
Partial evaluation based on three-address form

c© Miguel Garcia, LAMP, EPFL
http://lamp.epfl.ch/~magarcia

November 18th, 2011

Abstract

Performing partial evaluation [5] for arbitrary Scala ASTs requires track-
ing both side-effects and higher-order functions. A subset of those tech-
niques, focusing on VM-level ASTs only, is also of practical interest. For
example, they are enough to specialize a function “power(base, n)” to,
say, “power 3(base)” (that raises base only to the third power, Sec. 1).
More generally, those optimizations can be chosen that improve both space
and time measures (thus always being sensible to apply) which is useful
in particular when targeting mobile devices.

These notes describe a proof of concept for the capability sketched
above. The compiler plugin in question (“partialeval”) performs three
tasks:

1. Converting ASTs after cleanup into three-address-form

2. As part of that, optimizations are performed, relying on the fact that
side-effects are accounted for in the three-address form. This is more
powerful than constant propagation alone. For example, “if(m() *

0 == 0) n() else p();” is reduced to “m(); n();”. Given that
these reductions are applied during the same traversal as (1) above,
they come almost for free.

3. Conversion back to an expression language that GenICode can pro-
cess. In this step all intermediate (i.e., SSA) variables are eliminated
by replacing their single use with their RHS, to emit compact byte-
code afterwards.

In terms of performance, the prototype is not competitive at this point
because too few optimizations are included that would amortize the cost of
getting in and out of three-address form. In particular, the all important
iterative dataflow and method inlining are missing (Sec. 3). That can be
solved however: the plugin is a testbed to gauge the potential of candidate
optimizations (e.g., all the optimizations on Soot’s Jimple [6] could also be
applied between steps (2) and (3) above). Given that partialeval runs
before GenICode, all backends stand to benefit from it (as well as future
backends targeting non-stack based VMs that do without GenICode).

Another area where the prototype proves useful is understanding ASTs.
Did you know that simplifying “if(true) E1 else E2” into “E1” isn’t al-
ways safe? Any clue why? Details in Sec. 2.3.

1

http://lamp.epfl.ch/~magarcia

Contents

1 Overview 3
1.1 How to build, run, and test . 3
1.2 Structure of the plugin . 3
1.3 Passing closures to by-name and to strict params 4

2 On-the-fly reductions 5
2.1 Laundry list . 5
2.2 Division of labor between ThreeAddrMaker and its subclasses

(“conditional-and” example) 6
2.3 Labels and their GOTOs . 7

3 Iterative reductions 8

4 Conversion back to an expression language 8

5 Future work 9

6 Decompiling bytecode in external libraries into three-address
form (e.g., to enable optimizations) 10

2

1 Overview

1.1 How to build, run, and test

Following the standard recipe to package a compiler plugin:

1. compile PartialEvaluation.scala and InfoOnGotos.scala from http://

lampsvn.epfl.ch/trac/scala/browser/scala-experimental/trunk/partialeval/

src

2. the resulting classfiles (say, at myplugins/partialeval/classes) are packed
with

jar -cf partialeval.jar -C myplugins/partialeval/classes scala -C myplugins/partialeval/resources/ .

3. where myplugins/partialeval/resources contains the plugin manifest scalac-plugin.xml

<plugin>

<name>imp</name>

<classname>scala.tools.imp.PEvalPlugin</classname>

</plugin>

Afterwards, scalac is run with -Xplugin:where/to/find/partialeval.jar (on Linux)
and -Xplugin where/to/find/partialeval.jar (on Windows).

A StackOverflow entry1 covers how to use compiler plugins when building
with Maven.

As for any semantics-preserving transformation, the Scala testsuite can be
enlisted to compare the output of programs compiled with -Xplugin partialeval.jar.
This amounts to a small addition in the partest script:

[-n "$SCALAC_OPTS"] || SCALAC_OPTS="-deprecation -Xplugin partialeval.jar" /*- don’t forget the -Xplugin */

The above is for Windows. On Linux should read: -Xplugin:where/to/find/partialeval.jar.

1.2 Structure of the plugin

Helper utilities around GOTOs are grouped in the InfoOnGotos trait. Statistics
gathered over all compilation units in a compiler run are tracked by a Phase

subclass, so that at the end of run() it informs:

Console.println("[partialeval] Applied " + grandTotal + " optimizations. " +

"Killed " + kGotos + " gotos, " + kLabels + " labels.")

Conversion to three-address and on-the-fly optimizations are the responsibility
of the inheritance chain from ThreeAddrMaker to Gatekeeper. Besides Gatekeeper,
another subclass (BackToExprLang) can also be instantiated:

def newTransformer(unit: CompilationUnit) =

new BackToExprLang(unit) // either Gatekeeper or BackToExprLang

which will take care of invoking a transformer (UndoThreeAddr) that replaces
(bottom-up) each use of an SSA variable with it single definition. This con-
version is not strictly necessary (GenICode accepts the three-address form) but
leads to faster loading of classfiles by the VM.

1http://stackoverflow.com/questions/4955779/how-do-i-set-the-scala-compiler-to-use-a-plugin-when-i-build-using-maven

3

http://lampsvn.epfl.ch/trac/scala/browser/scala-experimental/trunk/partialeval/src
http://lampsvn.epfl.ch/trac/scala/browser/scala-experimental/trunk/partialeval/src
http://lampsvn.epfl.ch/trac/scala/browser/scala-experimental/trunk/partialeval/src
http://stackoverflow.com/questions/4955779/how-do-i-set-the-scala-compiler-to-use-a-plugin-when-i-build-using-maven

Listing 1: Sec. 1.3

object Bug257Test {

def sayhello(): Unit = { Console.println("I should come 1st and 2nd"); };

def sayhi(): Unit = { Console.println("I should come last"); };

def f1(x: Unit): Unit = ();

def f2(x: Unit)(y: Unit): Unit = ();

def f(x: => Unit): Unit => Unit = {

f1(x);

f2(x);

}

def main(args: Array[String]) {

f(sayhello())(sayhi())

}

}

1.3 Passing closures to by-name and to strict params

It’s instructive to see the three-address formulation of closures being passed as
arguments, for example as shown in Listing 1 (that’s files/run/bugs.scala from
the Scala testsuite). The difference can be seen for function f() (whose param
is by-name) vs. functions f1() and f2() (whose params are strict).

1. Right after CleanUp, main() looks as follows:

def main(args: Array[String]): Unit = {

Bug257Test.this.f({

(new anonymous class Bug257Test$$anonfun$main$1(): Function0)

}).apply({

Bug257Test.this.sayhi();

scala.runtime.BoxedUnit.UNIT

});

()

}

2. And the three-address formulation of the body of that method is:

{

val tmp13: Function0 = {

val tmp11: anonymous class Bug257Test$$anonfun$main$1 =

new anonymous class Bug257Test$$anonfun$main$1();

val tmp12: Function0 = tmp11;

tmp12

};

val tmp14: Function1 = Bug257Test.this.f(tmp13);

val tmp16: scala.runtime.BoxedUnit = {

Bug257Test.this.sayhi();

val tmp15: scala.runtime.BoxedUnit = scala.runtime.BoxedUnit.UNIT;

tmp15

};

val tmp17: Object = tmp14.apply(tmp16);

tmp17;

()

}

4

Figure 1: Sec. 2.1

3. Finally, after val expressified = resolver.back2SL(tree.symbol, a3tree)

has run, the formulation devoid of SSA variables looks as below. All this
to show that side-effects are produced as in the original program:

{

Bug257Test.this.f(new anonymous class Bug257Test$$anonfun$main$1()).apply({

Bug257Test.this.sayhi();

scala.runtime.BoxedUnit.UNIT

});

()

}

2 On-the-fly reductions

2.1 Laundry list

The subclasses of ThreeAddrMaker depicted in Figure 1 perform the following
reductions, grouped by the class realizing them (for an example see Sec. 2.2):

1. PartialEval1 and PartialEval2

(a) If nodes with compile-time-known condition value.

From

if(true) { then-branch } [else-branch]

To

then-branch

Similarly for if(false) ...

(b) Match expression with compile-time-known selector value.

From

literal match { case literal_1 => e_1; case literal_n => e_n }

To

e_i, where literal == literal_i

5

(c) conditional-and, conditional-or (more on this in Sec. 2.2).

2. CodeReorgs

(a)
From

try { <empty> } catches { <non-empty> } finally { F }

To

try { <empty> } finally { F }

(b) An If node with negated condition, with both then and else branches.
Simplify the condition and exchange branches. Sensible in theory
but causes GenICode to complain (e.g., for Patterns.scala) about an
“Unknown label target” (i.e., after exchanging the branches, there’s
in the then-branch a GOTO to a LabelDef deep in the else branch).
Therefore we further constrain the applicability condition, to those
cases where no label shows up in the If.

From

if(!b) { e1 } else { e2 }

To

if(b) { e2 } else { e1 }

3. ArithOps

From

an integral multiplication a * b, where (a == 0) || (b == 0)

To

the operand that is literal zero.

4. LiteralsFolding

“constfold”: Reduction of expressions involving only compile-time con-
stants and well-known operations. Sometimes similar reductions can be
devised for cases where only some operands’ values are compile-time-
known.

2.2 Division of labor between ThreeAddrMaker and its sub-
classes (“conditional-and” example)

A previous prototype (“imp”, [4]) turned post-cleanup ASTs into three-address
form. That functionality remains in place but, due to subclasses of ThreeAddrMaker,
the trees that transform() returns are not only in three-address form but more-
over have been optimized. For example, an override handles short-circuit-and
(Listing 2) where, for example, “false && b” is reduced to “false” and no code
is emitted to evaluate “b”. The “false” operand in turn may have resulted itself
from a reduction.

In contrast, without the transform() override in class PartialEval2, the con-
version to three-address alone would have transformed “op1 conditional-and

op2” into “if(op1) { op2 } else { false }” (as shown below) i.e. code would
have been emitted for the 2nd operand.

6

Listing 2: Sec. 2.2

/*

Short-circuit-And.

The reduction from ‘false && b‘ to ‘false‘ is safe because no code is emitted to evaluate ‘b‘

(i.e., we don’t call ‘transform(‘b‘)‘.

To recap, transform(b) returns ‘b‘ converted into three-address-form.

*/

case Apply(fun @ Select(rand1, _), List(rand2)) if fun.symbol == definitions.Boolean_and =>

val a3rand1 = transform(rand1)

if (isLiteralFalse(a3rand1)) {

appliedOptimizations += 1

elideAccess(a3rand1)

kill(rand2)

LITFalse(rand1.pos)

} else if(isLiteralTrue(a3rand1)) {

elideAccess(a3rand1)

val a3rand2 = transform(rand2)

if(isLiteralFalse(a3rand2)) {

appliedOptimizations += 1

elideAccess(a3rand2)

LITFalse(rand2.pos)

} else if(isLiteralTrue(a3rand2)) {

appliedOptimizations += 1

elideAccess(a3rand2)

LITTrue(rand2.pos)

} else { a3rand2 }

} else {

val newAnd = treeCopy.Apply(tree, treeCopy.Select(fun, a3rand1, fun.name), List(rand2))

super.transform(newAnd)

}

case Apply(fun @ Select(op1, _), List(op2)) if fun.symbol == definitions.Boolean_and =>

// ‘op1 conditional-and op2’ is rewritten into ‘if(op1) { op2 } else { false }’

val res = typedWithPos(app.pos) { If(op1, op2, Literal(Constant(false))) }

transform(res) // transform() needed to turn the If into a stmt, that’s where op1, op2 will be transformed.

2.3 Labels and their GOTOs

Usually “if(true) E1 else E2” can be reduced to “E1”. Unless the else-
branch happens to contain a LabelDef that is targeted from some jump which
is not dead code (background info on all things labels and jumps at [3]).

Therefore, we adopt a conservative applicability condition that prevents from
marking as dead any branch containing live LabelDefs. Those live labels could
well become unreachable later, after their GOTOs have been killed, but in
its current form partialeval doesn’t try that hard to kill that code. Rather,
it marks via “enqueueKillRequest(tree.asInstanceOf[If], thenp)” such inten-
tion, in anticipation of iterative dataflow capability (Sec. 3).

The relevant snippet is shown in Listing 3.

7

Listing 3: Sec. 2.3

case If(condp, thenp, elsep) =>

val a3Cond = transform(condp)

def conservative() = {

val newIf = treeCopy.If(tree, a3Cond, thenp, elsep)

super.transform(newIf)

}

if(isLiteralTrue(a3Cond)) {

if(lacksLiveLabels(elsep)) {

appliedOptimizations += 1

elideAccess(a3Cond)

kill(elsep)

transform(thenp)

} else {

enqueueKillRequest(tree.asInstanceOf[If], elsep)

conservative()

}

} else if(isLiteralFalse(a3Cond)) {

if(lacksLiveLabels(thenp)) {

appliedOptimizations += 1

elideAccess(a3Cond)

kill(thenp)

transform(elsep)

} else {

enqueueKillRequest(tree.asInstanceOf[If], thenp)

conservative()

}

} else conservative()

3 Iterative reductions

TODO To be added as a transformer running in between

getting in and out of three-address form.

4 Conversion back to an expression language

The structure of the transformers in charge of converting into and out of three-
address are similar (both sport transform(), pushXpop(), and delegate trans-
forming certaing tree shapes to similarly-named helper methods). In fact,
UndoThreeAddr can be seen as a “parser” for the instruction stream that“ThreeAddrMaker”
serialized. The main differences between both kinds of transformers follow.

An UndoThreeAddr.transform(expr) step starts by poping from the stack of
previous instructions the RHSs for SSA-usages occurring in expr. In turn, the
invoker of transform(expr) will push that expanded expression onto the stack.
That stack is summarily called “seen” (to convey the idea that, well, those
expressions have been seen already). It all starts with:

override def transform(tree0: Tree): Tree = {

8

Listing 4: Sec. 4

private def preTrans(stmt: Tree): Tree = {

val usages = { usagesColltor.hits.clear; usagesColltor.traverse(stmt); usagesColltor.hits.toList.reverse }

val newStmt0 =

if(usages.isEmpty) {

stmt

} else {

val rhsides = {

val usagesIter = usages.iterator

val rhssidesBuffer = collection.mutable.ListBuffer.empty[Tree]

while(usagesIter.hasNext) {

val use = usagesIter.next

var futureStats: List[Tree] = Nil

var stop = false;

do {

futureStats = seen.pop :: futureStats;

stop = futureStats.head.isInstanceOf[ValDef] && (futureStats.head.symbol == use)

} while (!stop)

val ValDef(_, _, _, rhs) = futureStats.head

rhssidesBuffer += rhs

futureStats.tail foreach { s =>

assert(s.isInstanceOf[ValDef] && isIntermediate(s))

seen.push(s)

}

}

rhssidesBuffer.toList

}

usages foreach { u => consumeVar(u) }

new TreeSubstituter(usages, rhsides) transform stmt

}

newStmt0

}

val tree = preTrans(tree0)

val res = tree match {

. . .

As suggested above, the method in charge of expanding SSA-usages with
their single-definitions is preTrans() (Listing 4), where the replacement itself is
carried out by “new TreeSubstituter(usages, rhsides) transform stmt”.

5 Future work

There are a number of optimizations that can be added (like, all those performed
by Soot’s Jimple [6]). In particular the interplay of value propagation and
method inlining has potential (which goes by the name of “Polyvariant program-
point specialization”, [5]):

• From:

9

int power(int base, int n)

{

int pow;

for (pow = 1; n; n--)

pow *= base;

return pow;

}

• To:

int power_3(int base)

{

int pow;

pow = 1;

pow *= base;

pow *= base;

pow *= base;

return pow;

}

Having a comprehensive set of optimizations in the form of one or more
Transformers is all fine. An intriguing idea is making that functionality config-
urable, by specifying optimizations in terms of a declarative language. After
all, the transformation rules in ArithOps (Sec. 2.1) could have been given as
algebraic rules. Such declarative language would enormously lower the barrier
of entry for library-specific optimizations, the best example of which are those
for MapReduce, so far implemented in dedicated compilers [2].

6 Decompiling bytecode in external libraries into
three-address form (e.g., to enable optimiza-
tions)

Currently, the Scala compiler can parse bytecode into ICode, but stops short
of “decompiling” those ICode ASTs into “Scala ASTs in stack-based style with
GOTOs” (unlike Scala source, Scala ASTs may contain arbitrary GOTOs [3],
as well as pre-super field initialization).

1. One way to obtain “Scala ASTs in stack-based style with GOTOs” from
ICode can be found in the tutorial by Bebenita on obtaining SSA from
bytecode, http://michael.bebenita.com/storage/ssa_class_notes.

pdf From there, the existing imp plugin can convert those ASTs to three-
address style. One of the difficulties involves structured exception han-
dling. Given that neither Java compilers nor Scala emit non-nested pro-
tected blocks for exception handling, that’s the subset of all-feasible ex-
ception handling patterns we want to address.

2. Another way is exemplified by Soot, in particular coffee.CFG. As with
other “decompilers”, a three-address form is obtained directly. For this,
[1] is a useful reference (“Bellamy’s type inference for local variables”).
Code to look at: soot.jimple.toolkits.typing.fast.TypeResolver. One of
its steps need not be performed for ICode (disambiguating small integers),

10

http://michael.bebenita.com/storage/ssa_class_notes.pdf
http://michael.bebenita.com/storage/ssa_class_notes.pdf

that’s done in soot.jimple.toolkits.typing.fast.TypeResolver.typePromotion(Typing).
The original Soot algorithm for inserting casts (still necessary in fast.TypeResolver

in a few cases) is implemented by soot.jimple.toolkits.typing.integer.TypeResolver.resolve(JimpleBody).

3. Another way to obtain three-address code is using sawja, as described at

Delphine Demange, Thomas Jensen, and David Pichardie.

A provably correct stackless intermediate representation for Java bytecode.

In Proc. of the 8th Asian Symposium on Programming Languages and Systems (APLAS 2010),

Vol 6461 of LNCS, pages 97-113. Springer-Verlag, 2010.

http://www.irisa.fr/celtique/pichardie/papers/aplas10.pdf

References

[1] Ben Bellamy, Pavel Avgustinov, Oege de Moor, and Damien Sereni. Efficient
local type inference. In Gregor Kiczales, editor, OOPSLA’07: 22nd Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications. ACM, 2008. http://progtools.comlab.ox.
ac.uk/publications/oopsla08abc.

[2] Michael J. Cafarella and Christopher Ré. Manimal: relational optimization
for data-intensive programs. In Procceedings of the 13th International Work-
shop on the Web and Databases, WebDB ’10, pages 10:1–10:6, New York,
NY, USA, 2010. ACM. Available online at http://www.eecs.umich.edu/

~michjc/papers/WebDB-Manimal.pdf.

[3] Miguel Garcia. GOTO elimination for Scala ASTs, 2011. Notes
at The Scala Compiler Corner. http://lamp.epfl.ch/~magarcia/

ScalaCompilerCornerReloaded/2011Q1/JumpsRemover.pdf.

[4] Miguel Garcia. Moving Scala ASTs one step closer to C, 2011.
Notes at The Scala Compiler Corner. http://lamp.epfl.ch/~magarcia/
ScalaCompilerCornerReloaded/2011Q2/Moving3A.pdf.

[5] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial evaluation
and automatic program generation. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 1993. Available online at http://www.dina.kvl.dk/~sestoft/

pebook/.

[6] Raja Vallee-Rai and Laurie J. Hendren. Jimple: Simplifying Java byte-
code for analyses and transformations. Technical report, McGill Univer-
sity, 1998. http://www.sable.mcgill.ca/publications/techreports/

sable-tr-1998-4.ps.

11

http://progtools.comlab.ox.ac.uk/publications/oopsla08abc
http://progtools.comlab.ox.ac.uk/publications/oopsla08abc
http://www.eecs.umich.edu/~michjc/papers/WebDB-Manimal.pdf
http://www.eecs.umich.edu/~michjc/papers/WebDB-Manimal.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q1/JumpsRemover.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q1/JumpsRemover.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q2/Moving3A.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q2/Moving3A.pdf
http://www.dina.kvl.dk/~sestoft/pebook/
http://www.dina.kvl.dk/~sestoft/pebook/
http://www.sable.mcgill.ca/publications/techreports/sable-tr-1998-4.ps
http://www.sable.mcgill.ca/publications/techreports/sable-tr-1998-4.ps

	Overview
	How to build, run, and test
	Structure of the plugin
	Passing closures to by-name and to strict params

	On-the-fly reductions
	Laundry list
	Division of labor between ThreeAddrMaker and its subclasses (``conditional-and'' example)
	Labels and their GOTOs

	Iterative reductions
	Conversion back to an expression language
	Future work
	Decompiling bytecode in external libraries into three-address form (e.g., to enable optimizations)

