
After the meat and potatoes, before the pickles:

superaccessors (Part 1)

c© Miguel Garcia, LAMP, EPFL
http://lamp.epfl.ch/~magarcia

September 16th, 2011

Abstract

TODO

phase name id description

---------- -- -----------

parser 1 parse source into ASTs, perform simple desugaring

namer 2 resolve names, attach symbols to named trees

packageobjects 3 load package objects

typer 4 the meat and potatoes: type the trees

/*---*/

superaccessors 5 add super accessors in traits and nested classes

/*---*/

pickler 6 serialize symbol tables

refchecks 7 reference/override checking, translate nested objects

liftcode 8 reify trees

uncurry 9 uncurry, translate function values to anonymous classes

tailcalls 10 replace tail calls by jumps

specialize 11 @specialized-driven class and method specialization

explicitouter 12 this refs to outer pointers, translate patterns

erasure 13 erase types, add interfaces for traits

lazyvals 14 allocate bitmaps, translate lazy vals into lazified defs

lambdalift 15 move nested functions to top level

constructors 16 move field definitions into constructors

flatten 17 eliminate inner classes

mixin 18 mixin composition

cleanup 19 platform-specific cleanups, generate reflective calls

icode 20 generate portable intermediate code

inliner 21 optimization: do inlining

closelim 22 optimization: eliminate uncalled closures

dce 23 optimization: eliminate dead code

jvm 24 generate JVM bytecode

terminal 25 The last phase in the compiler chain

1

http://lamp.epfl.ch/~magarcia

Contents

1 Intro 3

2 Use the superclass-based alias of a param-accessor if available 3

3 Background for super-ref rewritings 4
3.1 Actual supertype, Least proper supertype 4
3.2 Runtime semantics . 5
3.3 Useful facts about Super nodes 5

4 super-refs: some are rewritten, others aren’t 6
4.1 Appearing in a trait . 6
4.2 Targeting a member of the superclass of an outer-class 7
4.3 When super-refs aren’t rewritten 8

5 Mechanics of super-ref rewriting 9

6 needsProtectedAccessor 10

7 Checks on ASTs (what and how) 11
7.1 Targets of super-refs guaranteed concrete at runtime 11

2

1 Intro

This phase does no type rewriting (and atPhase isn’t mentioned at all). Instead,
it performs a number of checks and term rewritings.

1. Checks on ASTs:

(a) Targets of super-refs guaranteed concrete at runtime, Sec. 7.1.

TODO

- checkCompanionNameClashes(sym)

- checkPackedConforms(tree: Tree, pt: Type): Tree

2. Transformations:

(a) An overriding constructor param doesn’t require a dedicated field.
Instead, its accessors can delegate to those in the superclass, provided
that accesses to the overriding constructor param are also rewritten
(Sec. 2).

(b) superaccessors gets its name from two transformations that add syn-
thetic methods (again, for delegation) in two cases:

• due to super-refs appearing in a trait (Sec. 4.1)

• due to super-refs targeting members of the super-class of an outer
class (Sec. 4.2).

Background for the above can be found in Sec. 3, with implementa-
tion aspects of these transformations covered in Sec. 5.

(c) needsProtectedAccessor (Sec. 6).

TODO

- mangles the names of class-members which are private up to

an enclosing non-package class, in order to avoid overriding conflicts.

2 Use the superclass-based alias of a param-accessor
if available

In the snippet below, B.ap is an alias for A.ap:

class A(val ap: String) { def am() = ap }

class B(override val ap: String) extends A(ap) { def bm() = ap }

• no field is added for B.ap, just an accessor (which both overrides and
invokes the aliased getter in the superclass).

• an access in B to the alias is rewritten, and the resulting callsite targets
an overriding-accessor (getter or setter).

3

[[syntax trees at end of superaccessors]]

class B extends A with ScalaObject {

<paramaccessor> private[this] val ap: String = _; /*- this will eventually go away */

override <stable> <accessor> <paramaccessor> def ap: String = /*- override and delegate */

B.super.ap.asInstanceOf[String];

def bm(): String = B.this.ap

def this(ap: String): B = { B.super.this(ap); () };

}

TODO which phase elides

<paramaccessor> private[this] val ap: String = _;

in B

The transformation itself relies on Symbol.alias, which is set during typing:

3 Background for super-ref rewritings

Background for all the rewritings in Sec. 4:

3.1 Actual supertype, Least proper supertype

Assume D defines some aspect of an instance x of type C (i.e. D is a base class
of C) (SLS § 5.3.3).

1. If D is a trait:

Then the actual supertype of D in x is the compound type con-
sisting of all the base classes in L(C) that succeed D. The actual
supertype gives the context for resolving a super reference in a
trait (§6.5). Note that the actual supertype depends on the type
to which the trait is added in a mixin composition; it is not
statically known at the time the trait is defined.

2. If D is not a trait:

Then its actual supertype is simply its least proper supertype
(which is statically known).

Summing up: actual super-type is a runtime concept, least proper supertype a
compile-time one.

4

3.2 Runtime semantics

A reference super.m (occurring in a template) stands for C.super.m where C
stands for the class or object definition that immediately encloses the template.
The following determines runtime semantics (SLS § 6.5):

A reference C.super.m

1. refers statically to a method or type m in the least proper supertype
of the innermost enclosing class or object definition named C

which encloses the reference.

2. evaluates to the member m’ in the actual supertype of that class
or object which is equal to m or which overrides m.

3.3 Useful facts about Super nodes

• “qual denotes the corresponding this reference”

case class Super(qual: Tree, mix: TypeName) extends TermTree { . . .

• “The symbol of a Super node is the class from which the super reference
is made. For instance in C.super.x, it would be C.”

override def symbol: Symbol = qual.symbol

override def symbol_=(sym: Symbol) { qual.symbol = sym }

Expressions of the form C.super.m are represented internally as shown below
(for the example in Sec. 4.2).

In more detail:

• the symbol of the This node above is a ClassSymbol (denoting the class
whose super has nm as member)

• the symbol of the Super node above is also that symbol. Although (in the
example) the innermost enclosing class where the super-expression occurs
is I. This in contrast to non-qualified super-refs (say, super.toString)
which, as shown below, consist of a Super node whose This qual has in
turn an tpnme.EMPTY type name, and the symbol refers to the I class:

5

• super.toString is an example of a static super reference (the other kind
of static super refs are those specifing a super trait, Sec. 4.3). Static super
references are not rewritten. The applicability condition for rewriting is
summarized in Sec. 4.3.

4 super-refs: some are rewritten, others aren’t

4.1 Appearing in a trait

The runtime semantics described in Sec. 3.2 are pre-requisite reading.
A super-call that appears in a trait is rewritten into a call on a synthetic

super-accessor sa, with sa added to the trait (at this point, sa is abstract, with
flags “private <method> <superaccessor>”). Example:

trait MyTrait {

def m() = super.toString

}

gets lowered to:

[[syntax trees at end of superaccessors]]

abstract <defaultparam/trait> trait MyTrait extends lang.this.Object with scala.this.ScalaObject {

private <method> <superaccessor> def super$toString(): lang.this.String; /*- added */

<method> def m(): lang.this.String =

MyTrait.this.super$toString() /*- rewritten */

<method> def /*MyTrait*/$init$(): scala.this.Unit = { () };

};

The name of the resulting super-accessor is prefixed as follows:

val SUPER_PREFIX_STRING = "super$"

. . .

def superName(name: Name): TermName = newTermName(SUPER_PREFIX_STRING + name)

A concrete override can be inserted by the compiler only after the trait in
question has been mixed-in into a class-class (whether abstract or concrete) or
an object (Sec. 3.2).

After superaccessors, the next phase touching these synthetic methods is
erasure (actually, AddInterfaces) where another prefix is prefixed:

[[syntax trees at end of erasure]]

package <empty> {

abstract trait MyTrait extends java.lang.Object with ScalaObject {

final <superaccessor> def MyTrait$$super$toString(): java.lang.String;

def m(): java.lang.String

};

abstract trait MyTrait$class extends java.lang.Object with ScalaObject with MyTrait {

def /*MyTrait$class*/$init$(): Unit = { () };

def m(): java.lang.String = MyTrait$class.this.MyTrait$$super$toString()

}

6

Listing 1: Sec. 4.1

[[syntax trees at end of mixin]]

package <empty> {

abstract trait MyTrait extends java.lang.Object with ScalaObject {

final <superaccessor> def MyTrait$$super$toString(): java.lang.String;

def m(): java.lang.String

};

abstract class AC extends java.lang.Object with MyTrait with ScalaObject {

/*- got a body */

final <superaccessor> def MyTrait$$super$toString(): java.lang.String =

AC.super.toString();

def m(): java.lang.String = MyTrait$class.m(AC.this);

def this(): AC = {

AC.super.this();

MyTrait$class./*MyTrait$class*/$init$(AC.this);

()

}

};

abstract trait MyTrait$class extends {

def m($this: MyTrait): java.lang.String = $this.MyTrait$$super$toString();

def /*MyTrait$class*/$init$($this: MyTrait): Unit = {

()

}

}

}

}

To illustrate a super-accessor getting a body, we can compile the following,
and then take a look at the ASTs after mixin (Listing 1).

abstract class AC extends MyTrait

4.2 Targeting a member of the superclass of an outer-class

A super-call that:

1. appears in an inner class I, and

2. targets a member of the superclass S of some outer-class O;

is rewritten into a call to a super-accessor ‘sa’ added to the outer-class O. (for the
time being, ‘sa’ is abstract, with flags “private <method> <superaccessor>”).
Example (with type params added for greater effect):

class N[T] { def nm(t: T) = t }

class O[U] extends N[U] {

7

class I {

def oim(u: U) = O.super.nm(u)

}

}

After superaccessors, the AST looks as follows:

class O[U >: Nothing <: Any] extends N[U] with ScalaObject {

private <superaccessor> def super$nm(t: U): U; /*- synthesized super-accessor */

def this(): O[U] = {

O.super.this();

()

};

class I extends java.lang.Object with ScalaObject {

def this(): O.this.I = {

I.super.this();

()

};

def oim(u: U): U = O.this.super$nm(u) /*- rewritten callsite */

}

}

TODO Explain when the synthesized super-of-outer-accessor gets a body.

4.3 When super-refs aren’t rewritten

Quoting from SLS § 6.5:

The super prefix may be followed by a trait qualifier [T], as in
C.super[T].x. This is called a static super reference. In this case,
the reference is to the type or method named ’x’ in the parent trait of
C whose simple name is T. That member must be uniquely defined.
If it is a method, it must be concrete.

Examples:

trait MyTrait {

def m() = super.toString

}

class D extends MyTrait { def dm() = D.super[MyTrait].m() }

// alternatively

class E extends MyTrait { def em() = super[MyTrait].m() }

TODO Explain where the above is lowered.

The other kind of static super-refs are those where the superclass of interest
is that of the innermost class where the super-ref occurs (e.g., super.toString).

8

Figure 1: Sec. 5

Bringing together the discussion in Sec. 3.3, the applicability condition for the
superaccessors rewriting of a super-ref is as follows:

case Select(sup @ Super(_, mix), name) =>

val clazz = sup.symbol

if (tree.isTerm

&& mix == tpnme.EMPTY

&&

(clazz.isTrait

|| clazz != currentOwner.enclClass

|| !validCurrentOwner

)

) {

/*- rewrite non-static super-ref, ie. replace Select node with another Select node

that selects the name of the synthesized method. */

5 Mechanics of super-ref rewriting

It all starts in SuperAccTransformer.transform:

and then the super-ref rewriting proper is done (or not) in transformSuperSelect,
as the excerpt in Figure 1 sketches.

9

What was a “select-on-super” becomes a “select-on-this” which in turn is
part of a callsite to the newly added synthetic (not shown):

atPos(sup.pos) {

Select(gen.mkAttributedThis(clazz), superAcc) setType tree.tpe;

}

The new method’s symbol gets an info that has to be cloned from that of
the selected member as seen from thisType.

superAcc.setInfo(superAccTpe.cloneInfo(superAcc))

via:

Naturally, the tpe of the resulting “select-on-this” has to be a MethodType

(or a NullaryMethodType):

6 needsProtectedAccessor

There are two entry points:

1. Assign

2. Several shapes of accesses, wrapped by calls to:

mayNeedProtectedAccessor(sel: Select, args: List[Tree], goToSuper: Boolean)

10

Quoting from the source comment for needsProtectedAccessor:

Does sym need an accessor when accessed from currentOwner?

A special case arises for classes with explicit self-types. If the self
type is a Java class, and a protected accessor is needed, we issue an
error. If the self type is a Scala class, we don’t add an accessor.
An accessor is not needed if the access boundary is larger than the
enclosing package, since that translates to ’public’ on the host sys
(as Java has no real package nesting).

If the access happens inside a trait, access is more problematic since
the implementation code is moved to an $class class which does not
inherit anything. Since we can’t (yet) add accessors for ’required’
classes, this has to be signaled as error.

TODO

7 Checks on ASTs (what and how)

7.1 Targets of super-refs guaranteed concrete at runtime

Quoting from SLS § 6.5:

[In a reference Csuper.m,] the statically referenced member m must
be a type or a method.

1. If the statically referenced member m is a method, it must be
concrete, or the innermost enclosing class or object definition
named C must have a member m’ which overrides m and which
is labeled abstract override.

And now the mechanics (good to know: Sec. 3.3)

private def transformSuperSelect(tree: Tree): Tree = tree match {

case Select(sup @ Super(_, mix), name) =>

val sym = tree.symbol

val clazz = sup.symbol

if (sym.isDeferred) {

val member = sym.overridingSymbol(clazz);

if (mix != tpnme.EMPTY || member == NoSymbol ||

!((member hasFlag ABSOVERRIDE) && member.isIncompleteIn(clazz)))

unit.error(tree.pos, ""+sym+sym.locationString+" is accessed from super. It may not be abstract "+

"unless it is overridden by a member declared ‘abstract’ and ‘override’");

}

. . .

11

	Intro
	Use the superclass-based alias of a param-accessor if available
	Background for super-ref rewritings
	Actual supertype, Least proper supertype
	Runtime semantics
	Useful facts about Super nodes

	super-refs: some are rewritten, others aren't
	Appearing in a trait
	Targeting a member of the superclass of an outer-class
	When super-refs aren't rewritten

	Mechanics of super-ref rewriting
	needsProtectedAccessor
	Checks on ASTs (what and how)
	Targets of super-refs guaranteed concrete at runtime

