R
Functionality ready to land in optimizer and backend

Functionality ready to land in

optimizer and backend

Miguel Garcia
http://lamp.epfl.ch/~magarcia
LAMP, EPFL

2012-05-01

http://lamp.epfl.ch/~magarcia

Functionality ready to land in optimizer and backend

Outline

Status as of M3
Compilation speed
test.stability under —optimize
Not yet merged: Faster reaching-defs for ClosureElim
Not yet merged: GenASM

Ongoing work
Single-pass Type-flow analysis

Open performance riddles around inlining

Next steps

2/M0D

e
Functionality ready to land in optimizer and backend

LStatus as of M3

L Compilation speed

Stats compiling the compiler (excerpt, -Dscala.timings=true)

inliner 22 54sec 30
typer 4 38sec 21%

jvm 26 1lbsec %

erasure 13 1l4dsec %

dce 25 12sec 7%

icode 21 8sec 4%

closelim 24 6sec 3%

uncurry 9 S5sec 2%

specialize 11 3sec 2%

refchecks 8 3sec 2%

mixin 19 3sec 1%
inlineExceptionHandlers 23 2sec 1%

Functionality ready to land in optimizer and backend

LStatus as of M3
[

test.stability under -optimize

» Observed behavior, with makepublic () enabled :

> test.stability fails under -optimize.
» However, for identical compiler runs
(but they really have to be identical)
optimized output is stable (caveat: tested outside build.xml).

» Explanation:

» During inliner, there’s no topological sorting

(over the call-graph relationship) of the methods being visited.
» Different visit orders (across compiler runs)

lead to different method bodies, with ripple effects.

Recent developments
» makePublic () was disabled the night before Scala Days.

» just found that postponing makePublic () untill all other
inlining conditions succeed, recovers test .stability.

» Another idea: sort IMethods by sym. id.

DetaI|S at https://groups.google.com/d/topic/scala-internals/yGmOkBn9Gmk/discussien

https://groups.google.com/d/topic/scala-internals/yGmOkBn9Gmk/discussion

Functionality ready to land in optimizer and backend

LStatus as of M3

Ltest .stability under —optimize (2 of 2)

The only non-deterministic behavior that logs show is:

150818 [1log
1508819 [log
1508820 [log
1508821 [log
1508822 [1log
1508823 [log
1508824 [log
1508825 [log
1508826 [log
1508827 [log
1508828 [log
1508829 [log

1509363 [log
1509370 [log
1509371 [log
1502372 [log
11509373 [log
1509374 [log
1509375 [log
1509376 [log
1509377 [log
1509378 [log
1509379 [log
1509380 [log

Jvm]
Jvm]
jvm]

Jvm]
Jvm]
Jvm]
jvm]
jvm]
Jvm]
Jvm]
Jvm]
Jvm]

A (Base): iscardstablsalcompbyauick. bt [... | (8
Top line 150935%ncoding: UTF-ELine end style: | =gy &1

Jvm]
Jvm]
Jvm]
Jvm]
Jvm]
Jvm]
Jvm]
Jvm]
Jvm]
jvm]

Jvm]
Jvm]

(Lecala/E 1508818
(Lscala/E 1508819
(Lscala/x 1508820
15088217
1508822
No mirroxr 1508823
Lscala/cc 1508824
Lscala/cc 1508825
()Lscalas 1508826
()Lscalas 1508827
() Lscalay
() Lscalas
Dumping n 1508828
Adding st 1508829

[log
[log
[log
[log
[log
[log
[log
[log
[log
[log

[log
[log

Jvm]
Jvm]
Jvm]
Jvm]
Jvm]
Jvm]
Jvm]
Jvm]
Jvm]
Jvm]

Jvm]
Jvm]

(Lacala/E
(Lacala/E
(Lscala/:
()Lscala/
() Lacala/
HNo mirrox
Lscala/cc
Lscala/cc
()Lacala/
()Lscala/

Dumping n
Zdding st

(Lscala/r 1509369
(Lscala/c 1509370
(Lscala/r 1509371
No mirro: 1509372
(Liava/les 1509373
Adding st 1509374
Adding =t 1509375
(Lijava/le 1509376
Rdding st 1509377
Adding st 1509378

No mirror 1509379
Adding st 1509380

[log
[log
[log
[log
[log
[log
[log
[log
[log
[log

[log
[log

Jvm]
Jvm]
Jvm]
Jvm]
Jvm]
jvm]
Jvm]
Jvm]
Jvm]
jvm]

Jvm]
jvm]

tempdiscardstab'salcompbystrap. bt .. |
‘Encoding: UTF-

(Lscala/1
(Lscala/c
(Lscala/r
No mirroz
(Ljava/le
Rdding st
hdding st
(Lijava/le
Adding st
Edding st

No mirror
Adding st

Top line 15088 1&ncoding:

1508818 [log
1508813 [log
1508820 [log
1508821 [log
1508822 [log
1508823 [log
1508824 [log
1508825 [log
150882 [log
1508827 [log
1508828 [log
1508823 [log

C: stempdiscard stab salcompbythird. ot [. |
| Top line 150936%ncoding: UTF-ELine end style: ||

1509369 [log
1509370 [log
1509371 [log
1509372 [log
1509373 [Llog
1509374 [log
1509375 [log
1509376 [log
1509377 [Log
1509378 [log
1509379 [log
1509380 [log

[(Base): scard\stablsalcompbyquick. bt | ... | ©: temp\discard\stabsalcompbystrap.txt [... | C: stemp\discardistablsalcompbythird. ot [.. |

Top line 15088 1&ncoding: UTF-£Line end style: L Top line 15088 1Encoding: UTF-ELine end style: L UTF-£Line end style: L

jvm]
Jvm]
jvm]

jvm]
jvm]
Jvm]
jvm]
jvm]
Jvm]
jvm]
jvm]
Jvm]

Jvm]
Jvm]
Jvm]

jvm]
Jvm]
Jvm]
Jvm]
jvm]
Jvm]
Jvm]
Jvm]
jvm]

(Lacala/§
(Lacala/H
(Lacala/y

No mirroy
Lscala/c
Lscala/c
() Lscala,
() Lscala,
(}Lscala
(yLscala
Dumping nf
Adding =1

(L=scala/sq
(Lacala/
(L=cala/y

Zdding si
hdding =1
(Ljava/14
Adding =1
Zdding si
No mirroy
(Lijava/14
No mirroy

Adding st

5/10

R

Functionality ready to land in optimizer and backend
LStatus as of M3
L Not yet merged: Faster reaching-defs for ClosureElim

Reaching Definitions
» Status quo: 12sec (but with mismatched stack sizes)

» Fixing that: 25sec

v

With some improvements (two Intsin a Long, etc): 7sec

> DetaI|S at https://github.com/magarciaEPFL/scala/tree/fasterRDef

47c96c22 " magarciaEPFL no more mismatched stack sizes in reaching def analysis 2 months ago
dcac1ds? 8 magarciaEPFL lattice meet operation is associative and commutative (at least on te.. 2 months ago
32d5d099 magarciaEPFL towards replacing list scanning with hash operations 2 months ago
ded71a70 @ magarciaEPFL just one iteration over instructions in rdef.init () 2 months ago
72581324 ¢ magarciaEPFL no separate set needed for kill(b), it's always == gen(b) .keySet 2 months ago
aac6070f ' magarciaEPFL map replacements doing away with list scans (more to come) 2 months ago
2c7£3d92 :f/ magarciaEPFL using persistent data structures 2 months ago
e55cee9b magarciaEPFL dawn of alt reaching defs 2 months ago
57d9320a @ magarciaEPFL one iteration fewer over all instructions rdef.interpret () 2 months ago
628a7cal ¢ magarciaEPFL replaced old rdef also in ICodeReader 2 months ago
8a87893e " magarciaEPFL changes in the management of the worklist 2 months ago
274ddso1 ;/ magarciaEPFL stop passing Tuple2[BasicBlock, Int] around 2 months ago

https://github.com/magarciaEPFL/scala/tree/fasterRDef

Functionality ready to land in optimizer and backend
LStatus as of M3
L Not yet merged: GenASM

ASM-based backend:

» twice as fast as GenJVV,
even faster with “Instruction.emit (asm.MethodVisitor)”

» bootstraps, passes all tests, including:

ant quick.clean -Dscalac.args.quickonly="-target: jvm-1.5"
test.stability

similarly for jvm-1.5-asmand jvm-1.6

Alternatives for build.xml:

1. Download asm. jar and asm-util. jar from Maven,
re-namespace on-the-fly viar JarJar

2. Distribute ASM sources “re-namespaced” by us

De’[al|3 at https://groups.google.com/d/topic/scala-internals/7gecxktTUWs/discussion

https://groups.google.com/d/topic/scala-internals/7gecxktTUWs/discussion

Functionality ready to land in optimizer and backend
L Ongoing work
L Single-pass Type-flow analysis

Why bother making inlining faster? Currently:

[

inliner 22 54sec 30%

Gist of Single-pass Type-Flow Analysis (TFA)
1. BasicBlock instructions are scanned at most once,
collecting its net effect on the output lattice elem (“single-pass”)
2. Afterwards, the iterative dataflow uses the net-effects.
3. On average, twice faster as Met hodTFA.

What can be done with SinglePassTFA:
» integrate the solution repair approach used in inliner
(extra 5x speedup)

» more scalable concurrency
(lower contention on t yper as compared to MethodTFA)

’ Morale: avoid repeated pattern matching over ICode instructions. ‘

DetaI|S at https://github.com/magarciakEPFL/scala/tree/SinglePassTFA

10

https://github.com/magarciaEPFL/scala/tree/SinglePassTFA

Functionality ready to land in optimizer and backend
L Ongoing work

LOpen performance riddles around inlining

> Riddle 1:

def isMonadicMethod (sym: Symbol) {
nme.unspecializedName (sym.name) match {
case nme.foreach |
nme.filter | nme.withFilter |
nme .map | nme.flatMap => true
case _ => false

Any other method “m”
(1) not explicitly marked einline (2) taking a closure as last arg;
won'’t have its callsites inlined thus preventing ClosureElim

from eliminating anonymous-closure-classes ref’ed at m callsites.

» Riddle 2:

/% TODO
* Do we really want to inline inside exception handlers?
* Seems counterproductive
* (larger methods less likely to be JITed). x/

9/10

e
Functionality ready to land in optimizer and backend
L Next steps

Next steps

» Phasing into trunk the improvements described above.

> Yes, but which ones aiming for which release? (M4, RC1, 2.11)

	Status as of M3
	Compilation speed
	test.stability under -optimize
	Not yet merged: Faster reaching-defs for ClosureElim
	Not yet merged: GenASM

	Ongoing work
	Single-pass Type-flow analysis
	Open performance riddles around inlining

	Next steps

