
How the constructors phase works

c© Miguel Garcia, LAMP, EPFL
http://lamp.epfl.ch/~magarcia

April 30th, 2011

Abstract

These notes cover constructors, the phase in charge of rephrasing
template initialization in terms of VM-level fields and constructors. The
phase also lowers scala.DelayedInit and needs to be aware about @specialized
in some cases. These notes don’t delve into details of the latter, other than
including pointers to related material and samples of before-after ASTs.

phase name id description

---------- -- -----------

parser 1 parse source into ASTs, perform simple desugaring

namer 2 resolve names, attach symbols to named trees

packageobjects 3 load package objects

typer 4 the meat and potatoes: type the trees

superaccessors 5 add super accessors in traits and nested classes

pickler 6 serialize symbol tables

refchecks 7 reference/override checking, translate nested objects

liftcode 8 reify trees

uncurry 9 uncurry, translate function values to anonymous classes

tailcalls 10 replace tail calls by jumps

specialize 11 @specialized-driven class and method specialization

explicitouter 12 this refs to outer pointers, translate patterns

erasure 13 erase types, add interfaces for traits

lazyvals 14 allocate bitmaps, translate lazy vals into lazified defs

lambdalift 15 move nested functions to top level

/*---*/

constructors 16 move field definitions into constructors

/*---*/

flatten 17 eliminate inner classes

mixin 18 mixin composition

cleanup 19 platform-specific cleanups, generate reflective calls

icode 20 generate portable intermediate code

inliner 21 optimization: do inlining

closelim 22 optimization: eliminate uncalled closures

dce 23 optimization: eliminate dead code

jvm 24 generate JVM bytecode

terminal 25 The last phase in the compiler chain

1

http://lamp.epfl.ch/~magarcia

Contents

1 Intro 3

2 Before and after 3
2.1 The parser part of the deal . 3
2.2 Example: Early defs . 4

3 transformClassTemplate: setting the scene 5
3.1 Letting the instance know about presuper values 6
3.2 The first big spill-over . 7
3.3 intoConstructorTransformer 8

4 Second part of transformClassTemplate 10
4.1 Collecting symbols accessed outside the primary constructor . . . 10
4.2 Initialize field from param, or omit field altogether 11
4.3 “Splitting at super” . 12
4.4 Some words about DelayedInit 12
4.5 We’re almost done! . 13

5 Bonus 13
5.1 DelayedInit . 13
5.2 @specialized . 14
5.3 Inlining ILAsm bytecode in C# programs 15

2

Figure 1: Sec. 1

1 Intro

scala.tools.nsc.transform.Constructors contains just one transformer, with
the structure shown in Figure 1. Just to be clear: a transformer extends the
abstract class Transformer in scala.tools.nsc.ast.Trees.

With method transformClassTemplate collapsed, the main aspects of this
phase become clear, so it only remains to see what goes on between lines 32
and 585. Besides turning templates (in tandem with primary constructors)
into “Java-like constructors”, transformClassTemplate handles two additional
concerns: (a) rewriting for DelayedInit; and (b) handling the interplay with
@specialized. We postpone their treatment to Sec. 5.1 and Sec. 5.2. Till then,
we discuss the operation of constructors without those features.

2 Before and after

2.1 The parser part of the deal

In order to have an intuition for the shapes arriving at constructors, we start
with parser, that in its machinations inserts a DefDef for a primary constructor:

// Input program

class A(a: Int)

class B(b: Int) extends A(b)

// After parser

3

class A extends scala.ScalaObject {

<paramaccessor> private[this] val a: Int = _;

def <init>(a: Int) = {

super.<init>();

()

}

};

class B extends A with scala.ScalaObject {

<paramaccessor> private[this] val b: Int = _;

def <init>(b: Int) = {

super.<init>(b);

()

}

};

2.2 Example: Early defs

Although this subsection contains before&after snippets obtained with -Xprint,
a better way to see changes across phases involves -Yshow-syms (using SymbolTrackers).
Sample output:

[[symbol layout at end of constructors]]

. . .

!!! 1 symbols vanished:

(1) value a -> class ShowMe -> package <empty> -> ...

ValDef: <paramaccessor> private[this] val a: Int = _

The SLS gives the following input program when discussing Early defs in
§5.1.6 (this example will come handy in Sec. 3.1):

trait Greeting {

val name: String

val msg = "How are you, "+name

}

class C extends {

val name = "Bob"

} with Greeting {

println(msg)

}

After constructors:

[[syntax trees at end of constructors]]// Scala source: bt4.scala

package <empty> {

abstract trait Greeting extends java.lang.Object with ScalaObject {

<stable> <accessor> def name(): java.lang.String;

<stable> <accessor> def msg(): java.lang.String

};

class C extends java.lang.Object with Greeting with ScalaObject {

private[this] val name: java.lang.String = _;

<stable> <accessor> def name(): java.lang.String = C.this.name;

def this(): C = {

val name: java.lang.String("Bob") = "Bob";

C.this.name = "Bob";

C.super.this();

C.this.$asInstanceOf[Greeting$class]()./*Greeting$class*/$init$();

4

scala.this.Predef.println(C.this.msg());

()

}

};

abstract trait Greeting$class extends java.lang.Object with ScalaObject with Greeting {

private[this] val msg: java.lang.String = _;

<stable> <accessor> def msg(): java.lang.String = Greeting$class.this.msg;

def /*Greeting$class*/$init$(): Unit = {

Greeting$class.this.msg = "How are you, ".+(Greeting$class.this.name());

()

}

}

}

3 transformClassTemplate: setting the scene

Informally, phrases like “the body of the template”, “the statements in the
primary constructor” may refer to either the before-constructors state or the
after-transform state. To avoid confusion, that distinction can be kept in mind,
for example:

• val stats = impl.body, the before-contents of the template as a List[Tree]

• constrParams, the before-xform list of param-symbols for the (primary)
constructor. N.B.: that’s the constructor being meant whenever we talk
of “the constructor”.

• constrBody, before-contents of the primary constructor as a Block(stats:

List[Tree], expr: Tree).

Those are examples of before-state. The buffers for post-state all contain tree
lists, conveniently separated into their position post-transform:

• template level, subdivided into auxiliary constructors and the rest (auxConstructorBuf
and defBuf resp.)

• primary-constructor level, subdivided into before super-call (if any), on the
one hand; and at-or-after the super call, on the other: constrPrefixBuf

and constrStatBuf resp.

The buffers mentioned above are:

// The list of definitions that go into class

val defBuf = new ListBuffer[Tree]

// The auxiliary constructors, separate from the defBuf since they should

// follow the primary constructor

val auxConstructorBuf = new ListBuffer[Tree]

// The list of statements that go into constructor after and including the superclass constructor call

val constrStatBuf = new ListBuffer[Tree]

// The list of early initializer statements that go into constructor before the superclass constructor call

val constrPrefixBuf = new ListBuffer[Tree]

5

The last two items may give the impression that their concatenation constitutes
the post-transform primary constructor. Not quite so. Some pieces haven’t
been discussed yet but their meaning is hinted at by the following snippet:

// Assemble final constructor

defBuf += treeCopy.DefDef(

constr, constr.mods, constr.name, constr.tparams, constr.vparamss, constr.tpt,

treeCopy.Block(

constrBody,

paramInits ::: constrPrefixBuf.toList ::: uptoSuperStats ::: /*- so far we’ve heard only about constrPrefixBuf */

guardSpecializedInitializer(remainingConstrStats),

constrBody.expr));

3.1 Letting the instance know about presuper values

Mutation action starts by filling the statements at or after the super-call (constrStatBuf),
only that (contrary to its name) first of all assignments are added for early defs,
which by their very nature are executed before invoking a super constructor and
trait initializers (all will be fine after splitAtSuper, Sec. 4.3).

In terms of the example from Sec. 2.2, there’s the following “presuper”

class C extends {

val name = "Bob" /*- presuper */

} with Greeting {

println(msg)

}

to put it into perspective, the primary constructor after constructors looks like:

def this(): C = {

val name: java.lang.String("Bob") = "Bob"; /*- this subsection covers how this line */

C.this.name = "Bob"; /*- and this line are added to constrStatBuf */

C.super.this();

C.this.$asInstanceOf[Greeting$class]()./*Greeting$class*/$init$();

scala.this.Predef.println(C.this.msg());

()

}

The snippet below informs us that (among the statements in the before-
xform constructor) “constructor-local ValDefs for pre-supers” can be found.
Each such ValDef goes unchanged into the after-xform constructor and is imme-
diately followed by an assignment to the class-level field for that presuper. Thus
the title of this section. BTW, no clue what the rhs of the constructor-local
ValDef, if any, was.

// generate code to copy pre-initialized fields

for (stat <- constrBody.stats) {

constrStatBuf += stat

stat match {

case ValDef(mods, name, _, _) if (mods hasFlag PRESUPER) =>

// stat is the constructor-local definition of the field value

val fields = presupers filter (

vdef => nme.localToGetter(vdef.name) == name)

assert(fields.length == 1)

val to = fields.head.symbol

if (!to.tpe.isInstanceOf[ConstantType])

6

constrStatBuf += mkAssign(to, Ident(stat.symbol))

case _ =>

}

}

For the “C and Greeting” example, constrBody.stats contains presuper, su-
per call, and trait init:

This is one of those transforms where the resulting ASTs can be mapped to
bytecode but not to Java or C#. (Unless “IL Inlining in High-Level Languages”
is used, as implemented by InlineIL1. See Sec. 5.3 for details).

We’re not yet done with mutating constrStatBuf: highlighted below are two
more cases, to be discussed later.

3.2 The first big spill-over

Having started to fill one of the “receptacles” what about the other three? Each
of them (defBuf, auxConstructorBuf, constrPrefixBuf) as well as constrStatBuf

itself potentially gets something during the triaging performed from lines 166
to 201.

Why is such triaging needed? Before constructors, templates contain exe-
cutable statements and ValDefs with executable RHSs, whose evaluation logi-
cally belongs in the primary constructor.

Or put in yet another way :-) in Sec. 3.1, we didn’t iterate over template
stmts but over those in the constructor, now we need to add what logically
belongs in the constructor but so far is owned by the template

The before-xform template stamements are classified into “definitions” and
“others”:

1. Three kinds of definitions (Figure 2) are distributed here:

(a) ClassDefs remain always template-level

1http://blogs.msdn.com/jmstall/archive/2005/02/21/377806.aspx

7

http://blogs.msdn.com/jmstall/archive/2005/02/21/377806.aspx

Figure 2: Sec. 3.2

(b) Regarding constructors:

i. the primary constructor is skipped as it will be added later

ii. auxiliary constructors go to auxConstructorBuf

(c) All (non-constructor) methods go to the post-xform template (i.e.,
to defBuf). However the body of methods with constant result type
is rewritten into a literal.

(d) (mutable) value definitions go to defBuf (unless constant), and one
of constrPrefixBuf or constrStatBuf (unless lazy).

// val defs with constant right-hand sides are eliminated.

// for all other val defs, an empty valdef goes into the template and

// the initializer goes as an assignment into the constructor

// if the val def is an early initialized or a parameter accessor, it goes

// before the superclass constructor call, otherwise it goes after.

// Lazy vals don’t get the assignment in the constructor.

2. all other statements of the before-xform template go into the post-xform
constructor (by first going to constrStatBuf).

3.3 intoConstructorTransformer

The list in Sec. 3.2 shows that cases (1.d) and (2) result in expressions being
moved from template-level to constructor-level. There’s a transformer (intoConstructorTransformer,
Listing 3) to help with that. Moving one such Tree involves:

1. First, its owner is changed from impl.symbol to constr.symbol.

2. Second, it goes through intoConstructorTransformer which has to be aware
of @specialized (details omitted!). Instead, we look at the most common
rewritings it performs (in all cases, the rewritings are conditional, details
in code shown below):

(a) references to parameter accessor methods of own class become refer-
ences to parameters

8

Figure 3: Sec. 3.3

(b) outer accessors become references to $outer parameter

(c) references to parameter accessor field of own class become references
to parameters

Example:

class C (p: Int, var v: Char) {

Console.println(p)

Console.println(v)

v = 10

Console.println(v)

}

Before-and-after ASTs:

Code in charge of carrying out the transformation:

case Apply(Select(This(_), _), List()) =>

// references to parameter accessor methods of own class become references to parameters

// outer accessors become references to $outer parameter

9

if (isParamRef(tree.symbol) && !possiblySpecialized(tree.symbol))

gen.mkAttributedIdent(parameter(tree.symbol.accessed)) setPos tree.pos

else if (tree.symbol.outerSource == clazz && !clazz.isImplClass)

gen.mkAttributedIdent(parameterNamed(nme.OUTER)) setPos tree.pos

else

super.transform(tree)

case Select(This(_), _) if (isParamRef(tree.symbol) && !possiblySpecialized(tree.symbol)) =>

// references to parameter accessor field of own class become references to parameters

gen.mkAttributedIdent(parameter(tree.symbol)) setPos tree.pos

4 Second part of transformClassTemplate

4.1 Collecting symbols accessed outside the primary con-
structor

Simplifying somewhat, on entry to constructors there is a field for each con-
structor param (and possibly accessors depending on whether the param was
marked val or var). Sometimes, constructor params are used as they would be
in Java, i.e. only within the primary constructor. If so, no dedicated field for
that param is necessary.

The machinery required to realize the intuition above permeates the rest
of transformClassTemplate. In this subsection we cover the first steps of that
process, by first rephrasing in more detail the idea just sketched.

transformClassTemplate relies a number of times on mustbeKept(sym: Symbol)

to leave out of the post-xform template some definition. For example:

// Eliminate all field definitions that can be dropped from template

treeCopy.Template(impl, impl.parents, impl.self,

defBuf.toList filter (stat => mustbeKept(stat.symbol)))

In turn, mustbeKept bases its decision (among others) on:

// A sorted set of symbols that are known to be accessed outside the primary constructor.

val accessedSyms = new TreeSet[Symbol]((x, y) => x isLess y)

As part of collecting accessedSyms, collecting outerAccessors is also neces-
sary (but outerAccessors aren’t used for anything else afterwards). And once
accessedSyms have been collected, outerAccessors won’t be queried directly, but
through mustbeKept(sym), as the following screencapture shows:

Accessed-symbols are collected by running accessTraverser (Figure 4) twice:

• first on all members of the after-xform template (better said, what so far is
considered to be the after-xform template), except the primary constructor

10

Figure 4: Sec. 4.1

and outer accessors

• afterwards, on those outer accessors which were detected as accessed by
the previous stage.

It’s high time for a code snippet!

// first traverse all definitions except outeraccesors

// (outeraccessors are avoided in accessTraverser)

for (stat <- defBuf.iterator ++ auxConstructorBuf.iterator)

accessTraverser.traverse(stat)

// then traverse all bodies of outeraccessors which are accessed themselves

// note: this relies on the fact that an outer accessor never calls another

// outer accessor in the same class.

for ((accSym, accBody) <- outerAccessors)

if (mustbeKept(accSym)) accessTraverser.traverse(accBody)

4.2 Initialize field from param, or omit field altogether

Once all symbols accessed outside the constructor are known (be they for
params, fields, or otherwise) it is possible to emit code to:

1. initialize (with param values) those paramaccessor fields that will remain
template-level. The code to perform such assignments is emitted by in-
voking:

// Create code to copy parameter to parameter accessor field.

// If parameter is $outer, check that it is not null so that we NPE

// here instead of at some unknown future $outer access.

def copyParam(to: Symbol, from: Symbol): Tree = {

import CODE._

val result = mkAssign(to, Ident(from))

if (from.name != nme.OUTER) result

else localTyper.typedPos(to.pos) {

IF (from OBJ_EQ NULL) THEN THROW(NullPointerExceptionClass) ELSE result

}

11

Listing 1: Sec. 4.2

// Conflicting symbol list from parents: see bug #1960.

// It would be better to mangle the constructor parameter name since

// it can only be used internally, but I think we need more robust name

// mangling before we introduce more of it.

val parentSymbols = Map((for {

p <- impl.parents

if p.symbol.isTrait

sym <- p.symbol.info.nonPrivateMembers

if sym.isGetter && !sym.isOuterField

} yield sym.name -> p): _*)

// Initialize all parameters fields that must be kept.

val paramInits =

for (acc <- paramAccessors if mustbeKept(acc)) yield {

if (parentSymbols contains acc.name)

unit.error(acc.pos, "parameter ’%s’ requires field but conflicts with %s in ’%s’".format(

acc.name, acc.name, parentSymbols(acc.name)))

copyParam(acc, parameter(acc))

}

}

2. later in transformClassTemplate, omit those paramaccessor fields that are
accessed only within the constructor.

Trees for the assignments prepared as per item 1. above are kept in paramInits.
The for-comprehension computing them also has to cater for an obscure error
situation (inheriting from a trait a getter with the same name as a parameter
being initialized) and is thus a bit more involved (Listing 1).

4.3 “Splitting at super”

From here (Sec. 4.3) till Sec. 4.5 the last part of method transformClassTemplate

is shown.

/** Return a pair consisting of (all statements up to and including superclass and trait constr calls, rest) */

def splitAtSuper(stats: List[Tree]) = {

def isConstr(tree: Tree) = (tree.symbol ne null) && tree.symbol.isConstructor

val (pre, rest0) = stats span (!isConstr(_))

val (supercalls, rest) = rest0 span (isConstr(_))

(pre ::: supercalls, rest)

}

var (uptoSuperStats, remainingConstrStats) = splitAtSuper(constrStatBuf.toList)

4.4 Some words about DelayedInit

Details in Sec. 5.1.

val needsDelayedInit =

12

(clazz isSubClass DelayedInitClass) /*&& !(defBuf exists isInitDef)*/ && remainingConstrStats.nonEmpty

if (needsDelayedInit) {

val dicl = new ConstructorTransformer(unit) transform delayedInitClosure(remainingConstrStats)

defBuf += dicl

remainingConstrStats = List(delayedInitCall(dicl))

}

4.5 One more thing

// Assemble final constructor

defBuf += treeCopy.DefDef(

constr, constr.mods, constr.name, constr.tparams, constr.vparamss, constr.tpt,

treeCopy.Block(

constrBody,

paramInits ::: constrPrefixBuf.toList ::: uptoSuperStats :::

guardSpecializedInitializer(remainingConstrStats),

constrBody.expr));

// Followed by any auxiliary constructors

defBuf ++= auxConstructorBuf

// Unlink all fields that can be dropped from class scope

for (sym <- clazz.info.decls.toList)

if (!mustbeKept(sym)) clazz.info.decls unlink sym

// Eliminate all field definitions that can be dropped from template

treeCopy.Template(impl, impl.parents, impl.self,

defBuf.toList filter (stat => mustbeKept(stat.symbol)))

5 Bonus

5.1 DelayedInit

The entry point to the rewriting for DelayedInit was shown in Sec. 4.4, but the
actual rewriting was skipped (i.e., delayedInitClosure(remainingConstrStats)

and delayedInitCall(dicl)). Let’s recap the SLS description:

Delayed Initializaton. The initialization code of an object or class
(but not a trait) that follows the superclass constructor invocation
and the mixin-evaluation of the template’s base classes is passed to
a special hook, which is inaccessible from user code. Normally, that
hook simply executes the code that is passed to it. But templates
inheriting the scala.DelayedInit trait can override the hook by re-
implementing the delayedInit method, which is defined as follows:

def delayedInit(body: => Unit)

The input program below is converted into that in Listing 2 (page 14).

object Main extends App {

Console.println(args mkString)

}

13

Listing 2: Sec. 5.1

[[syntax trees at end of constructors]]// Scala source: bt4.scala

package <empty> {

final object Main extends java.lang.Object with App with ScalaObject {

final <synthetic> class delayedInit$body extends scala.runtime.AbstractFunction0 with ScalaObject {

<paramaccessor> private[this] val $outer: object Main = _;

final def apply(): java.lang.Object = {

scala.Console.println(

scala.this.Predef.refArrayOps(

delayedInit$body.this.$outer.args().$asInstanceOf[Array[java.lang.Object]]()

).mkString()

);

scala.runtime.BoxedUnit.UNIT

};

def this($outer: object Main): Main#delayedInit$body = {

if ($outer.eq(null))

throw new java.lang.NullPointerException()

else

delayedInit$body.this.$outer = $outer;

delayedInit$body.super.this();

()

}

}; // end of class delayedInit$body

def this(): object Main = {

Main.super.this();

Main.this.$asInstanceOf[App$class]()./*App$class*/$init$();

Main.this.delayedInit(new Main#delayedInit$body(Main.this));

()

} // end of this(): object Main

} // end of object Main

}

5.2 @specialized

Covered in §4.4.3 (Specialized instance initialization) of Iulian Dragos’ PhD
report [1].

For the following input program, the AST after constructors is shown in
Listing 3 on p. 16.

abstract class Stack[@specialized(Int) T : ClassManifest](size: Int) {

val data = new Array[T](size)

println("created array of size " + data.length)

def push(x: T)

def pop: T

}

5.3 Inlining ILAsm bytecode in C# programs

This section follows up the discussion in Sec. 3.1. Example:

14

using System;

class Program

{

static void Main()

{

int x = 3;

int y = 4;

int z = 5;

// Here’s some inline IL; x=x+y+z

#if IL

ldloc x

ldloc y

add

ldloc z

add

stloc x

#endif

Console.WriteLine(x);

}

}

The webpage for InlineIL2 mentions limitations of the tool:

1. The compiler (e.g. csc.exe) is completely ignorant to the IL snippets.
This greatly simplifies the model but also introduces some issues:

(a) The compiler doesn’t know about any locals declared in the IL snip-
pets.

(b) The compiler can’t do any analysis on the IL snippets. This can be
critical in dead-code detection. If the only reference to C# code is
via the IL snippet, csc.exe will think it’s dead code and remove it,
and then the code will be unavailable for the inliner. This is why the
C# filter example above puts the throw in its own function.

2. There are limitations to stitching the high-level source code and the IL
together. For example, you can’t share labels across the boundary. Also,
the compiler doesn’t know about declarations from the IL snippets.

3. The inliner only supports IL statements. It doesn’t support IL expressions,
members, or types. Supporting expressions would require real integration
with the compiler, and also provide little value since they can trivially be
converted into statements. Supporting members would also require real
integration with the compiler so that the rest of the compiler could see the
newly declared member. Supporting types don’t make sense since the type
could just be in its own IL file.

References

[1] Iulian Dragos. Compiling Scala for Performance. PhD thesis, Lausanne,
2010. http://lamp.epfl.ch/~dragos/files/dragos-thesis.pdf.

2http://blogs.msdn.com/jmstall/archive/2005/02/21/377806.aspx

15

http://lamp.epfl.ch/~dragos/files/dragos-thesis.pdf
http://blogs.msdn.com/jmstall/archive/2005/02/21/377806.aspx

Listing 3: Sec. 5.2

[[syntax trees at end of constructors]]// Scala source: bt4.scala

package <empty> {

abstract class Stack extends java.lang.Object with ScalaObject {

protected[this] val data: java.lang.Object = _;

<stable> <accessor> def data(): java.lang.Object = Stack.this.data;

def push(x: java.lang.Object): Unit;

def pop(): java.lang.Object;

<stable> <specialized> def datamcIsp(): Array[Int] = Stack.this.data().$asInstanceOf[Array[Int]]();

<specialized> def pushmcIsp(x: Int): Unit = Stack.this.push(scala.Int.box(x).$asInstanceOf[java.lang.Object]());

<specialized> def popmcIsp(): Int = scala.Int.unbox(Stack.this.pop());

def specInstance$(): Boolean = false;

def this(size: Int, evidence$1: scala.reflect.ClassManifest): Stack = {

Stack.super.this();

if (Stack.this.specInstance$().unary_!())

{

Stack.this.data = evidence$1.newArray(size);

scala.this.Predef.println("created array of size ".+(scala.Int.box(runtime.this.ScalaRunTime.array_length(Stack.this.data()))));

()

};

()

}

};

abstract <specialized> class StackmcIsp extends Stack {

private <paramaccessor> val size: Int = _;

implicit private <paramaccessor> val evidence$1: scala.reflect.ClassManifest = _;

<specialized> protected[this] val datamcIsp: Array[Int] = _;

<stable> <accessor> <specialized> def datamcIsp(): Array[Int] = StackmcIsp.this.datamcIsp;

override <stable> <accessor> <specialized> def data(): Array[Int] = StackmcIsp.this.datamcIsp();

<specialized> def push(x: Int): Unit = StackmcIsp.this.pushmcIsp(x);

<specialized> def pop(): Int = StackmcIsp.this.popmcIsp();

def specInstance$(): Boolean = true;

<bridge> <specialized> def pop(): java.lang.Object = scala.Int.box(StackmcIsp.this.pop());

<bridge> <specialized> def push(x: java.lang.Object): Unit = StackmcIsp.this.push(scala.Int.unbox(x));

override <stable> <bridge> <specialized> def data(): java.lang.Object = StackmcIsp.this.data();

<specialized> def this(size: Int, evidence$1: scala.reflect.ClassManifest): StackmcIsp = {

StackmcIsp.this.size = size;

StackmcIsp.this.evidence$1 = evidence$1;

StackmcIsp.super.this(size, evidence$1);

StackmcIsp.this.datamcIsp = evidence$1.newArray(size).$asInstanceOf[Array[Int]]();

scala.this.Predef.println("created array of size ".+(scala.Int.box(runtime.this.ScalaRunTime.array_length(StackmcIsp.this.data()))));

()

}

}

}

16

	Intro
	Before and after
	The parser part of the deal
	Example: Early defs

	transformClassTemplate: setting the scene
	Letting the instance know about presuper values
	The first big spill-over
	intoConstructorTransformer

	Second part of transformClassTemplate
	Collecting symbols accessed outside the primary constructor
	Initialize field from param, or omit field altogether
	``Splitting at super''
	Some words about DelayedInit
	We're almost done!

	Bonus
	DelayedInit
	@specialized
	Inlining ILAsm bytecode in C# programs

