
Functionality ready to land in optimizer and backend

Functionality ready to land in
optimizer and backend

Miguel Garcia
http://lamp.epfl.ch/~magarcia

LAMP, EPFL

2012-05-01

1 / 10

http://lamp.epfl.ch/~magarcia

Functionality ready to land in optimizer and backend

Outline

Status as of M3
Compilation speed
test.stability under -optimize
Not yet merged: Faster reaching-defs for ClosureElim
Not yet merged: GenASM

Ongoing work
Single-pass Type-flow analysis
Open performance riddles around inlining

Next steps

2 / 10

Functionality ready to land in optimizer and backend

Status as of M3

Compilation speed

Stats compiling the compiler (excerpt, -Dscala.timings=true)

phase id sec share(%)
----------------------- -- ----- --------

inliner 22 54sec 30%
typer 4 38sec 21%

jvm 26 15sec 8%
erasure 13 14sec 8%

dce 25 12sec 7%
icode 21 8sec 4%

closelim 24 6sec 3%
uncurry 9 5sec 2%

specialize 11 3sec 2%
refchecks 8 3sec 2%

mixin 19 3sec 1%
inlineExceptionHandlers 23 2sec 1%

3 / 10

Functionality ready to land in optimizer and backend

Status as of M3

test.stability under -optimize

I Observed behavior, with makePublic() enabled :
I test.stability fails under -optimize.
I However, for identical compiler runs

(but they really have to be identical)
optimized output is stable (caveat: tested outside build.xml).

I Explanation:

I During inliner, there’s no topological sorting
(over the call-graph relationship) of the methods being visited.

I Different visit orders (across compiler runs)
lead to different method bodies, with ripple effects.

Recent developments

I makePublic() was disabled the night before Scala Days.

I just found that postponing makePublic() untill all other
inlining conditions succeed, recovers test.stability.

I Another idea: sort IMethods by sym.id.

Details at: https://groups.google.com/d/topic/scala-internals/yGmOkBn9Gmk/discussion
4 / 10

https://groups.google.com/d/topic/scala-internals/yGmOkBn9Gmk/discussion

Functionality ready to land in optimizer and backend

Status as of M3

test.stability under -optimize (2 of 2)

The only non-deterministic behavior that logs show is:

5 / 10

Functionality ready to land in optimizer and backend

Status as of M3

Not yet merged: Faster reaching-defs for ClosureElim

Reaching Definitions

I Status quo: 12sec (but with mismatched stack sizes)

I Fixing that: 25sec

I With some improvements (two Ints in a Long, etc): 7sec

I Details at https://github.com/magarciaEPFL/scala/tree/fasterRDef

6 / 10

https://github.com/magarciaEPFL/scala/tree/fasterRDef

Functionality ready to land in optimizer and backend

Status as of M3

Not yet merged: GenASM

ASM-based backend:

I twice as fast as GenJVM,
even faster with “Instruction.emit(asm.MethodVisitor)”

I bootstraps, passes all tests, including:

ant quick.clean -Dscalac.args.quickonly="-target:jvm-1.5"
test.stability

similarly for jvm-1.5-asm and jvm-1.6

Alternatives for build.xml:

1. Download asm.jar and asm-util.jar from Maven,
re-namespace on-the-fly viar JarJar

2. Distribute ASM sources “re-namespaced” by us

Details at https://groups.google.com/d/topic/scala-internals/7gecxktTUWs/discussion

7 / 10

https://groups.google.com/d/topic/scala-internals/7gecxktTUWs/discussion

Functionality ready to land in optimizer and backend

Ongoing work

Single-pass Type-flow analysis

Why bother making inlining faster? Currently:

inliner 22 54sec 30%

Gist of Single-pass Type-Flow Analysis (TFA)

1. BasicBlock instructions are scanned at most once,
collecting its net effect on the output lattice elem (“single-pass”)

2. Afterwards, the iterative dataflow uses the net-effects.
3. On average, twice faster as MethodTFA.

What can be done with SinglePassTFA:
I integrate the solution repair approach used in inliner

(extra 5x speedup)
I more scalable concurrency

(lower contention on typer as compared to MethodTFA)

Morale: avoid repeated pattern matching over ICode instructions.

Details at https://github.com/magarciaEPFL/scala/tree/SinglePassTFA
8 / 10

https://github.com/magarciaEPFL/scala/tree/SinglePassTFA

Functionality ready to land in optimizer and backend

Ongoing work

Open performance riddles around inlining

I Riddle 1:

def isMonadicMethod(sym: Symbol) = {
nme.unspecializedName(sym.name) match {

case nme.foreach |
nme.filter | nme.withFilter |
nme.map | nme.flatMap => true

case _ => false
}

Any other method “m”
(1) not explicitly marked @inline (2) taking a closure as last arg;
won’t have its callsites inlined thus preventing ClosureElim
from eliminating anonymous-closure-classes ref’ed at m callsites.

I Riddle 2:

/* TODO

* Do we really want to inline inside exception handlers?

* Seems counterproductive

* (larger methods less likely to be JITed). */

9 / 10

Functionality ready to land in optimizer and backend

Next steps

Next steps

I Phasing into trunk the improvements described above.

I Yes, but which ones aiming for which release? (M4, RC1, 2.11)

10 / 10

	Status as of M3
	Compilation speed
	test.stability under -optimize
	Not yet merged: Faster reaching-defs for ClosureElim
	Not yet merged: GenASM

	Ongoing work
	Single-pass Type-flow analysis
	Open performance riddles around inlining

	Next steps

