
ClosureElimination and

DeadCodeElimination

c© Miguel Garcia, LAMP, EPFL
http://lamp.epfl.ch/~magarcia

December 4th, 2011

Abstract

ClosureElimination [1, §3.3.2] and DeadCodeElimination [1, §3.3.3] work
synergistically after the inliner phase to:

1. replace an instruction (that accesses data from a location which in
turn holds a value copied from another) by a direct access to the
original value (Sec. 1)

2. recursively mark certain instructions as useful to later discard un-
marked ones (Sec. 2).

Both phases above rely on a peephole optimizer (Sec. 3) to simplify con-
secutive ICode instructions, where both the original and the resulting
instructions leave the operand stack unchanged.

Associated to each optimization pass there’s a dataflow analysis (DFA):

• for inliner [2] and inlineExceptionHandlers [3] it’s MethodTFA,

• for ClosureElimination it’s ReachingDefinitionsAnalysis,

• for DeadCodeElimination it’s CopyAnalysis, and

• for the peephole pass it’s LivenessAnalysis.

An introduction to the DFA infrastructure can be found in [4].

phase name id description

---------- -- -----------

parser 1 parse source into ASTs, perform simple desugaring

namer 2 resolve names, attach symbols to named trees

packageobjects 3 load package objects

typer 4 the meat and potatoes: type the trees

. . .

cleanup 19 platform-specific cleanups, generate reflective calls

icode 20 generate portable intermediate code

inliner 21 optimization: do inlining

inlineExceptionHandlers 22 optimization: inline exception handlers

/*-----------------------------------------------------------------------------*/

closelim 23 optimization: eliminate uncalled closures

dce 24 optimization: eliminate dead code

/*-----------------------------------------------------------------------------*/

jvm 25 generate JVM bytecode

terminal 26 The last phase in the compiler chain

1

http://lamp.epfl.ch/~magarcia


Contents

1 Last link in a chain of data accesses replaced by direct access
(“ClosureElimination”) 3
1.1 Eliding unboxing . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 CopyAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Recursive marking of useful instructions, eliding of the rest
(“DeadCodeElimination”) 4
2.1 Auxiliary maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Seeding the list of useful instructions (“collectRDef(m)”) . . . . 5
2.3 mark() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 sweep(m) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 ReachingDefinitionsAnalysis . . . . . . . . . . . . . . . . . . 8

3 Peephole optimizations 8
3.1 LivenessAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . 9

A Appendix: Comparison with McGill’s Soot 9

2



1 Last link in a chain of data accesses replaced
by direct access (“ClosureElimination”)

A “chain of data accesses” refers to a assignments of the form (not necesarily
consecutive):

v1 = v

. . .

v2 = v1

. . .

v99 = v98

. . .

<usage of v99>

These “multi-hop” accesses result from inlining apply() callees. Frequently,
those apply() correspond to local closures, which necessarily access part of their
environment through an outer instance, other fields in the closure-class, and
“conveyor params” passed to its constructor or to the apply() invocation (this
magic is provided by lambdalift, [5]). A local closure-class has at least one field
(for the outer instance) that may lead after inlining to the access-chains just
described (after inlining, that same value is available as “this”).

Operationally, this phase visits each ICode instruction in a method, focusing
on three cases:

case LOAD_LOCAL(l) if info.bindings isDefinedAt LocalVar(l) =>

, , ,

case LOAD_FIELD(f, false) /* if accessible(f, m.symbol) */ =>

, , ,

case UNBOX(_) =>

, , ,

For example, a LOAD LOCAL may be replaced with another. The decision to replace
a LOAD LOCAL or LOAD FIELD instruction is made based on copy-propagation results
(computed by a CopyAnalysis, Sec. 1.2). Details about doing away with UNBOX

in Sec. 1.1.
Let’s pause for a moment to consider what’s in a name: ClosureElimination.

1. This phase performs no rewriting beyond what’s described above, and thus
by itself doesn’t elide any closures. That will have to wait for:

(a) DeadCodeElimination (Sec. 2) to record those closure-classes that are
instantiated at least once.

(b) Afterwards, GenJVM (resp. GenMSIL) will elide unused closure-classes:

if (settings.Xdce.value)

for ( (sym, cls) <- icodes.classes

if inliner.isClosureClass(sym) && !deadCode.liveClosures(sym))

icodes.classes -= sym

2. A direct access makes redundant those locations after the first link in an
access-chain. These redundant locations will be eliminated along with
instructions deemed useless during DeadCodeElimination (Sec. 2).

3



1.1 Eliding unboxing

Upon visiting an UNBOX instruction, copy-propagation may inform that some
local-var holds at that program-point the unboxed counterpart for the boxed
value on top of the stack. This situation is signalled by an abstract value of the
form Boxed(LocalVar(extraVarAddedByGenICode)) on which the UNBOX operates,
where extraVarAddedByGenICode contains the unboxed value. In this case, the
UNBOX is replaced with the instruction sequence DROP; LOAD LOCAL(extraVarAddedByGenICode).

The extraVarAddedByGenICode variable was introduced just for that purpose
back in GenICode. Quoting from genLoad():

case Apply(fun @ _, List(expr)) if (definitions.isBox(fun.symbol)) =>

debuglog("BOX : " + fun.symbol.fullName);

val ctx1 = genLoad(expr, ctx, toTypeKind(expr.tpe))

val nativeKind = toTypeKind(expr.tpe)

if (settings.Xdce.value) {

/*- we store this boxed value to a local, even if not really needed.

boxing optimization might use it, and dead code elimination will

take care of unnecessary stores */

var loc1 = ctx.makeLocal(tree.pos, expr.tpe, "boxed")

ctx1.bb.emit(STORE_LOCAL(loc1))

ctx1.bb.emit(LOAD_LOCAL(loc1))

}

ctx1.bb.emit(BOX(nativeKind), expr.pos)

generatedType = toTypeKind(fun.symbol.tpe.resultType)

ctx1

By now we have (possibly in different BasicBlocks):

<original instructions to load unboxed value>

STORE_LOCAL extraVarAddedByGenICode

LOAD_LOCAL extraVarAddedByGenICode

BOX

. . .

// there used to be an UNBOX here that was elided in ClosureElimination

DROP

LOAD_LOCAL extraVarAddedByGenICode

The subsequent DeadCodeElimination pass will elide the redundant instruc-
tions. The peephole pass changes nothing in this case.

TODO

Which are those redundant instructions? (a) or (b)?

(a) BOX; DROP; LOAD_LOCAL

(b) LOAD_LOCAL; BOX; DROP;

1.2 CopyAnalysis

Described in [4].

2 Recursive marking of useful instructions, elid-
ing of the rest (“DeadCodeElimination”)

This phase realizes a “mark & sweep” algorithm consisting of:

4



• iterative marking of “useful” instructions in a method, which in turn trig-
gers marking as “useful” those instructions which are reaching-definitions
to a previously marked instruction.

• Along the way, those closure-classes instantiated at least once are tracked
as “liveClosures”.

case nw @ NEW(REFERENCE(sym)) =>

assert(nw.init ne null,

"null new.init at: " + bb + ": " + idx + "(" + instr + ")")

worklist += findInstruction(bb, nw.init)

if (inliner.isClosureClass(sym)) {

liveClosures += sym

}

• Afterwards, sweep(IMethod) leaves out all non-marked instructions.

The dieCodeDie(IMethod) comprises three sub-steps (Sec. 2.2 to Sec. 2.4) each
massaging some maps for the next.

2.1 Auxiliary maps

• var defs: immutable.Map[(BasicBlock, Int), immutable.Set[rdef.lattice.Definition]]

populated during collectRDef(), and queried during mark(). Its keys de-
note LOAD LOCAL(var) instructions, the corresponding image lists for each
local (including but not only var) an over-approximation of the set of
instructions defining the local’s value.

• val worklist: mutable.Set[(BasicBlock, Int)]

initially populated during collectRDef(), afterwards mark() removes and
adds instructions until it becomes empty (not really a fix-point because
the sequencing of collectRDef(), mark(), and sweep() does not constitute
an iterative dataflow, with lattice and such. It’s monotone all right, but
it does not extend DataFlowAnalysis).

• val useful: mutable.Map[BasicBlock, mutable.BitSet]

end-station for instructions that will survive sweep()

• var accessedLocals: List[Local]

collects those variables having a useful LOAD LOCAL or STORE LOCAL, as well
as all params. It’s used to replace in IMethod the incoming var declarations
with those actually used in the method (this is done just before leaving
dieCodeDie(IMethod)).

2.2 Seeding the list of useful instructions (“collectRDef(m)”)

This first sub-step seeds a worklist with instructions (any instruction added
here will be classified as useful right away by mark(), so apply judgement).
The following instructions are always added, irrespective of their control-flow
relevance:

5



case RETURN(_) | JUMP(_) | CJUMP(_, _, _, _) | CZJUMP(_, _, _, _) | STORE_FIELD(_, _) |

THROW(_) | LOAD_ARRAY_ITEM(_) | STORE_ARRAY_ITEM(_) | SCOPE_ENTER(_) | SCOPE_EXIT(_) | STORE_THIS(_) |

LOAD_EXCEPTION(_) | SWITCH(_, _) | MONITOR_ENTER() | MONITOR_EXIT()

=> worklist += ((bb, idx))

case CALL_METHOD(m1, _) if isSideEffecting(m1) =>

worklist += ((bb, idx)); log("marking " + m1)

case CALL_METHOD(m1, SuperCall(_)) =>

worklist += ((bb, idx)) // super calls to constructor

TODO

That’s weird (marking as useful irrespective of control-flow relevance).

What if they are dead code?

• At this point, a DROP is considered useful if (a) any of its “reaching-defs”
is a potentially side-effecting method invocation; or (b) the DROP is part
of the prolog of an exception handler; or (c) it drops a dup-ed value or a
reference to a module:

case CALL_METHOD(m1, _) if isSideEffecting(m1) => true

case LOAD_EXCEPTION(_) | DUP(_) | LOAD_MODULE(_) => true

TODO

Question: In the snippet below,

is "rd.stack.head" a synonym for "rdef.findDefs(bb, idx, 1)" ?

(the former is easier to understand)

case DROP(_) =>

val necessary = rdef.findDefs(bb, idx, 1) exists { p =>

2.3 mark()

This sub-step is all about moving one instruction at a time from worklist to
useful, adding its dependencies to worklist, until it’s empty. Some notes:

• Tagging as useful an instruction leads to making useful any forthcoming
DROP of the value it pushes:

useful(bb) += idx

dropOf.get(bb, idx) foreach {

for ((bb1, idx1) <- _)

useful(bb1) += idx1

}

• This is where an anon-closure escapes elision:

case nw @ NEW(REFERENCE(sym)) =>

assert(nw.init ne null, "null new.init at: " + bb + ": " + idx + "(" + instr + ")")

worklist += findInstruction(bb, nw.init)

6



if (inliner.isClosureClass(sym)) {

liveClosures += sym

}

TODO Adapt for Scala.Net (NEW.init vs. <init> on CLR)

• The general case just adds all (not yet useful) instructions that potentially
pushed values the instruction consumes:

case _ =>

for ((bb1, idx1) <- rdef.findDefs(bb, idx, instr.consumed) if !useful(bb1)(idx1)) {

worklist += ((bb1, idx1))

}

2.4 sweep(m)

From the auxiliary data structures, only useful and accessedLocals are used in
this last sub-step. Before eliding proper, computeCompensations(IMethod) iter-
ates over all instructions waiting to be discarded (“!useful(bb)(idx)”). These
instructions obviously won’t consume anything from the stack, thus the in-
structions loading such values are adorned with a DROP(consumedType) (these
reaching-defs might well be non-useful themselves, in which case the just added
compensation won’t be emitted).

Sidenote: For a NEW reaching-def, the DROP is attached to the init-invocation,
because the ICode being optimized follows the JVM pattern for object-creation:

/** Creating objects works differently on .NET. On the JVM

* - NEW(type) => reference on Stack

* - DUP, load arguments, CALL_METHOD(constructor)

*

* On .NET, the NEW and DUP are ignored, because the NewObj opcode does their job instead.

* - load arguments

* - NewObj(constructor) => reference on stack

With compensations computed, it’s time to clear the BasicBlock’s instruc-
tions and emit only the useful ones (along with any compensations). Addition-
ally, only used variables will be kept:

i match {

case LOAD_LOCAL(l) if !l.arg =>

accessedLocals = l :: accessedLocals

case STORE_LOCAL(l) if !l.arg =>

accessedLocals = l :: accessedLocals

case _ => ()

}

TODO A more informative return type for computeCompensations() is:

collection.Map[(BasicBlock, Int), List[DROP]]

7



Listing 1: Sec. 3

case (STORE_LOCAL(x), LOAD_LOCAL(y)) if (x == y) =>

var liveOut = liveness.out(bb)

if (!liveOut(x)) {

log("store/load to a dead local? " + x)

val instrs = bb.getArray

var idx = instrs.length - 1

while (idx > 0 && (instrs(idx) ne i2)) {

liveOut = liveness.interpret(liveOut, instrs(idx))

idx -= 1

}

if (!liveOut(x)) {

log("removing dead store/load " + x)

Some(Nil) /*- Outcome 1 of 3: Dead var, Eliding */

} else None /*- Outcome 2 of 3: Alive var, leave as-is */

} else

Some(List(DUP(x.kind), STORE_LOCAL(x))) /*- Outcome 3 of 3: Cosmetic */

2.5 ReachingDefinitionsAnalysis

Described in [4].

3 Peephole optimizations

This pass considers just two consecutive instructions at a time and may peform a
simple replacement, in that case both the original and the resulting instructions
leave the operand stack unchanged.

def peep(bb: BasicBlock, i1: Instruction, i2: Instruction) = (i1, i2) match {

. . .

It is invoked once other optimization passes are done with a method:

Just one of the peephole rewritings relies on a liveness analysis (Sec. 3.1),
as the snippet in Listing 1 shows. In short, one of two rewritings is performed,
the second cosmetic. Deciding between both involves traversing the block’s
instructions starting with the last one, because LivenessAnalysis is a backward
data-flow analysis.

TODO

Outcome 3 seems better than Outcome 2 (hey, it is even cosmetic!)

Why is Outcome 2 used instead?

8



3.1 LivenessAnalysis

Described in [4].

A Appendix: Comparison with McGill’s Soot

There’s a stackless (three-address) IR for the Scala compiler (“imp”, [6]) that is
also converted back to stack-language as described in [7]. Soot’s Jimple supports
several optimizations (listed below) that as of now imp lacks. Quoting from
http://www.sable.mcgill.ca/soot/tutorial/phase/phase.html

Jimple Body Creation (jb):
creates a JimpleBody for each input method, using either coffi, to
read .class files, or the jimple parser, to read .jimple files.

1. The Local Splitter identifies DU-UD webs for local variables and
introduces new variables so that each disjoint web is associated
with a single local.

2. The Jimple Local Aggregator removes some unnecessary copies
by combining local variables. Essentially, it finds definitions
which have only a single use and, if it is safe to do so, re-
moves the original definition after replacing the use with the
definition’s right-hand side. At this stage in JimpleBody con-
struction, local aggregation serves largely to remove the copies
to and from stack variables which simulate load and store in-
structions in the original bytecode.

3. Unused Local Eliminator

4. The Type Assigner gives local variables types which will accom-
modate the values stored in them over the course of the method.

5. Copy Propagator: This phase performs cascaded copy propaga-
tion. If the propagator encounters situations of the form:

A: a = ...;

...

B: x = a;

...

C: ... = ... x;

where a and x are each defined only once (at A and B, respec-
tively), then it can propagate immediately without checking be-
tween B and C for redefinitions of a. In this case the propagator
is global. Otherwise, if a has multiple definitions then the propa-
gator checks for redefinitions and propagates copies only within
extended basic blocks.

6. The Dead Assignment Eliminator eliminates assignment state-
ments to locals whose values are not subsequently used, un-
less evaluating the right-hand side of the assignment may cause
side-effects.

7. Post-copy propagation Unused Local Eliminator (jb.cp-ule).
Removes any locals that are unused after copy propagation.

9

http://www.sable.mcgill.ca/soot/tutorial/phase/phase.html


8. The Local Packer attempts to minimize the number of local vari-
ables in a method by reusing the same variable for disjoint DU-
UD webs. Conceptually, it is the inverse of the Local Splitter.

9. The Nop Eliminator removes nop statements from the method.

10. The Unreachable Code Eliminator removes unreachable code
and traps whose catch blocks are empty.

11. The Trap Tightener changes the area protected by each excep-
tion handler, so that it begins with the first instruction in the old
protected area which is actually capable of throwing an exception
caught by the handler, and ends just after the last instruction in
the old protected area which can throw an exception caught by
the handler. This reduces the chance of producing unverifiable
code after pruning exceptional control flow within CFGs.

TODO Compare McGill’s Soot and ProGuard for dead-code elimination.

References

[1] Iulian Dragos. Compiling Scala for Performance. PhD thesis, Lausanne,
2010. http://lamp.epfl.ch/~dragos/files/dragos-thesis.pdf.

[2] Miguel Garcia. ICode inlining, 2011. Notes at The Scala Compiler Cor-
ner. http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/

2011Q4/Inliner.pdf.

[3] Miguel Garcia. InlineExceptionHandlersPhase, 2011. Notes
at The Scala Compiler Corner. http://lamp.epfl.ch/~magarcia/

ScalaCompilerCornerReloaded/2011Q4/InlineExceptHandler.pdf.

[4] Miguel Garcia. Introduction to Dataflow Analyses on ICode, 2011.
Notes at The Scala Compiler Corner. http://lamp.epfl.ch/~magarcia/
ScalaCompilerCornerReloaded/2011Q4/DFAICode.pdf.

[5] Miguel Garcia. Lambda Lifting, 2011. Notes at The Scala Compiler Cor-
ner. http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/

2011Q2/LambdaLift.pdf.

[6] Miguel Garcia. Moving Scala ASTs one step closer to C, 2011.
Notes at The Scala Compiler Corner. http://lamp.epfl.ch/~magarcia/
ScalaCompilerCornerReloaded/2011Q2/Moving3A.pdf.

[7] Miguel Garcia. Partial evaluation based on three-address-form, in-
cluding conversion back to stack-based language, 2011. Notes
at The Scala Compiler Corner. http://lamp.epfl.ch/~magarcia/

ScalaCompilerCornerReloaded/2011Q4/PartialEval3A.pdf.

10

http://lamp.epfl.ch/~dragos/files/dragos-thesis.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q4/Inliner.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q4/Inliner.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q4/InlineExceptHandler.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q4/InlineExceptHandler.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q4/DFAICode.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q4/DFAICode.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q2/LambdaLift.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q2/LambdaLift.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q2/Moving3A.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q2/Moving3A.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q4/PartialEval3A.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2011Q4/PartialEval3A.pdf

	Last link in a chain of data accesses replaced by direct access (``ClosureElimination'')
	Eliding unboxing
	CopyAnalysis

	Recursive marking of useful instructions, eliding of the rest (``DeadCodeElimination'')
	Auxiliary maps
	Seeding the list of useful instructions (``collectRDef(m)'')
	mark()
	sweep(m)
	ReachingDefinitionsAnalysis

	Peephole optimizations
	LivenessAnalysis

	Appendix: Comparison with McGill's Soot

