
How the flatten phase works

c© Miguel Garcia, LAMP, EPFL
http://lamp.epfl.ch/~magarcia

July 4th, 2011

Abstract

flatten runs in forJVM mode because Java bytecode doesn’t accomodate
nested types (unlike Microsoft’s CLR, with the caveat that a nested class
in CLR is not an inner class with access to a unique outer instance, in-
stead CLR class nesting serves namespace structuring and grants access
privileges only). Given the focus of this phase, its implementation allows
seeing first hand “type re-attribution” (in contrast to other phases where
most of the code deals with “tree rewriting”).

phase name id description

---------- -- -----------

parser 1 parse source into ASTs, perform simple desugaring

namer 2 resolve names, attach symbols to named trees

packageobjects 3 load package objects

typer 4 the meat and potatoes: type the trees

superaccessors 5 add super accessors in traits and nested classes

pickler 6 serialize symbol tables

refchecks 7 reference/override checking, translate nested objects

liftcode 8 reify trees

uncurry 9 uncurry, translate function values to anonymous classes

tailcalls 10 replace tail calls by jumps

specialize 11 @specialized-driven class and method specialization

explicitouter 12 this refs to outer pointers, translate patterns

erasure 13 erase types, add interfaces for traits

lazyvals 14 allocate bitmaps, translate lazy vals into lazified defs

lambdalift 15 move nested functions to top level

constructors 16 move field definitions into constructors

/*---*/

flatten 17 eliminate inner classes

/*---*/

mixin 18 mixin composition

cleanup 19 platform-specific cleanups, generate reflective calls

icode 20 generate portable intermediate code

inliner 21 optimization: do inlining

closelim 22 optimization: eliminate uncalled closures

dce 23 optimization: eliminate dead code

jvm 24 generate JVM bytecode

terminal 25 The last phase in the compiler chain

1

http://lamp.epfl.ch/~magarcia

Contents

1 On tree descent: collecting keys 3

2 On the way up 3
2.1 Eliding, Collecting trees to relocate 3

2.1.1 It reads “object P” but it’s a ClassDef 4
2.1.2 Rewriting . 4

2.2 Pasting . 5

3 Sometime later: re-typing trees 5
3.1 Idioms around TypeMap and TypeTraverser 6
3.2 TypeRef . 6
3.3 ClassInfoType . 7

3.3.1 Flatten-aware ClassSymbol and ModuleSymbol 9
3.4 The rest: MethodType, PolyType, etc. 10

2

Figure 1: Sec. 1

1 On tree descent: collecting keys

The structure of this transform is depicted in Figure 1.
We start with the transform’s transformer, Flattener (the difference between

a Transform and an InfoTransform was covered in the lazyvals write-up).
Moving from root to leaves, a map is populated to hold keys for packages

that can potentially hold classes to unnest (there may be no classes to unnest).

override def transform(tree: Tree): Tree = {

tree match {

case PackageDef(_, _) =>

liftedDefs(tree.symbol.moduleClass) = new ListBuffer

case Template(_, _, _) if tree.symbol.owner.hasPackageFlag =>

liftedDefs(tree.symbol.owner) = new ListBuffer

case _ =>

}

postTransform(super.transform(tree))

}

Although it’s unnesting what this phase is about, the map is called liftedDefs,
just like the map in lambdalift that serves a completely different purpose.

private val liftedDefs = new mutable.HashMap[Symbol, ListBuffer[Tree]]

2 On the way up

2.1 Eliding, Collecting trees to relocate

Before returning a Tree on the way back to the root, it’s postTransform’s chance
to make a difference:

• any ClassDef with isNestedClass symbol is sent into oblivion (i.e., an
EmptyTree takes its place but the original tree will stay for a while in the
liftedDefs map, under the key of its future home). This pattern also
matches a nested “object P” as described in Sec. 2.1.1.

3

• references to a nested object are replaced with another one “after relo-
cation” (that’s what the “atPhase(phase.next)” is for) because at that
point the navigation path to reach the object will be different (with
fewer Selects), and because mkAttributedRef bases the tree it builds on
sym.owner.thisType. Example in Sec. 2.1.2.

private def postTransform(tree: Tree): Tree = {

val sym = tree.symbol

val tree1 = tree match {

case ClassDef(_, _, _, _) if sym.isNestedClass =>

liftedDefs(sym.toplevelClass.owner) += tree

EmptyTree

case Select(qual, name) if (sym.isStaticModule && !sym.owner.isPackageClass) =>

atPhase(phase.next) {

atPos(tree.pos) {

gen.mkAttributedRef(sym)

}

}

case _ =>

tree

}

tree1 setType flattened(tree1.tpe)

}

2.1.1 It reads “object P” but it’s a ClassDef

One more detail about postTransform. The pattern

case ClassDef(_, _, _, _) if sym.isNestedClass =>

also matches “object P” in the program below. Why? Because although parser

delivers a ModuleDef for it, refchecks replaces it with a ClassDef.

class C {

class D

object P

}

Quoting from refchecks:

/** Eliminate ModuleDefs.

* - A top level object is replaced with their module class.

* - An inner object is transformed into a module var, created on first access.

*

* In both cases, this transformation returns the list of replacement trees:

* - Top level: the module class accessor definition

* - Inner: a class definition, declaration of module var, and module var accessor

*/

(Frequently, scalac phases can’t be understood in isolation).

2.1.2 Rewriting

The case Select in Sec. 2.1 “rewrites” a tree node. For example, originally:

4

After rewriting:

2.2 Pasting

Given that postTransform collected on tree descent classes for unnesting, they
will be ready in liftedDefs by the time the following runs, and thus are “pasted”
(“relocated” sounds better?) in their new home (a package):

override def transformStats(stats: List[Tree], exprOwner: Symbol): List[Tree] = {

val stats1 = super.transformStats(stats, exprOwner)

if (currentOwner.isPackageClass) stats1 ::: liftedDefs(currentOwner).toList

else stats1

}

3 Sometime later: re-typing trees

Remember the very last line of Flattener.postTransform()? It maps the type of
every tree (unnested or not) with a TypeMap (i.e., sthg that extends Function1[Type,
Type]):

private def postTransform(tree: Tree): Tree = {

val sym = tree.symbol

. . .

tree1 setType flattened(tree1.tpe)

}

and not to forget the overload in Flatten:

def transformInfo(sym: Symbol, tp: Type): Type = flattened(tp)

There are four cases that flattened handles (TypeRef, ClassInfoType, MethodType,
and PolyType) as covered in Sec. 3.2 to Sec. 3.4.

5

Figure 2: Sec. 3.1

3.1 Idioms around TypeMap and TypeTraverser

Basically, there are TypeMaps (with an inner TypeMapTransformer, which “leaves
the tree alone except to remap its types”) and TypeTraverser. Subtypes of
TypeMapTransformer are used in:

1. the abstract TypeMap itself:

/** Map a tree that is part of an annotation argument.

* If the tree cannot be mapped, then invoke giveup().

* The default is to transform the tree with

* TypeMapTransformer.

*/

def mapOver(tree: Tree, giveup: ()=>Nothing): Tree =

(new TypeMapTransformer).transform(tree)

2. in annotationArgRewriter as part of AsSeenFromMap

3. in SubstSymMap

4. in SubstTypeMap

There are too many TypeMap subclasses so we just show:

There are fewer TypeTraverser subclasses, Figure 3 depicts them all.

3.2 TypeRef

case TypeRef(pre, sym, args) if (pre.typeSymbol.isClass && !pre.typeSymbol.isPackageClass) =>

assert(args.isEmpty) /*- Scala.NET alarm: not necessarily the case

(although ‘flatten‘ isn’t forMSIL, it’s still useful to track its dependencies on ‘erasure‘) */

6

Figure 3: Sec. 3.1

assert(sym.toplevelClass != NoSymbol, sym.ownerChain)

typeRef(sym.toplevelClass.owner.thisType, sym, args)

3.3 ClassInfoType

Upon entry to

def transformInfo(sym: Symbol, tp: Type): Type

only some combinations of symbol and its type are possible:

• a ModuleClassSymbol (e.g., for a package) has a type given by a ClassInfoType

• a ClassSymbol may show up with a ClassInfoType or a PolyType

• a MethodSymbol has always a MethodType to represent its type.

• a TermSymbol goes together with a (Unique)TypeRef.

It’s useful to keep in mind that both (a) what gets unnested; and (b) the new
home of sthg that got unnested; well both those things, have a ClassInfoType.

One more pre-requisite to understand what follows:

/** A class representing a class info

*/

case class ClassInfoType(

override val parents: List[Type],

override val decls: Scope,

override val typeSymbol: Symbol) extends CompoundType

{

. . .

}

Regarding the re-mapping for ClassInfoType, there are two sub-cases:

7

Figure 4: Sec. 3.3

1. a package may have become home to ClassDefs which were unnested,
Therefore the package’s info’s Scope needs to include entries for those
ClassDefs.

2. An unnested ClassDef N was unnested from some ClassDef C. Therefore
N should not appear atPhase(phase.next) among the entries in the scope
of the info of C.

Both situations are handled in a single case handler :

case ClassInfoType(parents, decls, clazz) =>

Both of the above are achieved by iterating over the decls of N ,

• Case 2.1: if(sym.isTerm && !sym.isStaticModule) keep it (i.e., add it to the
scope being populated).

• Case 2.2: if(sym.isClass) don’t enter it in the scope being populated.
Instead liftClass(sym), to enter it in its now home. That’s possible be-
cause of the way ClassSymbol *overrides* owner (and, there’s more to it!
Sec. 3.3.1):

override def owner: Symbol =

if (needsFlatClasses) rawowner.owner

else rawowner

case ClassInfoType(parents, decls, clazz) =>

var parents1 = parents

val decls1 = new Scope

if (clazz.isPackageClass) { /*- item (1) above */

atPhase(phase.next)(decls.toList foreach (sym => decls1 enter sym))

} else { /*- item (2) above */

val oldowner = clazz.owner

atPhase(phase.next)(oldowner.info)

parents1 = parents mapConserve (this)

for (sym <- decls.toList) {

if (sym.isTerm && !sym.isStaticModule) { /*- item (2.1) above */

decls1 enter sym

if (sym.isModule) sym.moduleClass setFlag LIFTED // Only top modules

8

Figure 5: Sec. 3.3

// Nested modules (MODULE flag is reset so we access through lazy):

if (sym.isModuleVar && sym.isLazy) sym.lazyAccessor.lazyAccessor setFlag LIFTED

} else if (sym.isClass) { /*- item (2.2) above */

liftClass(sym)

if (sym.needsImplClass) liftClass(erasure.implClass(sym))

}

}

}

ClassInfoType(parents1, decls1, clazz)

3.3.1 Flatten-aware ClassSymbol and ModuleSymbol

We saw needsFlatClasses in Sec. 3.3 and its effect on ClassSymbol.owner. There’s
more to it (Find usages tells the whole story):

/**

* Returns the rawInfo of the owner. If the current phase has flat classes,

* it first applies all pending type maps to this symbol.

*

* assume this is the ModuleSymbol for B in the following definition:

* package p { class A { object B { val x = 1 } } }

*

* The owner after flatten is "package p" (see "def owner"). The flatten type map enters

* symbol B in the decls of p. So to find a linked symbol ("object B" or "class B")

* we need to apply flatten to B first. Fixes #2470.

*/

private final def flatOwnerInfo: Type = {

if (needsFlatClasses)

info

owner.rawInfo

}

Also related to this, there’s isFlatAdjusted in ModuleSymbol (Figure 5), this
time affecting ModuleSymbol’s def owner and def name behavior.

9

Listing 1: Sec. 3.4

/** A type function or the type of a polymorphic value (and thus of kind *).

*

* Before the introduction of NullaryMethodType, a polymorphic nullary method

* (e.g, def isInstanceOf[T]: Boolean)

* used to be typed as PolyType(tps, restpe),

* and a monomorphic one as PolyType(Nil, restpe)

*

* This is now: PolyType(tps, NullaryMethodType(restpe)) and NullaryMethodType(restpe)

* by symmetry to MethodTypes: PolyType(tps, MethodType(params, restpe)) and MethodType(params, restpe)

*

* Thus, a PolyType(tps, TypeRef(...)) unambiguously indicates

* a type function (which results from eta-expanding a type constructor alias).

* Similarly, PolyType(tps, ClassInfoType(...)) is a type constructor.

*

* A polytype is of kind * iff its resultType is a (nullary) method type.

*/

case class PolyType(override val typeParams: List[Symbol], override val resultType: Type)

extends Type {

//assert(!(typeParams contains NoSymbol), this)

// used to be a marker for nullary method type, illegal now (see @NullaryMethodType)

assert(typeParams nonEmpty, this)

. . .

3.4 The rest: MethodType, PolyType, etc.

Background on PolyType in Listing 1.

case MethodType(params, restp) =>

val restp1 = apply(restp)

if (restp1 eq restp) tp else copyMethodType(tp, params, restp1)

case PolyType(tparams, restp) =>

val restp1 = apply(restp);

if (restp1 eq restp) tp else PolyType(tparams, restp1)

case _ =>

mapOver(tp)

/*- Scala.NET alarm. For example, */

package p

class C[X] {

class D[Y]

}

/*- We said "both situations are handled with a single case handler" */

case ClassInfoType(parents, decls, clazz) =>

/*- but without erasure the info of a ClassDef.symbol can be

a type constructor that should be handled via */

case PolyType(typeParams, resultType) =>

/*- (although ‘flatten‘ isn’t forMSIL,

it’s still useful to track its dependencies on ‘erasure‘) */

10

	On tree descent: collecting keys
	On the way up
	Eliding, Collecting trees to relocate
	It reads ``object P'' but it's a ClassDef
	Rewriting

	Pasting

	Sometime later: re-typing trees
	Idioms around TypeMap and TypeTraverser
	TypeRef
	ClassInfoType
	Flatten-aware ClassSymbol and ModuleSymbol

	The rest: MethodType, PolyType, etc.

