
1 A new backend for Scala.NET to emit C#
sources

1.1 Motivation

In corporate software development, company-wide standards limit the choice of
programming language. Scala.NET can overcome those barriers by providing
a new backend phase (dubbed GenCSharp) to emit C# 3.0 source files, that
otherwise does a similar job as the pipeline GenICode → GenMSIL.

Additionally, a C#-backend is relevant from an engineering perspective (e.g.,
to quantify performance across different compiler pipelines, and as a bridge
towards the Spec# system for program verification).

1.2 Project milestones

Making GenCSharp a reality involves solving a number of problems. The good
news is that the required transformations can be grouped into milestones, with
a number of advantages:

1. each milestone delivers a fully-functional compiler, thus making possible
to test work-in-progress against the compiler test suite;

2. all but the last milestone are platform-independent (and in fact, a correct-
ness criteria is that they also work in forJVM mode);

3. milestones 1 and 2 perform intra-method rewritings only, and milestone 3
is desirable but not essential for GenCSharp

4. the transformations in milestones 1 to 3 are independent of each other.
This means that:

(a) repeatedly applying the transformations in a given phase results in
a fixpoint (no help from other milestone is needed, no constructs are
introduced that another milestone would have to reduce),

(b) these transformations can be applied in any order.

1.2.1 Milestone 1: goto-elimination

Scala ASTs may contain jumps that straddle block nesting, and not just from
inner-to-outer blocks as supported by C#’s goto statement. A GOTO elim-
ination1 technique has been devised, to rephrase those trees in a semantics-
preserving manner such that the resulting trees exhibit structured control flow
only, with extra boolean variables to pick the intended execution path.

1.2.2 Milestone 2: Lowerings after CleanUp

This milestone was about transforming ASTs from an expression language into
an imperative, statement-based language. In the meantime, that has been ac-
complished as described in Moving Scala ASTs one step closer to C 2.

1http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q1/

JumpsRemover.pdf
2http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q2/Moving3A.pdf

1

http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q1/JumpsRemover.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q1/JumpsRemover.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q2/Moving3A.pdf


1.2.3 Milestone 3: Factor out initialization semantics

The following rewritings (dealing with initialization semantics) are performed
in both GenJVM and GenMSIL. Common wisdom calls for performing them only
once, e.g. as part of post-CleanUp transformations. Otherwise they need to be
carried out in GenCSharp anyway, so better to hoist them.

• Sec. 1, Desugaring of module initialization3

• Sec. 1.9, Adding static constructors4

1.2.4 Milestone 4: Fire off your C# compilers

With the previous functionality in place, we can now get serious about emitting
C# sources. For that, there’s one more sub-problem to solve: early defs do
require “bytecode inlining” (which is possible in C#, see ILInline5). The write-
up How the constructors phase works6 covers how early defs end up before a
super-constructor call.

(As a sidenote, at least one Java compiler allows inlining bytecode, but that’s
another story7).

1.3 Additional resources

1. The Scala Compiler Corner

2. scala-internals Google group

3. In addition to a goto-elimination protoype, there’s an unparser8 to turn
after-typer ASTs back into Scala source files. Unparsing is way easier by
the time GenCSharp would run (thus most of the special cases in that plugin
won’t be needed by GenCSharp) but anyway it provides details about the
connection between tree shapes and surface syntax.

3http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2010Q2/i2i.pdf
4http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2010Q4/ikvmify3.pdf
5http://blogs.msdn.com/jmstall/archive/2005/02/21/377806.aspx
6http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q2/ConstrPhase.

pdf
7http://www.program-transformation.org/Stratego/TheDryadCompiler
8“Unparsing” at http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/

2

http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2010Q2/i2i.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2010Q4/ikvmify3.pdf
http://blogs.msdn.com/jmstall/archive/2005/02/21/377806.aspx
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q2/ConstrPhase.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q2/ConstrPhase.pdf
http://www.program-transformation.org/Stratego/TheDryadCompiler
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/

	A new backend for Scala.NET to emit C# sources
	Motivation
	Project milestones
	Milestone 1: goto-elimination
	Milestone 2: Lowerings after CleanUp
	Milestone 3: Factor out initialization semantics
	Milestone 4: Fire off your C# compilers

	Additional resources


