially) via IKVM.OpenJDK.SwingAWT.dll.

From time to time, TreeBrowsers.scala is extended with more bells and whistles,

which may outstrip the Swing support of the IKVM version in use.

In this case, as a workaround, make TreeBrowser do nothing:

- comment out the lines "import java.awt. . . . "

- delete the method bodies of all browse methods in ThreeBrowsers#SwingBrowser

- delete class ThreeBrowsers#BrowserFrame

- delete class ThreeBrowsers#TextInfoPanel

6 Compiling with scalacompiler.exe

The last step of bootstrapping involves using scalacompiler.exe (the output of
Sec. 5.2) to compile its own sources. In order to run it, we place in yet another
folder (“DirC”) all the libraries from DirB and add scalacompiler.exe.

1. The same command-line arguments used in Sec. 5.1 to have the cross-
compiler produce scalalib.msil are given to scalacompiler.exe, to emit
the same output as before (exactly the same arguments, forgetting to
specify -target:msil will cause scalacompiler.exe to go out looking for
.jar files and such).

2. Similarly, in order to have scalacompiler.exe emit scalacompiler.msil,
we use the command-line arguments given in Sec. 5.2.

With that, Scala.NET bootstrapping is done.
A simple way to check whether scalacompiler.exe behaves as the cross-

compiler involves having both emit a tree of .msil files for the same Scala.NET
sources, and then compere results. When applying this idea to the compiler
sources, the following commands can be used:

rem =======================================

rem exe (compiled by the cross-compiler) compiles itself. resulting exe will be used in next step.

rem =======================================

%DIRC_FOLDER%\scalacompiler.exe /*- comand-line options shown below for readability, should be on this line. */

-Ydebug

-d C:\temp\discard

@C:\temp\out-jdk2ikvm\out-src-compiler.txt

@C:\temp\out-jdk2ikvm\out-src-msil.txt

-target:msil -Ystruct-dispatch:no-cache

-Xassem-name scalacompiler

-Xassem-extdirs %DIRB_FOLDER%

15

-no-specialization

-Xshow-class scala.tools.nsc.Main

del /q %DIRC_FOLDER%\scalacompiler.exe >nul 2>&1

del /q %DIRC_FOLDER%\scalacompiler.pdb >nul 2>&1

ilasm /QUIET /DEBUG C:\temp\discard\scalacompiler.msil /output=%DIRC_FOLDER%\scalacompiler.exe

peverify %DIRC_FOLDER%\scalacompiler.exe

rem =======================================

rem use exe (compiled by the exe that was compiled by the cross-compiler) to print multiple msil

rem =======================================

c:

cd c:\temp\out-jdk2ikvm\src

del /s /q C:\temp\ilasm\Multiple-Exe*.msil >nul 2>&1

%DIRC_FOLDER%\scalacompiler.exe /*- comand-line options shown below for readability, should be on this line. */

-Ygen-javap C:\temp\ilasm\Multiple-Exe

-d C:\temp\discard

@C:\temp\out-jdk2ikvm\out-src-compiler.txt

@C:\temp\out-jdk2ikvm\out-src-msil.txt

-target:msil -Ystruct-dispatch:no-cache

-Xassem-name bootstrapped

-Xassem-extdirs %DIRB_FOLDER%

-no-specialization

-sourcepath c:\temp\out-jdk2ikvm\src

rem =======================================

rem use cross-compiler to print multiple msil

rem =======================================

c:

cd c:\temp\out-jdk2ikvm\src

del /s /q C:\temp\ilasm\Multiple-CrossCompiler*.msil >nul 2>&1

"C:\jdk\bin\java" /*- comand-line options shown below for readability, should be on this line. */

-Dfile.encoding=UTF-8 -Xbootclasspath/a:%LIBRARIES%

-Xms512M -Xmx1236M -Xss1M -XX:MaxPermSize=128M

scala.tools.nsc.Main

-Ygen-javap C:\temp\ilasm\Multiple-CrossCompiler

-d C:\temp\discard

@C:\temp\out-jdk2ikvm\out-src-compiler.txt

@C:\temp\out-jdk2ikvm\out-src-msil.txt

-target:msil -Ystruct-dispatch:no-cache

-Xassem-name bootstrapped

-Xassem-extdirs %DIRB_FOLDER%

-no-specialization

-sourcepath c:\temp\out-jdk2ikvm\src

rem http://stackoverflow.com/questions/605522/print-time-in-a-batch-file-milliseconds

7 And now with Mono

7.1 Environ variables

export JAVA_OPTS="-Xms1536M -Xmx1536M -Xss1M -XX:MaxPermSize=192M -XX:+UseParallelGC"

export ANT_OPTS="-Xms1536M -Xmx1536M -Xss1M -XX:MaxPermSize=192M -XX:+UseParallelGC"

16

7.2 Getting sources ready for jdk2ikvm

The .patch files below can be downloaded from
http://lamp.epfl.ch/~magarcia/ScalaNET/2011Q2/patches1.zip

svn co http://lampsvn.epfl.ch/svn-repos/scala/scala/trunk@24806 scala

patch -p0 -i ForAssemblyVisibility.patch

patch -p0 -i ForCompileByEXE.patch

patch -p0 -i TricksThatJ2KCannot.patch

ant all.clean build

cp scala/build/pack/lib/scala-library.jar scala/lib/

cp scala/build/pack/lib/scala-compiler.jar scala/lib/

7.3 Downloading and building jdk2ikvm

svn co http://lampsvn.epfl.ch/svn-repos/scala/scala-experimental/trunk/jdk2ikvm jdk2ikvm

./scala/bin/scalac -d classes ‘find jdk2ikvm/src/scala/tools/jdk2ikvm -name *.scala‘

jar -cf jdk2ikvm.jar -C ./classes/ scala -C ./jdk2ikvm/resources/ .

7.4 Getting sources ready for the cross-compiler

7.4.1 Prepare folder to hold files converted by jdk2ikvm

rm -rf output

mkdir output

mkdir output/msil

mkdir output/library

mkdir output/compiler

7.4.2 Converting with jdk2ikvm the msil, library, and compiler fold-
ers in trunk/src

1. ./scala/bin/scalac /*- on the same line */

-Ystop:superaccessors

-sourcepath ./scala/src/msil

-P:jdk2ikvm:output-directory:$HOME/output/msil

-d $HOME/output/msil

-Xplugin jdk2ikvm.jar

-Yrangepos ‘find scala/src/msil -name *.scala‘

2. similary for library and compiler (adapt correspondingly -sourcepath,
-P:jdk2ikvm:output-directory:, -d , and find)

3. In order to compile the compiler sources, a few libraries are needed:

-classpath ./scala/lib/fjbg.jar:./scala/lib/jline.jar:./scala/lib/ant/ant.jar

17

http://lamp.epfl.ch/~magarcia/ScalaNET/2011Q2/patches1.zip

7.4.3 Manually applying patches that jdk2ikvm does not automate

Copy the contents of patches2.zip7 into the ‘output’ folder (i.e., overwrite some
files emitted by jdk2ikvm).

Before overwriting those files with their patched version, comparing them can
be useful (say, using meld). Given that meld does not support “ignore whites-
pace” (in particular the end-of-line Windows vs. Unix styles) At the patched-src

folder, run:

fromdos ‘find . -name *.scala‘

7.5 Getting dlls ready for the cross-compiler

1. Use ikvmc on existing jars: msil, forkjoin, fjbg, jline, ant.

ikvmc -target:library -out:$HOME/DirA/msil.dll $HOME/scala/build/libs/msil.jar

ikvmc -target:library -out:$HOME/DirA/fjbg.dll $HOME/scala/lib/fjbg.jar

ikvmc -target:library -out:$HOME/DirA/jline.dll $HOME/scala/lib/jline.jar

ikvmc -target:library -out:$HOME/DirA/ant.dll $HOME/scala/lib/ant/ant.jar

ikvmc -target:library -out:$HOME/DirA/forkjoin.dll $HOME/scala/lib/forkjoin.jar

2. Obtaining scalaruntime.dll:

javac -d classes ‘find $HOME/scala/src/library/ -name *.java‘

jar -cf scalaruntime.jar -C ./classes .

ikvmc scalaruntime.jar

3. Obtaining CSharpFilesForBootstrap.dll patch Comparator.cs: rename method
’equals’ to ’Equals’

mcs Comparator.cs SymtabAttribute.cs -target:library

7.6 Cross-compiling

If multiple .msil files are wanted, add -Ygen-javap <outputfolder> to the com-
pilation line below, while also keeping the -d option. The setting -Xshow-class

is reused by GenMSIL to pick the class with the entrypoint (i.e., the class with
the main method)

1. from /usr/lib/mono/2.0 copy mscorlib.dll to DirA . Similarly for System.dll
and System.Xml.dll. And also System.Drawing.dll , needed for the com-
piler’s TreeBrowser (but see Note in Sec. 5.2)

2. bring into DirA the .dlls of the ikvm version in use, http://www.ikvm.
net/download.html

./scala/bin/scalac /*- on the same line */

-sourcepath $HOME/output/library ‘find $HOME/output/library -name *.scala‘

-target:msil -Xassem-name scalalib -Ystruct-dispatch:no-cache -no-specialization

-Xassem-extdirs $HOME/dirA

-Ydebug

7http://lamp.epfl.ch/~magarcia/ScalaNET/2011Q2/patches1.zip

18

http://www.ikvm.net/download.html
http://www.ikvm.net/download.html
http://lamp.epfl.ch/~magarcia/ScalaNET/2011Q2/patches1.zip

-d $HOME/output/library

./scala/bin/scalac /*- on the same line */

‘find $HOME/output/compiler -name *.scala‘ ‘find $HOME/output/msil -name *.scala‘

-target:msil

-Xassem-name scalacompiler

-Ystruct-dispatch:no-cache -no-specialization

-Xassem-extdirs $HOME/dirB -Ydebug

-Xshow-class scala.tools.nsc.Main

-d $HOME/output/compiler

7.7 Assembling

1. instead of .NET’s peverify use pedump --verify error <assembly>

2. instead of .pdb files, .mdb files are used (pdb2mdb can be used to obtain the
Mono version from its .NET counterpart, or compile with /debug using
ilasm2).

By default, scalac in -target:msil mode emits a single .msil file. In order
to have one .msil file for each .scala file in the input, use

-d output/folder -Ygen-javap output/folder

(scalac in forMSIL mode reuses the -Ygen-javap setting from its forJVM counter-
part, as it is “conceptually similar”). Say we have emitted multiple .msil files.
They can be assembled with:

ilasm2 /dll /output:dirB/scalalib.dll ‘find $HOME/output/library -name *.msil‘

When /debug is given, Mono versions 2.10.1 or earlier run into http://

bugzilla.novell.com/show_bug.cgi?id=633312

ilasm2 /exe /debug /output:dirC/scalacompiler.exe /*- on the same line */

‘find $HOME/output/msil -name *.msil‘ ‘find $HOME/output/compiler -name *.msil‘

7.8 Troubleshooting and Debugging

What if mono throws some exception when running my program? Try with:

mono --help-devel

mono --with-profile4=yes

If running an OpenSUSE guest in VirtualBox, and want to share folder with
the host (say, a Windows host)8

sudo /sbin/mount.vboxsf <name_given_in_VBox_setting> /home/mg/c_temp

Debugging: http://tirania.org/blog/archive/2010/Feb-20.html

8http://www.virtualbox.org/manual/ch04.html

19

http://bugzilla.novell.com/show_bug.cgi?id=633312
http://bugzilla.novell.com/show_bug.cgi?id=633312
http://tirania.org/blog/archive/2010/Feb-20.html
http://www.virtualbox.org/manual/ch04.html

Figure 6: Sec. 8.1

8 After bootstrapping, the fun only starts

8.1 Debugging in Visual Studio

As a bonus, this section covers how to debug assemblies emitted by Scala.NET.
Another write-up9 described how to debug either at the .scala or .msil

level, and the snippets in GenMSIL responsible for emitting debug information.
Summing up, in order to step-debug over Scala sources:

1. “File / New Project”

2. “Other Project Types / Visual Studio solutions / Blank solution”

3. right click on the new solution, “Add existing project” and pick scalacompiler.exe

(on the same folder, scalacompiler.pdb should be found)

4. From the main menu, “Debug / Options and Settings”, mark “Enable
address-level debugging” as shown in Figure 6.

5. ready to go, “Step into new instance”. Besides line breakpoints, exception
breakpoints are very useful (“Debug / Exceptions”, Figure 7).

8.2 Profiling

• CLR Inside Out Article: Profiling the .NET Garbage-Collected Heap10

• Quoting from CLR Profiler for .NET Framework 4 11

9http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2010Q4/ikvmify4.pdf
10http://msdn.microsoft.com/en-us/magazine/ee309515.aspx
11http://www.microsoft.com/downloads/en/details.aspx?FamilyID=

be2d842b-fdce-4600-8d32-a3cf74fda5e1

20

http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2010Q4/ikvmify4.pdf
http://msdn.microsoft.com/en-us/magazine/ee309515.aspx
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=be2d842b-fdce-4600-8d32-a3cf74fda5e1
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=be2d842b-fdce-4600-8d32-a3cf74fda5e1

Figure 7: Sec. 8.1

The CLR Profiler includes a number of very useful views of
the allocation profile, including a histogram of allocated types,
allocation and call graphs, a time line showing GCs of various
generations and the resulting state of the managed heap after
those collections, and a call tree showing per-method allocations
and assembly loads

8.3 A few words about Generics: Coming soon!

Right now, the backend of Scala.NET does not support generics. This is so
because we wanted first to get bootstrapping to work (which can be done without
full support for Generics: the IKVM library, just like the OpenJDK bytecode it
is based on, contains “erased” types only).

Therefore the programs Scala.NET can as of now compile may make use of
the Scala library, the IKVM library, and “pre-.NET-2.0” assemblies. Summing
up, types, methods, and fields from external assemblies can be used as long as
they are monomorphic.

Invoking Scala assemblies from C# (or any other .NET language) is possible,
however those APIs are low-level as compared to the API seen from Scala.NET
source code. Afterwards, porting any such C# code to Scala.NET will thus
involve not only getting rid of “idiomatic C#” but also using Scala’s libraries
at the level of Scala types, instead of their lowering to CLR types. With that
caveat, it’s certainly possible to use for example scalalib.dll from C#.

8.4 Developing Scala.NET apps from your JVM IDE

No, really! For example, auto-completion and source browsing at your fingertips:

21

http://lamp.epfl.ch/~magarcia/ScalaNET/2011Q2/TestDriveMD2SRC.pdf

8.5 Acknowledgement

Big thanks to Jeroen Frijters for creating IKVM, http://www.ikvm.net/.

References

[1] Serge Lidin. Expert .NET 2.0 IL Assembler. Apress, Berkely, CA, USA,
2006.

22

http://lamp.epfl.ch/~magarcia/ScalaNET/2011Q2/TestDriveMD2SRC.pdf
http://www.ikvm.net/

Listing 1: Sec. 3.1

implicit def refToStructCharSequence(i: java.lang.CharSequence.__Interface): java.lang.CharSequence = {

val c : java.lang.CharSequence = new java.lang.CharSequence() // default init

c.‘__<ref>‘ = i

c

}

implicit def refToStructCloneable(i: java.lang.Cloneable.__Interface): java.lang.Cloneable = {

val c : java.lang.Cloneable = new java.lang.Cloneable() // default init

c.‘__<ref>‘ = i

c

}

implicit def strToStructCharSequence(s: String): java.lang.CharSequence = {

val c : java.lang.CharSequence = new java.lang.CharSequence() // default init

c.‘__<ref>‘ = s

c

}

implicit def nullToStructCharSequence(n: Null): java.lang.CharSequence = {

val c : java.lang.CharSequence = new java.lang.CharSequence() // default init

c.‘__<ref>‘ = null

c

}

implicit def seqToCharSequence(xs: collection.IndexedSeq[Char]): java.lang.CharSequence = {

val w = new java.lang.CharSequence.__Interface {

def length: Int = xs.length

def charAt(index: Int): Char = xs(index)

def subSequence(start: Int, end: Int): java.lang.CharSequence = seqToCharSequence(xs.slice(start, end))

override def ToString: String = xs.mkString("")

override def toString() = { this.ToString() } /*addMissingJLObjOverrides*/

}

val c : java.lang.CharSequence = new java.lang.CharSequence() // default init

c.‘__<ref>‘ = w

c

}

implicit def arrayToCharSequence(xs: Array[Char]): java.lang.CharSequence = {

val w = new java.lang.CharSequence.__Interface {

def length: Int = xs.length

def charAt(index: Int): Char = xs(index)

def subSequence(start: Int, end: Int): java.lang.CharSequence = arrayToCharSequence(xs.slice(start, end))

override def ToString: String = xs.mkString("")

override def toString() = { this.ToString() } /*addMissingJLObjOverrides*/

}

val c : java.lang.CharSequence = new java.lang.CharSequence() // default init

c.‘__<ref>‘ = w

c

}

23

F
ig

u
re

8:
D

ep
en

d
en

cy
m

a
tr

ix
o
f
s
c
a
l
a
l
i
b
.
d
l
l

sh
ow

n
b
y

N
D

ep
en

d

24

	Before delving into details: Summary of the whole process
	Getting the source-to-source converter ready
	How to build jdk2ikvm
	Running jdk2ikvm on Scala trunk

	Getting sources ready for the cross-compiler
	Changes and additions mandated by .NET and by IKVM
	Tricks that jdk2ikvm can't (so far)

	Getting non-Scala libraries ready
	Non-Scala sources and libraries in the distribution
	Java-only libraries that can be taken as-is
	jfisl and assembly roundtripping
	scalaruntime.dll
	A touch of C#: CSharpFilesForBootstrap.dll

	Other libraries in the distribution
	IKVM and .NET pre-requisites

	Cross-compiling
	Library
	Compiler

	Compiling with scalacompiler.exe
	And now with Mono
	Environ variables
	Getting sources ready for jdk2ikvm
	Downloading and building jdk2ikvm
	Getting sources ready for the cross-compiler
	Prepare folder to hold files converted by jdk2ikvm
	Converting with jdk2ikvm the msil, library, and compiler folders in trunk/src
	Manually applying patches that jdk2ikvm does not automate

	Getting dlls ready for the cross-compiler
	Cross-compiling
	Assembling
	Troubleshooting and Debugging

	After bootstrapping, the fun only starts
	Debugging in Visual Studio
	Profiling
	A few words about Generics: Coming soon!
	Developing Scala.NET apps from your JVM IDE
	Acknowledgement

