
Volatile fields, Sub-line step debugging, and

a few TODOs (plugins, properties)

c© Miguel Garcia, LAMP, EPFL
http://lamp.epfl.ch/~magarcia

April 5th, 2011

Abstract

Notes about implementation aspects of Scala.NET. Unless you’re hacking
the compiler these notes should be of no consequence to you :-)

Contents

1 Handling volatile fields 2
1.1 How it’s done forJVM . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Keeping track of custom mods: PECustomMod helped by CustomModifier 3
1.4 GenMSIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Comparison with System.Reflection.Emit . . . . . . . . . . . . 4

2 Sub-line step debugging (without -Yrangepos) 5
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 FYI: Why we want to do without -Yrangepos . . . . . . . . . . . 6

3 Workarounding two behavioral differences in the way we use
IKVM vs. JDK 8
3.1 Behavioral difference 1 . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Behavioral difference 2 . . . . . . . . . . . . . . . . . . . . . . . . 8

4 TODO: Compiler plugins 9

5 TODO: the ILAsm .language directive, and language-specific
Expression Evaluators in VS 11

6 TODO: Emitting metadata for CLR properties after collecting
(getter, setter) pairs 11
6.1 Taking a page from GenJVM . . . . . . . . . . . . . . . . . . . . . 11
6.2 And now in GenMSIL . . . . . . . . . . . . . . . . . . . . . . . . . 12

1

http://lamp.epfl.ch/~magarcia


1 Handling volatile fields

Those notes document how volatile fields are handled by GenMSIL and during
metadata-parsing. Once GenMSIL is replaced to emit binary assemblies this im-
plementation will have to be revisited. And documenting is useful anyway.

1.1 How it’s done forJVM

• nothing special done in ClassfileParser.parseField() for volatile fields.

• when emitting Java bytecode, it’s enough to mark as such the definition
of a volatile field. In contrast, MSIL also requires to prefix with volatile.

each read/write to the field.

// from GenJVM:

def genField(f: IField) {

if (settings.debug.value)

log("Adding field: " + f.symbol.fullName)

val attributes = f.symbol.annotations.map(_.atp.typeSymbol).foldLeft(0) {

case (res, TransientAttr) => res | ACC_TRANSIENT

case (res, VolatileAttr) => res | ACC_VOLATILE

case (res, _) => res

}

. . .

1.2 Background

In terms of ILAsm syntax, a field is marked as volatile as follows:

Volatile fields are a special case of modreq, a required custom modifier. Quoting
from the CIL spec, Partition II, §7.1.1:

Custom modifiers, defined using modreq (required modifier) and modopt

(optional modifier), are similar to custom attributes (§21) except that
modifiers are part of a signature rather than being attached to a dec-
laration. Each modifer associates a type reference with an item in
the signature.

Practicalities: quoting from a discussion1 on the difference between “type equiv-
alence” and “signature matching” in CLR:

It means, that typeof(string) is the same as typeof(string modopt(NonNullType))

at runtime (except signature matching).

Furthermore Reflection was designed not as managed Meta-
Data API, but rather as runtime type information. There-
fore Reflection takes loaded types as parameters and that leads to the
results you can see.

1http://connect.microsoft.com/VisualStudio/feedback/details/282406/

modopts-not-supported-by-generics-in-clr

2

http://connect.microsoft.com/VisualStudio/feedback/details/282406/modopts-not-supported-by-generics-in-clr
http://connect.microsoft.com/VisualStudio/feedback/details/282406/modopts-not-supported-by-generics-in-clr


More background:

• http://weblog.ikvm.net/PermaLink.aspx?guid=82

• http://jasper-22.blogspot.com/2010/11/subterranean-il-custom-modifiers.html

• Ch. 8 in the Expert IL book [1].

1.3 Keeping track of custom mods: PECustomMod helped by
CustomModifier

As the ILAsm syntax suggests, one type is “marked” with one or more “custom
mods”, where each “custom mod” in turn comprises a “marker type reference”
and the indication whether the marker is required or optional. We keep track
of all this in PECustomMod:

/**

* A PECustomMod holds the info parsed from metadata per the CustomMod production in Sec. 23.2.7, Partition II.

* */

public final class PECustomMod {

public final Type marked;

public final CustomModifier[] cmods;

Those locations that can marked with custom modifiers (fow now in FieldInfo,
should also be added to ParameterInfo, and PropertyInfo) implement a tag in-
terface HasCustomModifiers:

1.4 GenMSIL

Emitting a field access:

3

http://weblog.ikvm.net/PermaLink.aspx?guid=82
http://jasper-22.blogspot.com/2010/11/subterranean-il-custom-modifiers.html


Before that, the field was created. Please notice that some sym.annotations

result in CLR attributes, while others in CLR custom modifiers:

1.5 Comparison with System.Reflection.Emit

In System.Reflection.Emit, a few factory methods take custom modifiers as
input. For example:

public FieldBuilder DefineField(

string fieldName,

Type type,

Type[] requiredCustomModifiers,

Type[] optionalCustomModifiers,

FieldAttributes attributes

)

A disadvantage of separately defining (and later retrieving) optional and re-
quired cmods is that the occurrence order is lost. We avoid that by having
a single array hold all custom modifers (fow now in FieldInfo, should also be
added to ParameterInfo, and PropertyInfo):

// once they are added,

// they are added all at once

// and never modified

public final CustomModifier[] cmods = null;

Also in System.Reflection.Emit, three classes allow GetOptionalCustomModifiers

and GetRequiredCustomModifiers, and we add them to our API too.

TODO add HasCustomModifiers support to

ParameterInfo and

PropertyInfo.

4



2 Sub-line step debugging (without -Yrangepos)

Here’s a screen capture conveying how it works:

2.1 Background

On CLR, debuggers can highlight a text range with each debug step, thus giving
better feedback when debugging closures, for example. ILAsm has syntax for
this [1, p. 403]:

The .line <start_line>[,<end_line>][:<start_col> [,<end_col>]] [<file_name>]

directive identifies the line and column in the original source file that
are responsible for the IL code that follows the .line directive.

Quoting from “Compiling in Debug Mode” [1, Ch. 19]:

• If your compiler generates ILAsm source code, it must insert .language

and .line directives at the appropriate points.

• If you are round-tripping a module compiled from a high-level language,
use the disassembler option /LINENUM (or /LIN).

• In any case, don’t forget to use one of the PDB-generating options of
the ILAsm compiler: /DEB, /DEB=OPT, /DEB=IMP, or /PDB (the last option
generates the PDB file but doesn’t emit the DebuggableAttribute).

Sidenotes:

• Related forum: “Building Development and Diagnostic Tools for .Net”2.

• Using System.Reflection to emit sub-line range information3:

2.2 Implementation

In GenMSIL, we now have:

for (instr <- block) {

try {

val currentLineNr = instr.pos.line

val skip = if(instr.pos.isRange) instr.pos.sameRange(lastPos) else (currentLineNr == lastLineNr);

if(!skip) {

val fileName = if(dbFilenameSeen) "" else {dbFilenameSeen = true; ilasmFileName(clasz)};

2http://social.msdn.microsoft.com/Forums/en/netfxtoolsdev/threads forum
3http://www.sts.tu-harburg.de/people/mi.garcia/ScalaCompilerCorner/

ScalaNetBackend.pdf

5

http://social.msdn.microsoft.com/Forums/en/netfxtoolsdev/threads
http://www.sts.tu-harburg.de/people/mi.garcia/ScalaCompilerCorner/ScalaNetBackend.pdf
http://www.sts.tu-harburg.de/people/mi.garcia/ScalaCompilerCorner/ScalaNetBackend.pdf


if(instr.pos.isRange) {

val startLine = instr.pos.focusStart.line

val endLine = instr.pos.focusEnd.line

val startCol = instr.pos.focusStart.column

val endCol = instr.pos.focusEnd.column

mcode.setPosition(startLine, endLine, startCol, endCol, fileName)

} else {

mcode.setPosition(instr.pos.line, fileName)

}

lastLineNr = currentLineNr

lastPos = instr.pos

}

} catch { case _: UnsupportedOperationException => () }

When emitting .line, it’s enough to include the full filename just once per
method, thus reducing filesize. That’s what dbFilenameSeen is for.

In ILPrinterVisitor, source locations for instructions are printed as-is (they
are strings by that time), as shown next:

val label = itL.next

val oOpt = code.lineNums.get(label)

if (oOpt.isDefined) {

println(".line " + oOpt.get)

}

because lineNums is

val lineNums = scala.collection.mutable.Map.empty[Label, String]

The ready-made string for the source location is provided by calling a setPosition

overload in ILGenerator.
For all of the above to work in the GenMSIL backend, the following is needed

during parsing (in SourceFileParser):

def r2p(start: Int, mid: Int, end: Int): Position =

if(forMSIL) new util.RangePosition(source, start, mid, end)

else rangePos(source, start, mid, end)

2.3 FYI: Why we want to do without -Yrangepos

TODO Current support is fine for small programs,

but the compiler crashes with -Yrangepos when compiling, say, the library.

Thus the following won’t do (in nsc.Main):

During parsing, the following overrides determine whether offset or range
positions are created:

• What is overridden, nsc.symtab.Positions:

6



• as follows in trait RangePositions

• and trait RangePositions in turn as base class of nsc.interactive.Global

(2nd “Global” below)

In detail :-) nsc.Global extends:

class Global(var settings: Settings, var reporter: Reporter) extends SymbolTable

with CompilationUnits

with Plugins

with PhaseAssembly

in constrast, nsc.interactive.Global extends:

class Global(settings: Settings, reporter: Reporter, projectName: String = "")

extends scala.tools.nsc.Global(settings, reporter)

with CompilerControl

with RangePositions

with ContextTrees

with RichCompilationUnits

with Picklers

7



3 Workarounding two behavioral differences in
the way we use IKVM vs. JDK

3.1 Behavioral difference 1

In detail, the above is due to NameTransformer receiving the Unicode “→” char-
acter:

Solution:

val tmp : String = {

val h = java.lang.Integer.toHexString(c.toInt)

"$u" + "000".take(4 - h.size) + h

}

buf.append(tmp)

3.2 Behavioral difference 2

In scala.tools.nsc.io.File:

// this is a workaround for http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6503430

// we are using a static initializer to statically initialize a java class so we don’t

// trigger java.lang.InternalErrors later when using it concurrently. We ignore all

// the exceptions so as not to cause spurious failures when no write access is available,

// e.g. google app engine.

try {

import Streamable.closing

val tmp = JFile.createTempFile("bug6503430", null, null)

try closing(new FileInputStream(tmp)) { in =>

val inc = in.getChannel()

closing(new FileOutputStream(tmp, true)) { out =>

8



out.getChannel().transferFrom(inc, 0, 0)

}

}

finally tmp.delete()

}

catch {

case _: IllegalArgumentException | _: java.lang.IllegalStateException | _: IOException | _: java.lang.SecurityException => ()

case _ => () /*- needed because IKVM can also throw an IllegalArgument (or NumberConversion, don’t remember exactly which) exception. */

}

4 TODO: Compiler plugins

IKVM can do Java classloading on .NET, and thus it is possible to have scala-compiler.jar

compiled by ikvmc into an .exe, and run it with -Xplugin to load a compiler
plugin packed (as usual) as a .jar.

In this section we explore a different approach: using the bootstrapped
scalacompiler.exe to dynamically load a compiler plugin that was packed as
.dll.

First we translate the sources of a compiler plugin using jdk2ikvm (like,
jdk2ikvm itself), and compile using Scala.NET into jdk2ikvm.dll. The following
command line allows debugging its loading:

scalacompiler.exe

-Ystop-after:superaccessors

-P:jdk2ikvm:output-directory:c:\temp\discard

-Xplugin jdk2ikvm.dll

-sourcepath Z:\scalaproj\sn5\myplugins\jdk2ikvm\src

-d c:\temp\discard

@C:\temp\out-jdk2ikvm\sn5-src-jdk2ikvm.txt

-target:msil -Ystruct-dispatch:no-cache -Xassem-name jdk2ikvm -Xassem-extdirs c:\temp\dirC -no-specialization

-Yrangepos

The list of compiler plugins is built (Figure 1) but the following causes later
a ZipException

TODO: To load plugin.xml from a .dll, use the following Assembly method

public virtual Stream GetManifestResourceStream(

string name

)

9



Figure 1: Sec. 4

See also:

• Microsoft .NET Framework Resource Basics,
http://msdn.microsoft.com/en-us/library/ms950960.aspx

After that, it’s time for dynamic class loading:

10

http://msdn.microsoft.com/en-us/library/ms950960.aspx


5 TODO: the ILAsm .language directive, and
language-specific Expression Evaluators in VS

ILAsm .language directive [1]:

The .language <Language_GUID>[,<Vendor_GUID>[,<Document_GUID>]] direc-
tive defines the source language and, optionally, the compiler vendor
and the source document type. This information is used by the Visual
Studio debugger, which displays source code of different languages
differently.

Example for C#:

.language ’{3F5162F8-07C6-11D3-9053-00C04FA302A1}’,

’{994B45C4-E6E9-11D2-903F-00C04FA302A1}’,

’{5A869D0B-6611-11D3-BD2A-0000F80849BD}’

The language GUID makes VS pick an Expression Evaluator during debugging4:

The VS debugger selects the appropriate EE for a stack frame based
on the “language” of the code at that stack frame. For your purposes,
the interpreter will be a “language”. A language is identified by a
pair of guids: the language guid and the vendor guid.

. . .

When VS enters break mode and the current stack frame is in your
interpreter, VS will read the language and vendor guids in your in-
terpreter’s module header, then VS will try to find an EE registered
with those guids. (If anything goes wrong, it falls back to the C# EE
with no warning or log of any kind.)

TODO

6 TODO: Emitting metadata for CLR proper-
ties after collecting (getter, setter) pairs

6.1 Taking a page from GenJVM

CLR properties are not unlike JavaBeans getter and setter, thus we look for
inspiration in GenJVM:

var fieldList = List[String]()

for (f <- clasz.fields if f.symbol.hasGetter;

val g = f.symbol.getter(c.symbol);

val s = f.symbol.setter(c.symbol);

if g.isPublic && !(f.symbol.name startsWith "$")) // inserting $outer breaks the bean

fieldList = javaName(f.symbol) :: javaName(g) :: (if (s != NoSymbol) javaName(s) else null) :: fieldList

The above is run only for an IClass c such that

4http://social.msdn.microsoft.com/Forums/en/vsx/thread/

2e412c53-b24b-4506-af00-5cca6d5257a7

11

http://social.msdn.microsoft.com/Forums/en/vsx/thread/2e412c53-b24b-4506-af00-5cca6d5257a7
http://social.msdn.microsoft.com/Forums/en/vsx/thread/2e412c53-b24b-4506-af00-5cca6d5257a7


if (c.symbol hasAnnotation BeanInfoAttr)

genBeanInfoClass(c)

6.2 And now in GenMSIL

In createClassMembers0, a class’ fields and methods are iterated to instantiate
FieldBuilders and MethodBuilders resp. During the iteration of methods, get-
ter/setter correspondences can be gathered. Based on them, PropertyBuilders
are instantiated before createClassMembers0 is over.

TODO Well-formedness of CLR properties covered in:

- Sec 8.11.3 in Partition I

- Sec 17 in Partition II

References

[1] Serge Lidin. Expert .NET 2.0 IL Assembler. Apress, Berkely, CA, USA,
2006.

12


	Handling volatile fields
	How it's done forJVM
	Background
	Keeping track of custom mods: PECustomMod helped by CustomModifier
	GenMSIL
	Comparison with System.Reflection.Emit

	Sub-line step debugging (without -Yrangepos)
	Background
	Implementation
	FYI: Why we want to do without -Yrangepos

	Workarounding two behavioral differences in the way we use IKVM vs. JDK
	Behavioral difference 1
	Behavioral difference 2

	TODO: Compiler plugins
	TODO: the ILAsm .language directive, and language-specific Expression Evaluators in VS
	TODO: Emitting metadata for CLR properties after collecting (getter, setter) pairs 
	Taking a page from GenJVM
	And now in GenMSIL


