
What goes on in the lazyvals phase

c© Miguel Garcia, LAMP, EPFL
http://lamp.epfl.ch/~magarcia

September 22nd, 2011

Abstract

lazy val is one of those language constructs whose lowering involves sev-
eral compiler phases: a little work in refchecks, more work in lazyvals,
and a finale in mixin. We discuss the AST rewriting in lazyvals and how
it fits in the larger scheme of things.

phase name id description

---------- -- -----------

parser 1 parse source into ASTs, perform simple desugaring

namer 2 resolve names, attach symbols to named trees

packageobjects 3 load package objects

typer 4 the meat and potatoes: type the trees

superaccessors 5 add super accessors in traits and nested classes

pickler 6 serialize symbol tables

refchecks 7 reference/override checking, translate nested objects

liftcode 8 reify trees

uncurry 9 uncurry, translate function values to anonymous classes

tailcalls 10 replace tail calls by jumps

specialize 11 @specialized-driven class and method specialization

explicitouter 12 this refs to outer pointers, translate patterns

erasure 13 erase types, add interfaces for traits

/*---*/

lazyvals 14 allocate bitmaps, translate lazy vals into lazified defs

/*---*/

lambdalift 15 move nested functions to top level

constructors 16 move field definitions into constructors

flatten 17 eliminate inner classes

mixin 18 mixin composition

cleanup 19 platform-specific cleanups, generate reflective calls

icode 20 generate portable intermediate code

inliner 21 optimization: do inlining

closelim 22 optimization: eliminate uncalled closures

dce 23 optimization: eliminate dead code

jvm 24 generate JVM bytecode

terminal 25 The last phase in the compiler chain

1

http://lamp.epfl.ch/~magarcia

Contents

1 Intro 3
1.1 AST shapes of interest . 3

2 End-to-end example: Lazy vals in loops 4

3 Transformation patterns 5
3.1 Should any bitmaps be zeroed in an evaluation scope? (aka

“LocalLazyValFinder”) . 5
3.2 Body of an accessor (aka “mkLazyDef()”) 5
3.3 Prepending trees to zero bitmaps in an evaluation scope (aka

“addBitmapDefs()”) . 7

4 Creating bitmaps 7
4.1 Block-level vs. class-level bitmap initializers 7
4.2 Non-class-level lazy-val-accessor 8
4.3 How to rewrite Template nodes without class-level bitmaps . . . 9
4.4 Are all bitmaps created by the time they are needed? 9
4.5 Naming convention for bitmaps 10

A Backgrounders 10
A.1 Transformer vs. TypingTransformer differences 10
A.2 Tree traversing patterns . 11
A.3 Beakpoints please . 13

B Corner cases of lazy val 13
B.1 Loops . 13
B.2 Recursion, Nesting . 14
B.3 Traits, Thunks . 14

2

1 Intro

The initialization semantics of lazy values (i.e., when the right-hand-side is
evaluated for the first time, and when it should be re-evaluated) determine
the code to emit for (a) cached value of the lazy val; and (b) guard to avoid
re-evaluation.

“Re-evaluating a lazy val” has to do with the way lazy vals are implemented:

• access the cached lazy val’s value is possible only via an accessor,

• the accessor checks whether certain bit in an Int bitmap is set.

It can therefore be indicated that a lazy val should be re-evaluated by zeroing its
bit (or the whole bitmap). This should be done, for example, in each iteration
of the following while loop:

var i = 1

while (i < 10) {

lazy val lazyWhile = i

Console.println(lazyWhile)

i += 1

}

}

The discussion of the AST transforms makes clear where bitmaps of the form
“@volatile var bitmap : Int = 0” are emitted. Additionally, Appendix B show-
cases corner cases reproduced from the compiler’s test suite.

A quick recap of SLS § 5.2:

The lazy modifier applies to value definitions. A lazy value is ini-
tialized the first time it is accessed (which might never happen at all).
Attempting to access a lazy value during its initialization might lead
to looping behavior. If an exception is thrown during initialization,
the value is considered uninitialized, and a later access will retry to
evaluate its right hand side.

1.1 AST shapes of interest

refchecks may deliver one of three kinds of ASTs shapes, given a lazy val

occurrence at the level of surface syntax. In all cases, accesses to the lazy value
take the form of callsites to the “accessor method”. These callsites need no
rewriting during lazyvals. Instead:

• the bodies of such accessor methods are rewritten; and

• bitmaps are added if possible:

– it’s not possible to add bitmaps just yet for a trait-level lazy val.
AddInterfaces has run by now, and thus traits have been split into
shared implementation class and abstract interface. However none
of them is useful to host bitmaps: each instance of a class where the
trait is mixed-in should have its own copy of those bitmaps. That’s
why this rewriting will have to wait till mixin.

3

The three possible AST shapes that refchecks may deliver are:

1. for a lazy val of Unit type, refchecks delivers a single “getter” whose
symbol is the lazyAccessor and whose body is the original rhs of the
surface-syntax construct.

2. otherwise, refchecks replaces a lazy val owned by a trait with a pair
(ValDef, getter) where:

(a) an un-initialized ValDef is returned (different from the original one
but with its same symbol)

(b) the getter’s body is the rhs of the original ValDef. Its symbol is the
lazyAccessor.

3. otherwise, refchecks returns a pair (ValDef, getter) where:

(a) the ValDef is as above.

(b) the getter’s body is of the form “{ lhs = rhs ; lhs }” where the lhs

points to the ValDef.

2 End-to-end example: Lazy vals in loops

Sec. 1 hinted at the “re-evaluation” semantics of lazy vals directly contained in
a loop (per iteration re-evaluation). Reviewing first the AST transform for this
AST shape allows covering helper methods that will be reused later.

Nota bene: although we’ll keep talking about “re-evaluating” a lazy
val, please keep in mind that’s more of an implementation-biased
description. Semantically, a lazy val is evaluated just once within
its evaluation scope, and in the case of loops there’s an evaluation
scope for each iteration. With this caveat, we’ll continue using the
“re-evaluation” terminology.

Looking at the transform() handler for while loops won’t reveal the whole
story about this AST rewriting, given that it accesses visitor-level caches that
have been populated by the time it runs. Still, we have to start somewhere. The
snippet below applies to a while-loop, there’s a similar one for do-while loops:

case l@LabelDef(name0, params0, ifp0@If(_, _, _))

if name0.startsWith(nme.WHILE_PREFIX) =>

val ifp1 = super.transform(ifp0)

val If(cond0, thenp0, elsep0) = ifp1

if (LocalLazyValFinder.find(thenp0)) {

val newIf = treeCopy.If(ifp1,

cond0,

typed(addBitmapDefs(sym.owner, thenp0)),

elsep0)

treeCopy.LabelDef(l, name0, params0, newIf)

} else {

l

}

4

Another Note: the above relies on a convention to encode loops.
That convention is covered in the write-up “GOTO elimination for
Scala ASTs”. The parser puts trees in those shapes already (see
makeDoWhile() and makeWhile()).

The above shows one of the patterns for rewritings in this phase: (a) detect
whether bitmap-declaration-with-initialization should be emitted in given scope;
(b) if so, grab from a visitor-level map the trees for that, using as key “a symbol
uniquely associated with the evaluation scope”. That’s a lot of hand waving,
but the picture will become more clear as Sec. 3 untangles the individual steps
above.

3 Transformation patterns

3.1 Should any bitmaps be zeroed in an evaluation scope?
(aka “LocalLazyValFinder”)

The answer to this question can be found by exploring the Tree for the evaluation
scope. Upon finding any directly contained lazy val, the answer is affirmative.
That’s what LocalLazyValFinder does (Listing 1). As already mentioned, the
search doesn’t delve into nested evaluation scopes. For example: upon arriving
at the AST node for a loop, neither condition nor body will be visited:

case LabelDef(name, _, _) if nme.isLoopHeaderLabel(name) => /*- see? no super.traverse(tree) here. */

LocalLazyValFinder (Listing 1) nastily mutates a flag that is checked
during the main transform (also reproduced below). I can’t explain
at this spot what effect it has, first I’ll have to understand most of
the phase to understand its interplay:

case d@DefDef(_, _, _, _, _, _) if d.symbol.isLazy && lazyUnit(d.symbol) =>

d.symbol.resetFlag(symtab.Flags.LAZY)

result = true

It’s the task of another helper method (addBitmapDefs(), Sec. 3.3) to actually
paste the trees to zero the bitmaps.

3.2 Body of an accessor (aka “mkLazyDef()”)

A lazy-val-accessor tests whether re-evaluation should occur (by consulting the
bitmap). On exit, the bit for the accessor’s lazy val is set to 1 (an accessor
can raise bits in a bitmap but not lower them to zero). Any non-Unit value is
returned.

That’s the contract of an accessor. The builder of accessors is:

def mkLazyDef(methOrClass: Symbol, tree: Tree, offset: Int, lazyVal: Symbol): Tree

Sec. 1.1 goes into details about the AST shapes arriving at lazyvals in the
body of accessors. The resulting pattern involves (a) doubly-checked-locking
idiom; and (b) bitmap-test. We start with the latter:

5

Listing 1: Sec. 3.1

object LocalLazyValFinder extends Traverser {

var result: Boolean = _

def find(t: Tree) = {result = false; traverse(t); result}

def find(ts: List[Tree]) = {result = false; traverseTrees(ts); result}

override def traverse(t: Tree) {

if (!result)

t match {

case v@ValDef(_, _, _, _) if v.symbol.isLazy =>

result = true

case d@DefDef(_, _, _, _, _, _) if d.symbol.isLazy && lazyUnit(d.symbol) =>

d.symbol.resetFlag(symtab.Flags.LAZY)

result = true

case ClassDef(_, _, _, _) | DefDef(_, _, _, _, _, _) | ModuleDef(_, _, _) =>

case LabelDef(name, _, _) if nme.isLoopHeaderLabel(name) =>

case _ =>

super.traverse(t)

}

}

}

1. when the lazy val has type Unit, whatever incoming body “rhs” is wrapped
in a Unit-expression of the form:

{

{

<rhs>

bitmap$n = bimap$n | MASK

}

()

}

2. otherwise, the body must be of the form “{ lhs = rhs ; lhs }”. It is
reshuffled and expanded to become:

{

{

lhs = <rhs>

bitmap$n = bimap$n | MASK

}

lhs

}

In both cases, the result has the form “{ stmts ; res }” as needed for wrap-
ping into what becomes the accessor body that this phase delivers:

{

if ((bitmap$n & MASK) == 0) {

this.synchronized {

6

if ((bitmap$n & MASK) == 0) {

<stmts>

}

}

}

<res>

}

It may come as a surprise, but there’s a reason why not all lazy-val-accessor
bodies are rewritten as shown above (hint: this rewriting requires a bitmap, and
Sec. 4 details why creating a bitmap might not be possible just yet).

3.3 Prepending trees to zero bitmaps in an evaluation
scope (aka “addBitmapDefs()”)

After reading this subsection, you still won’t know where bitmaps are created
(see Sec. 4 for that). We assume their symbols can be found keyed under the
evaluation scope’s symbol (in the bitmaps map). The contract of

def addBitmapDefs(methSym: Symbol, rhs: Tree): Tree

can be summarized as: give me the key for an evaluation scope (“methSym”)
and its AST node (“rhs”), I’ll give you back that same evaluation scope with
zero-ing ValDefs prepended.

addBitmapDefs() seems to have started its life receiving a method body
(and the source comments still say so), but nowadays it’s used to expand other
sorts of eval scopess (including the body of a tail-called method, i.e. a loop that
follows a certain naming convention in its LabelDef).

4 Creating bitmaps

4.1 Block-level vs. class-level bitmap initializers

Creating a bitmap (Sec. 3.2) is tricky because doing so requires settling on an
evaluation scope for the bitmap (where it will be zeroed), which can be one of
“block” or “template”.

1. In the former case, prepending a bitmap initializer to a block effectively
completes the lowering of its lazy-val: no retouching is needed by any
phase afterwards, and we can safely reset the LAZY flag.

2. Templates however will undergo further transformations:

(a) Before constructors, templates contain executable statements and
ValDefs with executable RHSs, whose evaluation logically belongs in
the primary constructor. In order to obtain Java-like constructors,
constructors triages the stmts of a template into early-defs, class-
level, and main-constructor.

(b) mixin will allocate in host classes (or objects) whatever dedicated
copies they should get of mixed-in trait members.

7

As a rule of thumb, lazyvals leaves as-is those (ValDef, getter) pairs directly
owned by a class, so that mixin knows what to do with them. As a sidenote:
constructors will classify them as class-level, thus “leaving them where they are”
(and the ValDef has an EmptyTree rhs which won’t be moved into the primary
constructor).

“Leaving as-is” above means that no bitmaps are created (nor bitmap-
initializer prepended) for class-level lazy vals (because the right evaluation scope
can only be determined later). This does not preclude the body of one such ac-
cessor from being rewritten during lazyvals (i.e., its Block may be prepended
with bitmap initializers for lazy vals owned by the accessor).

This division of labor results in two rewritings that a DefDef whose symbol.isLazy

may undergo, plus a common rewriting:

1. The body of a class-level DefDef (whether lazy or not) is “left as-is” (i.e.,
transformed as per super.transform()).

2. Now comes the tricky case: doing bookkeeping for a lazy accessor not
directly enclosed in a class. Sec. 4.2 covers all that bookkeeping.

3. In any case, add bitmap initializers for the method’s body:

def addBitmapDefs(methSym: Symbol, rhs: Tree): Tree

treeCopy.DefDef(tree, mods, name, tparams, vparams, tpt,

if (LocalLazyValFinder.find(res)) typed(addBitmapDefs(sym, res)) else res)

4.2 Non-class-level lazy-val-accessor

We arrived here from Sec. 4.1. To make a long story short: a bitmap symbol is
created only as a side-effect of rewriting the body of a lazy-val-accessor (Sec. 3.2)
and that helper method is only invoked from here.

Therefore, no bitmaps are allocated by lazyvals for class-level lazy-
vals. That will also have to wait till mixin. As a consequence, the
rewriting for Template nodes shouldn’t try to grab any class-level
bitmaps. That’s another story (Sec. 4.3).

We have to determine the (enclosing) evaluation scope of this lazy value,
and grab its symbol, so as to hand it to mkLazyDef():

To recap, mkLazyDef() is handed an “evaluation-scope-symbol”, which
besides being used as key in bitmaps for the new bitmap-symbol also
offices as owner of the bitmap-symbol. We review next what those
“evaluation-scope-symbols” may be (hint: “enclosingClassOrDummyOrMethod”).

See also Figure 1 (newLocalDummy).

TODO

case class Template(parents: List[Tree], self: ValDef, body: List[Tree])

extends SymTree {

//

// The symbol of a template is a local dummy (@see Symbol.newLocalDummy).

// The owner of the local dummy is the enclosing trait or class.

8

Figure 1: Sec. 4.2

// The local dummy is itself the owner of any local blocks.

//

// For example:

//

// abstract class C {

//

// def foo; // owner is C

//

// {

// def bar() {} // owner is local dummy

// }

//

// Console.println("abc") // symbol.owner won’t help us here (the symbol of an Apply is fun.symbol)

// }

}

4.3 How to rewrite Template nodes without class-level bitmaps

As we saw in Sec. 4.2:

No bitmaps are allocated by lazyvals for class-level lazy-vals. That
will also have to wait till mixin. As a consequence, the rewriting for
Template nodes shouldn’t try to grab any class-level bitmaps.

TODO

4.4 Are all bitmaps created by the time they are needed?

As we saw a bitmap symbol is created only as a side-effect of rewriting the body
of a lazy-val-accessor (Sec. 3.2, which is only invoked from Sec. 4.2). Does this
guarantee that lookups on an eval-scope will find all relevant bitmaps?

9

1. As part of rewriting an accessor body. In this case, one bitmap is of interest
(given by a one-based index) among those returned by the lookup.

2. To prepend zeroing ValDefs to an eval-scope. In this case all bitmaps (a
List[Symbol]) are needed for prepending.

Note: the second case also happens as at the end of “rewriting an
accessor body”, but we can still discuss them separately.

Regarding (1), those lazy-val-accessors that do get rewritten in lazyvals

always succeed with lookups: otherwise getBitmapFor() creates a bitmap symbol
and adds it to the bitmaps map!

The above leaves only (2) to worry about. Yes, all lazy accessors directly
contained in an eval-scope will have been rewritten by the time zeroing ValDefs
are about to be prepended. Why? Because all invocations to addBitmapDefs()

receive an already-transformed rhs.

4.5 Naming convention for bitmaps

Bitmap names chosen in lazyvals lack suffix:

/** The name of bitmaps for initialized (public or protected) lazy vals. */

def bitmapName(n: Int): TermName = bitmapName(n, "")

private def bitmapName(n: Int, suffix: String): TermName =

newTermName(BITMAP_PREFIX + suffix + n)

val BITMAP_PREFIX = "bitmap$"

However we’ll see a variety of suffixes in mixin:

• "trans$" for initialized transient lazy vals

• "priv$" for initialized private lazy vals.

• "init$" for checkinit values

• "inittrans$" for checkinit values that have transient flag

A Backgrounders

A.1 Transformer vs. TypingTransformer differences

From a distance, lazyvals offers no surprises (Figure 2): it emits trees using
ast.TreeDSL, and it contains one traverser (LocalLazyValFinder) and one trans-
former (LazyValues).

This phase mixes trait TypingTransformers which means that some facilities
are available to type trees once they’re built. In a nutshell, a phase not mixing
TypingTransformers (such as CleanUp) has to define a transformer-local Typer

instance, obtained from global.analyzer.typer. For example, CleanUp does it
like this:

10

Figure 2: Sec. 1

private var localTyper: analyzer.Typer = null

. . .

override def transform(tree: Tree): Tree = tree match {

. . .

case Template(parents, self, body) =>

localTyper = typer.atOwner(tree, currentClass)

This works because as shown above CleanUpTransformer takes care of up-
dating the local typer. Instead, a transformer extending the abstract class
TypingTransformer gets that for free (the typer is updated upon visiting a
Template or a PackageDef), due to the interplay of the transform override and
the atOwner method overloads in TypingTransformer (Figure 3).

If this is the first time you hear about atOwner, perhaps you should also
know that there are many of them, some returning a Typer (e.g. the overloads
in Typers#Typer), others Unit (e.g. in Traverser), and yet others whatever its
by-name param evaluates to (e.g. in Transformer). Please fest on the details
shown in Figure 4.

A.2 Tree traversing patterns

LocalLazyValFinder showcases how to selectively skip traversing certain children
(by skipping invoking super.traverse(t)). A variant of this pattern:

class FindTreeTraverser(p: Tree => Boolean) extends Traverser {

var result: Option[Tree] = None

override def traverse(t: Tree) {

if (result.isEmpty) {

if (p(t)) result = Some(t)

super.traverse(t)

}

}

}

11

Figure 3: Sec. A.1

Figure 4: Sec. A.1

12

Yet more examples of type, symbol, tree, etc. collectors:

A.3 Beakpoints please

Maybe you too have noticed that (for some reason) IDE debuggers will some-
times ignore breakpoints inside closures. There’s a workaround, if a bit cumber-
some: define an auxiliary method with the closure contents (adding parameters
for whatever bindings are in effect), and place the breakpoint inside the method
(let’s call it a “debugger-friendly” coding style). For example:

override def transform(tree: Tree): Tree = {

val sym = tree.symbol

curTree = tree

tree match {

case DefDef(mods, name, tparams, vparams, tpt, rhs) => {

atOwner(tree.symbol) {

debugDefDef(tree, sym, mods, name, tparams, vparams, tpt, rhs)

}

}

. . .

B Corner cases of lazy val

B.1 Loops

Lazy values declared inside a loop are initialized once per iteration:

for (i <- 1 to 10) {

lazy val lazyFor = i

Console.println(lazyFor)

}

var i = 1

while (i < 10) {

lazy val lazyWhile = i

Console.println(lazyWhile)

i += 1

}

}

13

B.2 Recursion, Nesting

/** test recursive method with lazy vals and a single forced */

def testLazyRec(n: Int): Int = {

lazy val t = { println("forced lazy val t at n = " + n); 42 }

if (n > 0)

testLazyRec(n - 1)

else

t

}

/** test recursive method with lazy vals and a all vals forced */

def testLazyRecMany(n: Int): Int = {

lazy val t = { println("forced lazy val t at n = " + n); 42 }

if (n > 0) {

testLazyRecMany(n - 1);

t*t

} else

t

}

// see #1589

object NestedLazyVals {

lazy val x = {

lazy val y = { println("forcing y"); 42; }

println("forcing x")

y

}

val x1 = 5 + { lazy val y = 10 ; y }

println(x)

println(x1)

}

B.3 Traits, Thunks

trait TNestedLazyVals {

lazy val x = { lazy val y = 42; y }

}

object ONestedLazyVals extends TNestedLazyVals {

println(x)

}

class Lazy(f: => Int) {

lazy val get: Int = f

}

object Test extends App

{

val buffer = new scala.collection.mutable.ListBuffer[Lazy]

// This test requires 4 Mb of RAM if Lazy is discarding thunks

// It consumes 4 Gb of RAM if Lazy is not discarding thunks

14

for (val idx <- Iterator.range(0, 1024)) {

val data = new Array[Int](1024*1024)

val lz: Lazy = new Lazy(data.length)

buffer += lz

lz.get

}

}

15

	Intro
	AST shapes of interest

	End-to-end example: Lazy vals in loops
	Transformation patterns
	Should any bitmaps be zeroed in an evaluation scope? (aka ``LocalLazyValFinder'')
	Body of an accessor (aka ``mkLazyDef()'')
	Prepending trees to zero bitmaps in an evaluation scope (aka ``addBitmapDefs()'')

	Creating bitmaps
	Block-level vs. class-level bitmap initializers
	Non-class-level lazy-val-accessor
	How to rewrite Template nodes without class-level bitmaps
	Are all bitmaps created by the time they are needed?
	Naming convention for bitmaps

	Backgrounders
	Transformer vs. TypingTransformer differences
	Tree traversing patterns
	Beakpoints please

	Corner cases of lazy val
	Loops
	Recursion, Nesting
	Traits, Thunks

