
Runtime metaprogramming via

java.lang.invoke.MethodHandle

c© Miguel Garcia, LAMP, EPFL
http://lamp.epfl.ch/~magarcia

May 14th, 2012

Abstract

The JVM supports runtime code adaptation (to some degree) with JSR 292,
which consists of:

• invokedynamic: a facility to determine the target for a callsite by
letting runtime code inspect static information about the callsite in
question; and

• MethodHandles [5], type-safe function pointers that can be combined
at runtime into larger units of functionality.

Method handles can be used as a more lightweight replacement for clo-
sures, avoiding reification yet capturing lexical context (via MethodHandle.bindTo()),
not unlike the planned proceduralitzation1 of lambdas in Java 8.

However these notes explore the pros and cons of method handles
for another purpose: runtime specialization of generic code to operate
on primitive types, thus avoiding repeated boxing/unboxing. Currently
scalac relies on static techniques to solve this problem [2].

Source code of the prototype described in these notes can be found at
https://github.com/magarciaEPFL/MethodHandleUtils.

1 Background

Method handles provide better performance than j.l.reflect.Method because
(a) security checks are carried out once on creation and not per access; and also
because (b) autoboxing can be side-stepped if so desired. For example, the iadd

instruction to add two ints can be represented as a MethodHandle:

public static int addII(int a, int b) { return a + b; }

int result = (int) mh.invokeExact(1, 2);

where mh above targets addII and is invoked without autoboxing (any other
method with descriptor (II)I bound to mh would equally do). Type checking
takes place at runtime, and method handles can be bound to targets either using
immediate constants (ldc instruction) or by means of MethodHandles.Lookup.

Method handles are amenable to composition at runtime [5] in a manner that
hides concrete method signatures. For example, assignment between compatible

1http://cr.openjdk.java.net/~briangoetz/lambda/lambda-translation.html

1

http://lamp.epfl.ch/~magarcia
https://github.com/magarciaEPFL/MethodHandleUtils
http://cr.openjdk.java.net/~briangoetz/lambda/lambda-translation.html

types can be expressed as another MethodHandle (details in Sec. 2) provided that
the setter and getter used for that purpose “match up” at runtime:

public static MethodHandle assignment(MethodHandle lhs, MethodHandle rhs) {

assert isSetter(lhs);

assert isGetter(rhs);

return application(lhs, new MethodHandle[] { rhs });

}

In terms of runtime specialization (Sec. 3) combiners such as assignment

above will be used in specialization factories, which take as input tags denoting
the JVM sort of type parameters. In the case of the ASM bytecode manipulation
library2 a sort is denoted by an int for easy switching:

public static final int VOID = 0;

public static final int BOOLEAN = 1;

. . .

public static final int ARRAY = 9;

public static final int OBJECT = 10;

In the example of adding two numeric values (both ints or both floats) the
invokers would be:

// returns an int

(int)(addOp_SpzFactory(intTag).invokeExact(1, 2))

// returns a float

(float)(addOp_SpzFactory(floatTag).invokeExact(1.0f, 2.0f))

2 Building blocks

The utility functions in this section are molded after AST node types in scalac.
For example:

public static MethodHandle ifExpr(MethodHandle cond, MethodHandle thenPart, MethodHandle elsePart) {

assert isArgless(cond) && isBooleanValued(cond);

assert isArgless(thenPart);

assert isArgless(elsePart);

assert isVoidValued(thenPart) == isVoidValued(elsePart); // TODO test whether both branches have common lub.

return guardWithTest(cond, thenPart, elsePart);

}

That was easy given there’s a close enough counterpart in JSR 292 (guardWithTest()).
But it already showcases the technique at play: method handles given as input
become leaves of the tree node (another method handle) the utility function
returns. This can also be seen at play when composing a block expression:

public static MethodHandle blockExpr(MethodHandle[] statements, MethodHandle expr) {

for(int idx = 0; idx < statements.length; idx++) {

assert isArglessVoid(statements[idx]);

}

assert(isArgless(expr));

MethodHandle result = null;

2http://asm.ow2.org/

2

http://asm.ow2.org/

Listing 1: Sec. 3

public static MethodHandle arraySetterUnbound(Class componentClazz) {

Class arrayClazz = java.lang.reflect.Array.newInstance(componentClazz, 0).getClass();

return arrayElementSetter(arrayClazz);

}

public static MethodHandle arrayElemSetter(MethodHandle arrRef) {

Class componentClazz = evalType(arrRef).getComponentType();

MethodHandle rcvless = arraySetterUnbound(componentClazz);

MethodHandle result = application(rcvless, new MethodHandle[] { arrRef });

assert result.type().parameterCount() == 2;

assert result.type().parameterType(0) == int.class;

assert result.type().parameterType(1) == evalType(arrRef);

return result;

}

switch(statements.length) {

case 0 : result = expr; break;

case 1 : result = foldArguments(expr, statements[0]); break;

default: result = foldArguments(expr, blockStmt(statements)); break;

}

assert isArgless(result);

assert evalType(result) == evalType(expr);

return result;

}

3 Datatype-agnostic bytecode

Once put together, code that operates on primitive datatypes should run faster
than its non-specialized counterpart. For the time being, JIT compilers do
not inline method handles as aggressively as required to perform competitively
against manually-specialized code. Additionally, combining method handles at
runtime also incurs overhead. Even with dedicated inlining by the VM, an
approach based on method handles backfires when the running time of the
resulting code is short (say, straight line code).

Therefore, the running example below serves as proof-of-concept, and as
testbed for JIT compilers supporting JSR 292.

The code in specialization factories cannot itself depend on those datatypes.
We saw this in the case of assignment, that can be used to compose assignments
where LHS and RHS both operate on ints, or both operate on floats, etc.
In general, accessors to datatype-dependent values and locations are reified as
MethodHandle instances.

Before JIT-ing, data accesses are thus mediated by method handles. That
can be relatively fast for field accesses: (there’s dedicated API in the form of
Lookup.getGetter() and Lookup.getSetter()) or array accesses, but accesses to
method-local variables has to be simulated as shown below (there’s no address-
of-location as on the CLR Sec. 4.1). These mechanisms are depicted by the
snippets in Listing 2 (local vars, simulated using field accesses) and Listing 1
(array accesses).

3

Listing 2: Sec. 3

public static abstract class LocalVar {

MethodHandle getter = null;

MethodHandle setter = null;

}

public static class FloatLocalVar extends LocalVar {

float v = 0;

public FloatLocalVar() {

try {

getter = lookup().findGetter(FloatLocalVar.class, "v", float.class).bindTo(this);

setter = lookup().findSetter(FloatLocalVar.class, "v", float.class).bindTo(this);

} catch (Exception e) {

throw new Error(e);

}

}

}

Those instuctions that do not depend on runtime-dependent method signa-
tures need not be reified into trees of method handles. However in our running
example we reify everything (on the grounds that, if a VM shows good perfor-
mance under these circumstances, it will work even better when only datatype-
dependent instructions are reified.)

The running example adds up the numbers in an input array (say, all ints,
or all floats). The AST-building code for it (covering ints only, minor modifi-
cations to cover floats too) looks like:

public static MethodHandle summationMaker(MethodHandle aref) {

MethodHandle arr_g = arrayElemGetter(aref);

MethodHandle arr_s = arrayElemSetter(aref);

IntLocalVar idx = new IntLocalVar();

IntLocalVar acc = new IntLocalVar();

MethodHandle line0A = assignment(idx.setter, intConstant(0));

MethodHandle line0B = assignment(acc.setter, intConstant(0));

MethodHandle astLength = application(mh_array_length, aref.asType(methodType(java.lang.Object.class)));

MethodHandle line1_cond = application(mh_intLessThan, idx.getter, astLength);

MethodHandle body_A1 = application(mh_addII, acc.getter, application(arr_g, idx.getter));

MethodHandle body_A = assignment(acc.setter, body_A1);

MethodHandle body_B = assignment(idx.setter, application(mh_addII, idx.getter, intConstant(1)));

MethodHandle body = blockStmt(new MethodHandle[] { body_A, body_B });

MethodHandle line1 = whileLoop(line1_cond, body);

MethodHandle result = blockExpr(new MethodHandle[] { line0A, line0B, line1 }, acc.getter);

return result;

}

4

4 Further information

There’s not much in the way of tutorials for the JSR-292 API but the following
can help to get started:

• http://medianetwork.oracle.com/video/player/1041168645001

• http://code.google.com/p/jsr292-cookbook/

Tracing VMs:

• Trace-based just-in-time type specialization for dynamic languages [3]

• SPUR: a trace-based JIT compiler for CIL [1]

• Trace-based compilation for the Java HotSpot virtual machine [4]

4.1 Comparison with the CLR

There’s a plethora of mechanisms on the CLR for runtime code generation:

• DynamicMethod, http://www.wintellect.com/CS/blogs/krome/archive/
2011/03/07/getting-to-know-dynamicmethod.aspx

• Using MethodRental.SwapMethodBody to do Method Level JIT Compilation,
http://weblog.ikvm.net/PermaLink.aspx?guid=977499e8-0a70-4744-9482-5b6132504055

The CLR term delegate may refer to (1) a delegate type (a subclass of System.Delegate),
or (2) an instance of a delegate type. There’s a public constructor,

// delegate-type-specific constructor (for a delegate called ’Function’ in the example)

public Function(object @object, IntPtr method); /*- native int pointer, a function pointer! */

but oftentimes the individual delegate instances thus created are aggregated for
multicast purposes using runtime-managed factory methods that return new
delegate instances. For example, adding a method reference to a multicast
delegate instance.

In the surface syntax of C# a location having a delegate type can be assigned:

• a static method with compatible formal parameters and return type,

• an object.instanceMethod selector where the method has formals and re-
turn type compatible with the LHS delegate,

• an anonymous function (a.k.a. closure, e.g. (double x) => x * 2.0)

In summary, a delegate instance is to be used like a scala.FunctionX in-
stance, yet its actual type is not generic, does not extend any .NET type with a
strongly typed Invoke() method, and in fact due to nominal subtyping is not the
same type as some other delegate taking the same formals to the same return
type.

5

http://medianetwork.oracle.com/video/player/1041168645001
http://code.google.com/p/jsr292-cookbook/
http://www.wintellect.com/CS/blogs/krome/archive/2011/03/07/getting-to-know-dynamicmethod.aspx
http://www.wintellect.com/CS/blogs/krome/archive/2011/03/07/getting-to-know-dynamicmethod.aspx
http://weblog.ikvm.net/PermaLink.aspx?guid=977499e8-0a70-4744-9482-5b6132504055

References

[1] Michael Bebenita, Florian Brandner, Manuel Fahndrich, Francesco Logozzo,
Wolfram Schulte, Nikolai Tillmann, and Herman Venter. Spur: a trace-based
jit compiler for cil. SIGPLAN Not., 45(10):708–725, October 2010.

[2] Iulian Dragos and Martin Odersky. Compiling generics through user-directed
type specialization. In ICOOOLPS ’09: Proc. 4th workshop on the Imple-
mentation, Compilation, Optimization of Object-Oriented Languages and
Programming Systems, pages 42–47, New York, NY, USA, 2009. ACM.
http://infoscience.epfl.ch/record/150134/files/p42-dragos.pdf.

[3] Andreas Gal, Brendan Eich, Mike Shaver, David Anderson, David Man-
delin, Mohammad R. Haghighat, Blake Kaplan, Graydon Hoare, Boris
Zbarsky, Jason Orendorff, Jesse Ruderman, Edwin W. Smith, Rick Reit-
maier, Michael Bebenita, Mason Chang, and Michael Franz. Trace-based
just-in-time type specialization for dynamic languages. SIGPLAN Not.,
44(6):465–478, June 2009.

[4] Christian Häubl and Hanspeter Mössenböck. Trace-based compilation for
the java hotspot virtual machine. In Proceedings of the 9th International
Conference on Principles and Practice of Programming in Java, PPPJ ’11,
pages 129–138, New York, NY, USA, 2011. ACM.

[5] John R. Rose. Bytecodes meet combinators: invokedynamic on the jvm. In
Proceedings of the Third Workshop on Virtual Machines and Intermediate
Languages, VMIL ’09, pages 2:1–2:11, New York, NY, USA, 2009. ACM.
http://cr.openjdk.java.net/~jrose/pres/200910-VMIL.pdf.

6

http://infoscience.epfl.ch/record/150134/files/p42-dragos.pdf
http://cr.openjdk.java.net/~jrose/pres/200910-VMIL.pdf

	Background
	Building blocks
	Datatype-agnostic bytecode
	Further information
	Comparison with the CLR

