
D
RA
FT

Level 1 support for CLR enums and valuetypes

c© Miguel Garcia, LAMP,

École Polytechnique Fédérale de Lausanne (EPFL)
http://lamp.epfl.ch/~magarcia

July 20th, 2010

Abstract

At the time of this writing, Scala.NET does not emit CLR enums nor
CLR valuetypes (BTW, enumerations and case classes in Scala are richer
than those CLR abstractions). What Scala.NET does allow is consuming
those types when defined in referenced assemblies, as well as using APIs
that rely on enums and valuetypes. These notes take you on a trip from
the CLR semantics of these low-level creatures, moving on to parsing of
their metadata, to finally making sure that correct CIL is emitted. Some
familiarity with compiler internals is assumed from the reader. The first
two sections provide background on both valuetypes and the compiler
components that have to know about them, sketching problems to solve.
Sec. 3 covers CIL idioms for enums and valuetypes, and Sec. 4 focuses
on our implementation. Unrelated to valuetypes, Sec. 5 mentions how
operator overloads and conversion operators are recast from metadata to
usable syntax.

Contents

1 Enumerations 2
1.1 CLR enums and CLR literal fields: What they are 3
1.2 The Scala view of .NET enumerations 4
1.3 Problem A: literal fields must be inlined 6
1.4 ‘CLR Boxing Theory’ for enums . 6
1.5 Problem B: no autoboxing from raw enum to O 7
1.6 More peculiarities of CLR enums . 8
1.7 Emitting enumerations (no thanks) . 8
1.8 Fine print for enum operators in other .NET languages 8

2 Valuetypes and managed pointers explained 9
2.1 How raw values come to the world . 10
2.2 How managed pointers come to the world 11
2.3 Managed pointer not to valuetype but to classtype 12
2.4 Other .NET compilers and valuetypes 13

3 Things to watch out for when emitting CIL for valuetypes 14
3.1 Problem D.0: don’t try ldfld on ref to valuetype 14
3.2 Problem D.1: call valuetype-defined instance method 15
3.3 Problem D.2: callvirt valuetype-defined (virtual) methods (other than

on this) and the constrained. prefix 15

1

http://lamp.epfl.ch/~magarcia

D
RA
FT

3.4 Problem D.3: Accessing other non-static members on this 18
3.5 FYI: Assignments to dereferenced address 18
3.6 FYI: Indirect store instructions . 19
3.7 FYI: when GenMSIL emits call vs. callvirt 19
3.8 CIL samples, enums . 20
3.9 CIL samples, valuetypes . 22

4 Mechanics of emitting CIL to load raw values, address values, or
boxed values 23
4.1 To recap: boxing for Scala value classes 23
4.2 A trick: Use-def analysis to patch ICode instructions 24
4.3 A more elaborate trick: fine-granular types for valuetypes 24

4.3.1 Raw-valued expression found where managed pointer expected 25
4.3.2 Managed-pointer found, raw value expected (dereference) . . . 26
4.3.3 Raw-valued expression found, boxed value expected 26
4.3.4 Managed-pointer found, boxed value expected 26

4.4 Recipe for TypeParser . 26
4.4.1 Boxed and ByRef . 26
4.4.2 Converting to Boxed and to ByRef when needed 27
4.4.3 When metadata refers to a ByRef type 27
4.4.4 Problem: implicit raw2boxed does not get inserted 28

4.5 Recipe for GenICode . 28
4.5.1 Solution to Raw-value found, managed-pointer expected 29
4.5.2 Field selection on valuetypes (Solution D.0) 29
4.5.3 Invocations with valuetyped receiver (Solutions D.1 and D.2) . 30
4.5.4 TODO toString vs. ToString 30
4.5.5 Desugar (default) constructor-invocation on valuetypes 30

4.6 Recipe for GenMSIL . 33

5 System.Decimal has operator overloads and conversion operators 33

6 Sidenotes 35
6.1 How are value types implemented in the 32-bit CLR? 35
6.2 GenICode: valuetype class symbols are wrapped in REFERENCEs just like

those for classtypes . 35
6.3 GenMSIL: unboxing of Booleans without System.Convert 35
6.4 Controlled-mutability managed pointers 36
6.5 Emitting (un)boxing in GenMSIL . 36
6.6 “Unavoidable boxing” due to event declarations on structs 37

7 TODO 37
7.1 Passing a literal field to a byref argument should trigger an error message 37
7.2 More TODO’s . 38

1 Enumerations

The idioms in TypeParser and GenMSIL for enums are representative of those for
other .NET concepts, so we’ll cherry pick some problems and solutions around
enum support to get us going.

2

D
RA
FT

1.1 CLR enums and CLR literal fields: What they are

All of the following is relevant for our discussion (quoting from §II.14.3)

1. An enum (short for enumeration) defines a set of symbols that all have the
same type. A type shall be an enum if and only if it has an immediate base
type of System.Enum. Since System.Enum itself has an immediate base type
of System.ValueType, enums are value types (§13) The symbols of an enum
are represented by an underlying integer type: one of bool, char, int8,

unsigned int8, int16, unsigned int16, int32, unsigned int32, int64, unsigned

int64, native int, unsigned native int.

[Note: Unlike Pascal, the CLI does not provide a guarantee that values of
the enum type are integers corresponding to one of the symbols. In fact,
the CLS (see Partition I, CLS) defines a convention for using enums to
represent bit flags which can be combined to form integral value that are
not named by the enum type itself. end note]

2. Enums obey additional restrictions beyond those on other value types.
Enums shall contain only fields as members (they shall not even define
type initializers or instance constructors); they shall not implement any
interfaces; they shall have auto field layout (§10.1.2); they shall have ex-
actly one instance field and it shall be of the underlying type of the enum;
all other fields shall be static and literal (§16.1); and they shall not be
initialized with the initobj instruction.

[Rationale: These restrictions allow a very efficient implementation of
enums. end rationale]

3. The single, required, instance field stores the value of an instance of the
enum. The static literal fields of an enum declare the mapping of the
symbols of the enum to the underlying values. All of these fields shall have
the type of the enum and shall have field init metadata that assigns them a
value (§16.2). For binding purposes (e.g., for locating a method definition
from the method reference used to call it) enums shall be distinct from
their underlying type. For all other purposes, including verification and
execution of code, an unboxed enum freely interconverts with its underlying
type. Enums can be boxed (§13) to a corresponding boxed instance type,
but this type is not the same as the boxed type of the underlying type, so
boxing does not lose the original type of the enum.

Literal fields are not exclusive to enums, and require field inlining, §II.16.1.2:

literal specifies that this field represents a constant value; such
fields shall be assigned a value. In contrast to initonly fields, literal
fields do not exist at runtime. There is no memory allocated for
them. literal fields become part of the metadata, but cannot be ac-
cessed by the code. literal fields are assigned a value by using the
FieldInit syntax (§16.2).

Note: It is the responsibility of tools generating CIL to replace source
code references to the literal [fields] with its actual value. Hence
changing the value of a literal [field] requires recompilation of any
code that references the literal [fields]. Literal [fields] are, thus, not
version-resilient.

3

D
RA
FT

1.2 The Scala view of .NET enumerations

In TypeParser.parseClass the usual association between MSILType and symtab.Types.Type

is tracked (i.e., the underlying type of an enumeration is not used):

private def parseClass(typ: MSILType) {

clrTypes.types(clazz) = typ

clrTypes.sym2type(typ) = clazz

. . .

For an msil.Type typ such that typ.IsEnum(), the“underlying type” can be ob-
tained with .getUnderlyingType(), null for non-enums.
Given that the static fields of an enum must be literal, they are subject to
(mandatory) field inlining (Sec. 1.3),

.class sealed public ErrorCodes extends [mscorlib]System.Enum

{

.field public unsigned int8 MyValue

.field public static literal valuetype ErrorCodes no_error = int8(0)

.field public static literal valuetype ErrorCodes format_error = int8(1)

.field public static literal valuetype ErrorCodes overflow_error = int8(2)

.field public static literal valuetype ErrorCodes nonpositive_error = int8(3)

}

Although the enum fields above are initialized with integral literals, TypeParser.parseClass
remains unimpressed by all that and ascribes those fields not a ConstantType,
but the type of the enum:

val fields = typ.getFields()

for (field <- fields if !(field.IsPrivate() || field.IsAssembly() || field.IsFamilyAndAssembly)) {

val flags = translateAttributes(field);

val name = newTermName(field.Name);

val fieldType =

if (field.IsLiteral && !field.FieldType.IsEnum) { /*- each static field of an enum IsLiteral, */

ConstantType(getConstant(sig2type(field.FieldType), field.getValue))

} else {

sig2type(field.FieldType) /*- yet doesn’t get a ConstantType */

}

val owner = if (field.IsStatic()) statics else clazz;

val sym = owner.newValue(NoPosition, name).setFlag(flags).setInfo(fieldType);

// TODO: set private within!!! -> look at typechecker/Namers.scala

(if (field.IsStatic()) staticDefs else instanceDefs).enter(sym);

clrTypes.fields(sym) = field;

}

Because of this, a value of the enum’s underlying type won’t make it for an
enum-typed location (same in the other direction) (although CIL-wise it’s ok to
store an integral value into an enum-typed location). This restriction is a good
thing as not all values of the underlying type are allowed in general in an enum
(however, one can still fabricate a non-enumerated value by AND-ing, OR-ing, etc.,
but this is CLR-imposed, as we’ll see shortly).

On the downside, computing an enum value now involves selecting one of
the predefined enum’s values:

Z:\ea.scala:5: error: type mismatch;

found : scala.this.Int(5)

4

D
RA
FT

required: Dele.this.Color

multip.colorField = 5

^

Z:\ea.scala:6: error: type mismatch;

found : Dele.this.Color

required: scala.this.Long

val age : Long = Dele.Color.Red

^

Next in TypeParser.parseClass, some syntax sugar is added . . .

if (typ.IsEnum) {

. . .

/*- for enumerations introduce comparison and bitwise logical operations;

the backend will recognize and replace them with comparison or

bitwise logical operations on the primitive underlying type */

}

. . . that the backend (GenMSIL) promptly desugars into comparisons of integrals
and into bit-logical operations:

case CALL_METHOD(msym, style) =>

if (msym.isClassConstructor) {

. . .

} else {

. . .

var doEmit = true

getTypeOpt(msym.owner) match {

case Some(typ) if (typ.IsEnum) => {

def negBool = {

mcode.Emit(OpCodes.Ldc_I4_0)

mcode.Emit(OpCodes.Ceq)

}

doEmit = false

val name = msym.name

if (name eq nme.EQ) { mcode.Emit(OpCodes.Ceq) }

else if (name eq nme.NE) { mcode.Emit(OpCodes.Ceq); negBool }

else if (name eq nme.LT) { mcode.Emit(OpCodes.Clt) }

else if (name eq nme.LE) { mcode.Emit(OpCodes.Cgt); negBool }

else if (name eq nme.GT) { mcode.Emit(OpCodes.Cgt) }

else if (name eq nme.GE) { mcode.Emit(OpCodes.Clt); negBool }

else if (name eq nme.OR) { mcode.Emit(OpCodes.Or) }

else if (name eq nme.AND) { mcode.Emit(OpCodes.And) }

else if (name eq nme.XOR) { mcode.Emit(OpCodes.Xor) }

else

doEmit = true

}

case _ => ()

}

. . .

/*- TODO LT, LE, GT, GE. If the underlying enum values are unsigned integers,

then comparisons should be performed with ‘cgt.un’ and ‘clt.un’, right? */

The snippet above shows, for binary operators only, what gets replaced. The
same technique would work for unary operators (e.g. sizeof) given that by the
time case CALL_METHOD(msym, style) => as above is handled, instructions will have
been emitted to place all arguments on the evaluation stack as raw (unboxed)
values, the topic of the next subsection.

5

D
RA
FT

1.3 Problem A: literal fields must be inlined

Listing 1 on p. 41 shows how GenMSIL does literal inlining.
If GenMSIL generated instructions like:

ldsfld valuetype [UsingIKVMOpenJDKDlls]’Dele.Color’ [UsingIKVMOpenJDKDlls]’Dele.Color’::’Green’

all we would get are peverify errors like:

[IL]: Error: [Z:\bt.exe : bt$::main][offset 0x0000000F]System.MissingFieldException:

Field not found: ’Dele.Color.Green’. Field is not visible.

in spite of ildasm showing that Dele.Color.Green “is there”:

The CLR VM expects compilers to inline the values of (static) literal fields, in
particular those of enums. Summary from §I.8.6.1.2 Location signatures: only
static fields (of either reference, enum, or value types) can be marked as literal,
in which case “Compilers are required to replace all references to the location
with its value, and the VES therefore need not allocate space for the location.”
Although they can’t be accessed, the metadata about literal fields is necessary
for reflection (e.g., to list the values of an enumeration).

Note: I know the above sounds worrisome. We’re loading onto the stack an
integral value for a program that was typechecked with an unboxed enum type
for that value. But the CLR wants it that way and not any other.

1.4 ‘CLR Boxing Theory’ for enums

Before getting to “Problem B” (Sec. 1.5) some background is necessary on
(un)boxing values of enum-underlying-type.
The spec says (§II.14.3):

For binding purposes (e.g., for locating a method definition from
the method reference used to call it) enums shall be distinct from
their underlying type. For all other purposes, including verification
and execution of code, an unboxed enum freely interconverts with

6

D
RA
FT

its underlying type. Enums can be boxed (§13) to a corresponding
boxed instance type, but this type is not the same as the boxed type
of the underlying type, so boxing does not lose the original type of
the enum.

And from §I.8.2.4 :

Interfaces and inheritance are defined only on reference types. Thus,
while a value type definition can specify both interfaces [to imple-
ment] and the [base] class (System.ValueType or System.Enum), these
apply only to boxed values.

That explains both the C# behavior below (colorField is an instance field of
the enumm Dele.Color), as well as Problem B (Sec. 1.5).

colorField is long // false

/* Any way you look at it:

(a.1) the boxed type of colorField, i.e. Dele.Color, is not convertible to Long

(a.2) the unboxed type of colorField is also not convertible to Long,

even with an implicit taking it to Dele.Color

*/

colorField is Dele.Color // true

colorField is System.Enum // true

colorField is System.ValueType // true

colorField is System.Object // true

/* the 2nd to last cases can be explained as:

(b.1) the boxed type of colorField, i.e. Dele.Color, is a subtype of each of

(itself, System.Enum, System.ValueType, and System.Object)

(b.2) the unboxed type of colorField can be converted to Dele.Color, a subtype of the types listed above.

*/

1.5 Problem B: no autoboxing from raw enum to O

With the changes to GenMSIL in Sec. 1.3, correct IL is emitted for the first line
below:

multip.colorField = Dele.Color.Red & Dele.Color.Green

System.Console.WriteLine(multip.colorField)

However the second line does not peverify (“[found Long][expected ref ’Sys-
tem.Object’] Unexpected type on the stack.”) due to the missing box. For the
record, WriteLine has type (scala.this.Any)scala.this.Unit, as can be seen
with -Xprint-types -Ystop:refchecks -Xprint:typer.

IL_0028: ldloc.0

IL_0029: ldfld valuetype [UsingIKVMOpenJDKDlls]’Dele.Color’ [UsingIKVMOpenJDKDlls]’Dele.Multiplier’::’colorField’

/*- missing: box [UsingIKVMOpenJDKDlls]Dele.Color */

IL_002e: call void [mscorlib]’System.Console’::’WriteLine’(object)

IL_0033: ret

The solution involves creating views (shown below), as covered in more detail
in Sec. 4.4.

7

D
RA
FT

if (canBeTakenAddressOf) {

// implicit conversions are owned by staticModule.moduleClass

createViewFromTo("2Boxed", clazz.tpe, clazzBoxed.tpe, addToboxMethodMap = true, isAddressOf = false)

createViewFromTo("2MgdPtr", clazz.tpe, clazzMgdPtr.tpe, addToboxMethodMap = false, isAddressOf = true)

// a return can have type managed-pointer, thus a conversion to raw is needed

createViewFromTo("Dereference", clazzMgdPtr.tpe, clazz.tpe, addToboxMethodMap = false, isAddressOf = false)

// a synthetic default constructor for raw-type allows ‘new X’ syntax

if (!typ.IsEnum) {

createDefaultConstructor(typ)

}

}

1.6 More peculiarities of CLR enums

From http://blogs.msdn.com/b/joelpob/archive/2004/07/19/187709.aspx

The beahvior of the castclass (or isinst) and unbox instructions
over a boxed enum instance is somewhat inconsistent. Consider:

Color c = Color.Black;

Object o = c;

int i;

// an IL sequence using classcast will fail to assign to int local i

ldloc o

castclass int32 // this will throw InvalidCastException

stloc i

// however an unbox instruction will work just fine

ldloc o

unbox int

ldind.i4

stloc i

In other words there are valid and verifiable IL sequences that al-
low a boxed enum instance to be assigned to its underlying type or
to a different compatible enum type, whereas other sequences will
throw. Considering reflection always deals with boxed value, there is
an asymmetry in operations that check type assignability (i.e. bind-
ing) versus operation that check instance assignability (i.e. invoca-
tion).

1.7 Emitting enumerations (no thanks)

No annotation exists to trigger the compiler to emit enumerations-metadata.
There is no workaround for this, because Scala enums are richer than their .NET
counterparts.

1.8 Fine print for enum operators in other .NET lan-
guages

For comparison: §14.5 Enum values and operations in the C# lang spec [1],

The following operators can be used on values of enum types: ==,
!=, <, >, <=, >= (§7.9.5), binary + (§7.7.4), binary - (§7.7.5), ^,
&, | (§7.10.2), ~ (§7.6.4), ++, -- (§7.5.9 and §7.6.5), and sizeof

8

http://blogs.msdn.com/b/joelpob/archive/2004/07/19/187709.aspx

D
RA
FT

(§18.5.4). Every enum type automatically derives from the class
System.Enum (which, in turn, derives from System.ValueType and
object). Thus, inherited methods and properties of this class can
be used on values of an enum type.

For example:

Enumeration addition. Every enumeration type implicitly provides
the following predefined operators, where E is the enum type, and U

is the underlying type of E:

E operator +(E x, U y);

E operator +(U x, E y);

The operators are evaluated exactly as (E)((U)x + (U)y).

Also for comparison, F# enum types (which map to CLR enums) are de-
scribed in §8.9 of the F# spec, http://research.microsoft.com/en-us/um/
cambridge/projects/fsharp/manual/spec.html#_Toc264041998

2 Valuetypes and managed pointers explained

For valuetypes and enums, a datum on the evaluation stack can be in one
of three states: “value of valuetype”, “address of valuetype”, and “ref to

valuetype” a.k.a. “raw value”, “managed pointer”, and “boxed value” resp.
Another common term is “unboxed value” for raw value.

Some CIL instructions are choosy about which of those types they can live
with. Other instructions accept more than one representation, but behave dif-
ferently (e.g., invoking a mutator on a boxed representation changes the copy
in the box, not the original value). This section charts those problem areas.

1. There’s no member declaration that a valuetype definition can’t contain:
fields (static or instance), methods (static, instance, or virtual), properties,
events, and nested types are all allowed in ILAsm.

2. Actually, there’s one member that a valuetype declaration can’t contain,
a parameterless constructor.

• We enter a synthetic default constructor for valuetypes, to enable
syntax like “new V()”. The idea is for GenMSIL to translate that
into a CIL initobj (which expects a managed pointer on the stack,
Sec. 2.1)

• See also http://blogs.msdn.com/b/bclteam/archive/2010/04/28/
constructors-and-value-types-ron-petrusha.aspx.

3. Valuetypes are sealed, and they may implement zero or more interfaces,
but this has meaning only in their boxed form.

4. Raw types are not considered subtypes of another type (except AnyVal)
and isinst can be invoked only on their boxed form.

9

http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/manual/spec.html#_Toc264041998
http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/manual/spec.html#_Toc264041998
http://blogs.msdn.com/b/bclteam/archive/2010/04/28/constructors-and-value-types-ron-petrusha.aspx
http://blogs.msdn.com/b/bclteam/archive/2010/04/28/constructors-and-value-types-ron-petrusha.aspx

D
RA
FT

5. Since valuetypes represent direct layout of data, recursive struct definitions
such as (in C#) struct S {S x; S y;} are not permitted. A struct shall
have an acyclic finite flattening graph.

Now a preposterous question: Why all the fuss about valuetypes? After
all, pointers to valuetypes aren’t CLS-compliant, and thus not many libraries
should expose them, right? Actually, byref locals, params, and return types
abound. That’s because by default the C# compiler does not complain when
emitting those and other non-CLS pearls. One has to flag a program element
to be checked explicitly, for example:

using System;

[assembly:CLSCompliant(true)]

[CLSCompliant(true)]

public void MyMethod()

2.1 How raw values come to the world

One of two ways. First, using newobj ctor. No receiver was pushed because none
is allocated yet. Afterwards, the unboxed value exists only on the stack. Taking
as example a parameterful constructor ValueType::ctor(arg1, ..., argN), the
stack transition is:

..., arg1, ...argN -> ..., rawValue.
(As we’ll see in a moment, valuetype constructors can also be invoked with

call, in this case a managed pointer is needed below arg1, ..., argN).
The second way separates allocation from initialization. Raw values can be

allocated as follows:

• as fields of aggregated types (classtypes or valuetypes),

• using newarr (for zero-based, one-dimensional arrays),

• as method arguments, or

• as local variables.

In the last case C# demands an initialization be present, e.g. S a = default(S);

or even S a = new S(); (even though no parameterless constructor can be de-
fined in C# or in ILAsm for valuetypes). In both cases, initobj typeTok is
invoked, whose stack transition is

. . ., destAddr -> . . .

Whether in C# or ILAsm, values of valuetypes can be re-initialized many
times after allocation. The following is valid:

IL_0000: nop

IL_0001: ldloca.s a

IL_0003: initobj ReferstoUsingBlaBla.S

IL_0009: ldloca.s a

IL_000b: ldc.i4.s 20

IL_000d: call instance void ReferstoUsingBlaBla.S::setAge(int32)

IL_0012: nop

IL_0013: ldloca.s a

IL_0015: initobj ReferstoUsingBlaBla.S

10

D
RA
FT

TODO Missing in the example is a call to a custom constructor.

In short, both initobj and custom constructors can be called as instance
methods (call instruction, not newobj) in any sequence on an (initialized or
not) valuetype value. In both cases (initobj, and call constructor), a managed
pointer stands for the receiver.

Only for ILAsm local vars, calling initobj can be dispensed with if locals

init was used.
See also http://blogs.msdn.com/b/bclteam/archive/2010/04/28/constructors-and-value-types-ron-petrusha.

aspx.

2.2 How managed pointers come to the world

Executive summary: if you want to know where ByRefs come to the world (which
are different from TypedByRefs), check the following in Type.java:

/***/

public static Type mkByRef(Type elemType) {

String name = elemType.FullName + "&";

Type type = getType(name);

if (type != null) return type;

type = new PrimitiveType(elemType.Module,

TypeAttributes.NotPublic,

name, null, EmptyTypes, null,

AuxAttr.ByRef, elemType);

return addType(type);

}

Where can byrefs be found in assembly metadata? Answer from §II.23.2 Blobs
and signatures:

Signatures make extensive use of constant values called ELEMENT TYPE xxx

– see §23.1.16. In particular, signatures include two modifiers called:

• ELEMENT TYPE BYREF – this element is a managed pointer (see
Partition I). This modifier can only occur in the definition of
LocalVarSig (§23.2.6), Param (§23.2.10) or RetType (§23.2.11).
It shall not occur within the definition of a Field (§23.2.4)

• ELEMENT TYPE PTR – this element is an unmanaged pointer (see
Partition I). This modifier can occur in the definition of Lo-
calVarSig (§23.2.6), Param (§23.2.10), RetType (§23.2.11) or
Field (§23.2.4)

Quoting from II.14.4 Pointer types

A pointer type shall be defined by specifying a signature that includes
the type of the location at which it points. A pointer can be managed
(reported to the CLI garbage collector, denoted by &, see §14.4.2) or
unmanaged (not reported, denoted by *, see §14.4.1)

In terms of type-parsing:

// from PEFile.java

public Type decodeType0() {

Type type = null;

11

http://blogs.msdn.com/b/bclteam/archive/2010/04/28/constructors-and-value-types-ron-petrusha.aspx
http://blogs.msdn.com/b/bclteam/archive/2010/04/28/constructors-and-value-types-ron-petrusha.aspx

D
RA
FT

int desc = readByte();

switch (desc) {

. . .

case ELEMENT_TYPE_PTR: // Followed by <type> token.

if (getByte() == ELEMENT_TYPE_VOID) { // TODO

readByte();

type = Type.mkPtr(Type.GetType("System.Void"));

} else type = Type.mkPtr(decodeType());

break;

case ELEMENT_TYPE_BYREF:

/* although BYREF is not listed in 23.2.12. as possible alternative, this method is also called

when parsing the signatures of a method param and a method return,

which do allow for BYREF */

type = Type.mkByRef(decodeType());

break;

case ELEMENT_TYPE_VALUETYPE: // TODO Followed by TypeDefOrRefEncoded

assert true;

case ELEMENT_TYPE_CLASS:

// Followed by <type> token

type = pemodule.getTypeDefOrRef(decodeInt());

if (type == null) throw new RuntimeException();

break;

. . .

Quoting from II.14.4.2 Managed pointers

Managed pointers are specified by using & in a signature for a return
value, local variable or an argument, or by using a byref type for a
field or array element.

Note: the last phrase is very misleading (fields and array elems can’t have
type “managed pointer of V” and be verifiable), IMHO a better formulation is
“or by passing by reference a field or array element”. Fields and array elems
can be type unmanaged pointer, rendering (the assembly?) unverifiable. No
thanks.

It’s possible to take the address of a field or array element, but not to store a
managed pointer value in a field or array element, thus avoiding the possibility
of dangling pointers without expensive escape analyses.

2.3 Managed pointer not to valuetype but to classtype

A method param can expect a managed pointer to valuetype, as well as to a
reference type. This allows called methods to re-wire to which object a refer-
ence R refers to (at the callsite the address of R was obtained and passed as
argument).

TODO What about a method returning “address of reference to classtype”?
Also possible? Regarding whether that’s also possible for local vars, I say:
don’t worry, we’re not going to emit such thing. Use C++ instead.

TODO A CIL LOAD FIELD ADDRESS (Sec. 4.3) is emitted for an implicit conver-
sion to type V& with V a valuetype. In case V is a classtype, the very same CIL
instruction (ldflda FieldInfo for a field, and so on) should be emitted. Thus
no check valuetype vs. classtype is required. But checks appear necessary for
another reason: obtaining the address of a field is ok as long as it corresponds
to a var and not val. At the latest, this can be detected at GenICode. Also
consider emitting a controlled-mutability pointer (Sec. 6.4) for the val case.

12

D
RA
FT

Note about method params in metadata:
Lidin’s book, Ch. 10,
According to the common language runtime metadata model, it is not nec-
essary to emit a Param record for each return or argument of a method.
Rather, it must be done only if we want to specify the name, flags, marshal-
ing, or default value. The IL assembler emits Param records for all arguments
unconditionally and for a method return only if marshaling is specified. The
name, flags, and default value are not applicable to a method return.

2.4 Other .NET compilers and valuetypes

Knowing how valuetypes behave in other languages also sheds light about dif-
ferences with objects.

• https://bugzilla.novell.com/buglist.cgi?quicksearch=valuetype

• F# struct types map to CLR valuetypes, §8.8 of the F# spec, http://
research.microsoft.com/en-us/um/cambridge/projects/fsharp/manual/

spec.html#_Toc264041997

Quoting from http://stackoverflow.com/questions/845657/why-is-the-c-compiler-emitting-a-callvirt-instruction-for-a-gettype-method-cal

Summing up: Case (1) invoke virtual method: generate callvirt.
Case (2) invoke instance method on nullable receiver: generate cal-
lvirt to get cheap null check – yes, this is typesafe. Case (3) invoke
instance method on known non-nullable receiver: generate call to
avoid null check. Your first example falls into category (2), your
second example falls into category (3). (The compiler knows that
new never returns null and therefore need not check again.) Eric
Lippert May 11 ’09 at 17:42

Quoting from the tech article Dark corners of IronPython1:

• Value Types

Python programmer will expect all objects to behave as reference types. This
rarely causes problems, but the following behavior would surprise a Python pro-
grammer:

>>> from System import Array

>>> from System.Drawing import Point

>>> point = Point(0, 0)

>>> array = Array[Point]((point,))

>>> array[0].X = 30

>>> array[0].X

0

The same thing happens in C#. Point is a struct which is a value type.
When you access the first element of the array the struct is copied and the X
co-ordinate is updated on the copy. When it is fetched a second time a new copy
is fetched, with the original value rather than the value that was set.

• out and ref parameters

1http://www.voidspace.org.uk/ironpython/dark-corners.shtml

13

https://bugzilla.novell.com/buglist.cgi?quicksearch=valuetype
http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/manual/spec.html#_Toc264041997
http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/manual/spec.html#_Toc264041997
http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/manual/spec.html#_Toc264041997
http://stackoverflow.com/questions/845657/why-is-the-c-compiler-emitting-a-callvirt-instruction-for-a-gettype-method-cal
http://www.voidspace.org.uk/ironpython/dark-corners.shtml

D
RA
FT

Where you need to return multiple values in Python you typically do it by
returning a tuple. In C# you would normally use an out parameter. A method
that takes an out parameter effectively modifies the parameter in the scope calling
the method. This doesn’t fit with the way Python treats variables and would
modify Python semantics if implemented in the same way as C#. Instead out

parameters are simply treated as an extra return value.

// C#

String value;

Bool success;

success = SomeMethod(out value);

From IronPython: success, value = self.SomeMethod()

Similar to out parameters are ref parameters. These need to be initialised
with a value, so they can’t just be returned as additional values. Instead we
create a reference using clr.Reference.

// C#

int value = 6;

SomeMethod(ref value);

// IronPython:

import clr

reference = clr.Reference(6)

self.SomeMethod(reference)

3 Things to watch out for when emitting CIL
for valuetypes

Emitting CIL to access valuetype-defined static methods and static fields is a
no-brainer: they are accessed the same as their classtype-defined counterparts.

3.1 Problem D.0: don’t try ldfld on ref to valuetype

This is almost a non-problem, but ther’s a catch. Instance fields of value-
types can be accessed with ldfld, irrespective of whether the stack top has
type “valuetype” or “address of valuetype”. However type “ref to valuetype”
won’t do.

For example, in a method with a local:

.locals init ([0] valuetype ReferstoUsingBlaBla.S a)

Each of the two instruction sequences below is valid, both behaving the same:

IL_0021: ldloca.s a

IL_0023: ldfld int32 ReferstoUsingBlaBla.S::age

IL_0021: ldloc.s a

IL_0023: ldfld int32 ReferstoUsingBlaBla.S::age

While the following fails:

14

D
RA
FT

IL_0021: ldloc.s a

box ReferstoUsingBlaBla.S

IL_0023: ldfld int32 ReferstoUsingBlaBla.S::age

/*- [found ref ’ReferstoUsingBlaBla.S’][expected readonly address of value ’ReferstoUsingBlaBla.S’]

Unexpected type on the stack. */

3.2 Problem D.1: call valuetype-defined instance method

The snippets below showcase two failed attempts to invoke a valuetype-defined
instance method (method setAge(int32)) followed by the only combination of
load and call instructions that verifies.

// failed attempt 1

IL_0009: ldloc.s a

IL_000b: ldc.i4.s 20

IL_000d: call instance void ReferstoUsingBlaBla.S::setAge(int32)

/*- [found value ’ReferstoUsingBlaBla.S’][expected address of value ’ReferstoUsingBlaBla.S’]

Unexpected type on the stack. */

// failed attempt 2

IL_0009: ldloc.s a

box ReferstoUsingBlaBla.S

IL_000b: ldc.i4.s 20

IL_000d: call instance void ReferstoUsingBlaBla.S::setAge(int32)

/*- [found ref ’ReferstoUsingBlaBla.S’][expected address of value ’ReferstoUsingBlaBla.S’]

Unexpected type on the stack. */

// the constrained prefix can be used only with callvirt so don’t even try

// and if you try you’ll get error ‘Callvirt on a value type method.’

// do it this way

IL_0009: ldloca.s a

IL_000b: ldc.i4.s 20

IL_000d: call instance void ReferstoUsingBlaBla.S::setAge(int32)

/*- only way that works */

3.3 Problem D.2: callvirt valuetype-defined (virtual) meth-
ods (other than on this) and the constrained. prefix

Virtual methods (implementations of interface methods must be virtual) expect
a managed pointer for this, but can also be given a boxed value. And, oh, they
can also be invoked with the constrained. prefix.

In case one of these overrides behaves as a mutator, and the invocation has
a boxed value as receiver, it will mutate the copy in the boxed representation,
not the original data location. This is expected, across .NET languages:

/*- C# code */

public struct S {

public int age;

public override String ToString() {

age++;

return "age == " + age + ", after mutating.";

}

}

15

D
RA
FT

class Program {

static void Main(string[] args) {

S a = new S();

a.setAge(20);

object boxed = a;

System.Console.WriteLine(boxed.ToString()); // prints age == 21

System.Console.WriteLine(a.age); // prints age == 20

}

}

Note: none of the methods in System.Object, System.ValueType, or System.Enum
mutate the receiver.

From a GenMSIL perspective, the following example highlights two things:
(a) no superflous boxing should be introduced; and (b) a managed pointer should
be pushed as receiver for ToString() (which as we know is a virtual method but
please don’t box just to use callvirt).

/*- C# code */

static void Main(string[] args)

{

S a = new S();

a.setAge(20);

System.Console.WriteLine(a.ToString()); // prints 21

System.Console.WriteLine(a.age); // prints 21

}

The C# compiler emits the following CIL for the statement System.Console.WriteLine(a.ToString());:

/*- WAY 1 of 2 of invoking a valuetype-defined virtual method without boxing */

IL_0013: ldloca.s a

IL_0015: constrained. ReferstoUsingBlaBla.S

IL_001b: callvirt instance string [mscorlib]System.Object::ToString()

IL_0020: call void [mscorlib]System.Console::WriteLine(string)

Although the overriding method could also be called like this:

/*- WAY 2 of 2 of invoking a valuetype-defined virtual method without boxing */

IL_0013: ldloca.s a

IL_001b: call instance string ReferstoUsingBlaBla.S::ToString() /*- not System.Object */

or even as follows, but only at the cost of mutating the boxed copy and not the
original:

IL_0013: ldloc.s a

box ReferstoUsingBlaBla.S

IL_001b: callvirt instance string System.Object::ToString()

/*- none of the methods in System.Object, System.ValueType, or System.Enum mutate the receiver,

but this example shows that the boxed copy gets mutated */

It’s interesting to note that irrespective of how control flow reaches the overrid-
ing method (“WAY 1 of 2”, “WAY 2 of 2”, or using boxing as above) the type
of arg0 in the body is “address of valuetype”.

In other words: in the body of any valuetype-defined non-static method (yes,
instance or virtual) the type of arg0 is “address of valuetype”.

It’s a bit surprising in the third case, where a boxed value (of type ref to

valuetype) was pushed at the callsite. This means that, were we to invoke

16

D
RA
FT

another method from that method, the following would work:

ldarg.0

ldc.i4.s 2

call instance void ReferstoUsingBlaBla.S::setAge(int32)

but not this

ldarg.0

callvirt instance int32 [mscorlib]System.Object::GetHashCode()

pop

/*-

[IL]: Error: [found address of value ’ReferstoUsingBlaBla.S’][expected ref ’System.Object’] Unexpected type on the stack.

[IL]: Error: Call to base type of valuetype.

*/

which is otherwise perfectly fine (i.e., perfectly fine in a class-defined virtual
method). The lesson here is not that a virtual method can’t be called virtually,
but that the method signature given must be that for the overriding method.

Note: If you’re into AOP for .NET and can spot when a joinpoint will capture
one but not the other of (“WAY 1 of 2”, “WAY 2 of 2”) please let me know.

Some do’s and dont’s about constrained.

// failed attempt 1

IL_0013: ldloc.s a

box ReferstoUsingBlaBla.S

IL_0015: constrained. ReferstoUsingBlaBla.S

IL_001b: callvirt instance string System.Object::ToString()

/*- Error: The ’this’ argument to a constrained call must have ByRef type */

// failed attempt 2

IL_0013: ldloca.s a

IL_0015: constrained. ReferstoUsingBlaBla.S

IL_001b: callvirt instance string ReferstoUsingBlaBla.S::ToString()

/*- Callvirt on a value type method. */

// this way works

IL_0013: ldloca.s a

IL_0015: constrained. ReferstoUsingBlaBla.S

IL_001b: callvirt instance string System.Object::ToString()

Note: Before .NET 2.0 (when the constrained. didn’t exist) more
methods of valuetypes were invoked using call rather than callvirt

as nowadays. Details at http://doogalbellend.blogspot.com/2007/04/

method-calls-on-value-types-and-boxing.html

The constrained. prefix also comes into play (principally actually) in con-
nection with invocations on a type parameter that is not known for sure to be
instantiated with either an object type or a valuetype. An example at http://
bartdesmet.net/blogs/bart/archive/2007/02/20/fun-with-generics-about-the-new-constraint-and-constrained-virtual-calls.

aspx

17

http://doogalbellend.blogspot.com/2007/04/method-calls-on-value-types-and-boxing.html
http://doogalbellend.blogspot.com/2007/04/method-calls-on-value-types-and-boxing.html
http://bartdesmet.net/blogs/bart/archive/2007/02/20/fun-with-generics-about-the-new-constraint-and-constrained-virtual-calls.aspx
http://bartdesmet.net/blogs/bart/archive/2007/02/20/fun-with-generics-about-the-new-constraint-and-constrained-virtual-calls.aspx
http://bartdesmet.net/blogs/bart/archive/2007/02/20/fun-with-generics-about-the-new-constraint-and-constrained-virtual-calls.aspx

D
RA
FT

3.4 Problem D.3: Accessing other non-static members on
this

Self-quoting from Sec. 3.3:

In other words: in the body of any valuetype-defined non-static method (yes,
instance or virtual) the type of arg0 is “address of valuetype”.

TODO How to set the self-type in valuetypes to “address of valuetype”?

So far, bytecode to load this is generated as follows:

case THIS(clasz) =>

mcode.Emit(OpCodes.Ldarg_0)

. . .

case STORE_THIS(_) =>

// this only works for impl classes because the self parameter comes first

// in the method signature. If that changes, this code has to be revisited.

mcode.Emit(OpCodes.Starg_S, 0)

3.5 FYI: Assignments to dereferenced address

This is off-topic because the assemblies emitted by Scala.NET aim at CLS-
compliance (e.g., no byref-params in exported interfaces) and thus the need will
not arise to emit CIL as discussed in this subsection. It’s instructive however
to see how non-CLS-compliant methods use values received byref, methods that
Scala.NET can invoke.

In C#, a method receiving a byref parameter can appear as LHS in an
assignment. The RHS is usually a raw value, but can also be another managed
pointer.

In CIL, indirect stores always expect a raw value as source, thus a C# RHS
with address-type is desugared first into an indirect load of the RHS expression.
The stobj instruction can duplicate stind functionality, but its specialty are
generic parameters.

The resulting CIL idioms appear below.

public static void demo(ref Color rc, ref DBBool rb1, ref DBBool rb2)

{

rc = Color.Red;

rb1 = new DBBool();

rb2 = DBBool.Null;

rb1 = rb2;

}

.method public hidebysig static void demo(valuetype ReferstoUsingBlaBla.Color& rc,

valuetype ReferstoUsingBlaBla.DBBool& rb1,

valuetype ReferstoUsingBlaBla.DBBool& rb2) cil managed

{

// Code size 35 (0x23)

.maxstack 8

IL_0000: nop

IL_0001: ldarg.0

IL_0002: ldc.i4.0

IL_0003: stind.i4 /*- rc = Color.Red; */

IL_0004: ldarg.1

18

D
RA
FT

IL_0005: initobj ReferstoUsingBlaBla.DBBool /*- rb1 = new DBBool(); */

IL_000b: ldarg.2

IL_000c: ldsfld valuetype ReferstoUsingBlaBla.DBBool ReferstoUsingBlaBla.DBBool::Null

IL_0011: stobj ReferstoUsingBlaBla.DBBool /*- rb2 = DBBool.Null; */

IL_0016: ldarg.1

IL_0017: ldarg.2

IL_0018: ldobj ReferstoUsingBlaBla.DBBool

IL_001d: stobj ReferstoUsingBlaBla.DBBool /*- rb1 = rb2; */

IL_0022: ret

} // end of method DBInt::demo

3.6 FYI: Indirect store instructions

stind.i1 , stind.i2 , stind.i4 , stind.i8 , stind.r4 , stind.r8 , stind.i ,

stind.ref are covered in Figure 2 on p. 39. And the stobj story appears in Fig-
ure 3 on p. 40.

3.7 FYI: when GenMSIL emits call vs. callvirt

How does GenMSIL currently choose emitting call or callvirt? We catalog the
different scenarios. Not that a call being emitted for a CLR virtual method
would fail on a valuetype (method lookup picks the most overriden version
anyway, i.e., that in the valuetype). This catalog just reveals what call style
happens behind the scenes.

• In case an entry point was found, BytecodeGenerator.writeAssemly() syn-
thesizes a global method to become the new entry point. This method
callvirt the original entry point, which was defined as non-static on a
module.

• for string concatenation (as part of genPrimitive())

• as part of dumpMirrorClass()

• as part of createDelegateCaller()

TODO There are also several places in GenMSIL where
mcode.Emit(OpCodes.Callvirt, ...) shows up, it would be great just to
be safe to take a look at them.

At the end of case CALL METHOD => in GenMSIL (after special cases have been
handled), call or callvirt are emitted for all other method invocations depend-
ing on:

if (doEmit) {

val methodInfo: MethodInfo = getMethod(msym)

(style: @unchecked) match {

case SuperCall(_) =>

mcode.Emit(OpCodes.Call, methodInfo)

case Dynamic =>

mcode.Emit(if (dynToStatMapped(msym)) OpCodes.Call else OpCodes.Callvirt,

methodInfo)

case Static(_) =>

19

D
RA
FT

mcode.Emit(OpCodes.Call, methodInfo)

}

}

Summing up, in this last scenario:

1. call is always emitted for static and super invocations. Some static invo-
cations have a this instance (see below) but i-regardless call is emitted;

2. call is also emitted for those Java instance methods that BytecodeGenerator.initMappings()
“maps” to .NET static counterparts; and

3. callvirt for the rest (i.e., the majority).

/** Virtual calls */

case object Dynamic extends InvokeStyle

/** InvokeDynamic a la JSR 292 (experimental). */

case object InvokeDynamic extends InvokeStyle

/**

* Special invoke. Static(true) is used for calls to private members. */

case class Static(onInstance: Boolean) extends InvokeStyle

/** Call through super[mix]. */

case class SuperCall(mix: Name) extends InvokeStyle

Also relevant:

/** This class represents a CALL_METHOD instruction

* STYLE: dynamic / static(onInstance == true)

* Stack: ...:ref:arg1:arg2:...:argn

* ->: ...:result

*

* STYLE: static(onInstance == false)

* Stack: ...:arg1:arg2:...:argn

* ->: ...:result

*

*/

case class CALL_METHOD(method: Symbol, style: InvokeStyle) extends Instruction {

There’s a third invocation style, InvokeDynamic (a la JSR 292) that shouldn’t
show up in forMSIL.

TODO Question about the then-branch below: who pops the superflous this

instance that will go unused?

mcode.Emit(if (dynToStatMapped(msym)) OpCodes.Call else OpCodes.Callvirt,

methodInfo)

3.8 CIL samples, enums

public enum Color

{

Red, Green, Blue

}

public class ColorDemo

20

D
RA
FT

{

public static void rcvColor(ref Color rc) { rc = Color.Blue; }

}

public class MoreColorDemo

{

public readonly Color finalColor = Color.Red;

public static void main()

{

Color c = Color.Red;

/*readonly*/ Color d = c & Color.Green; // C# disallows readonly local variables

System.Console.WriteLine(d);

Color w = new Color();

ColorDemo.rcvColor(ref c); // but not ref Color.Red

ColorDemo.rcvColor(ref d); // but not finalColor

}

}

ColorDemo.rcvColor:

.method public hidebysig static void rcvColor(valuetype Color& rc) cil managed

{

// Code size 5 (0x5)

.maxstack 8

IL_0000: nop

IL_0001: ldarg.0

IL_0002: ldc.i4.2

IL_0003: stind.i4

IL_0004: ret

} // end of method ColorDemo::rcvColor

And the main driver program:

.method public hidebysig static void main() cil managed

{

// Code size 38 (0x26)

.maxstack 2

.locals init ([0] valuetype Color c,

[1] valuetype Color d,

[2] valuetype Color w)

IL_0000: nop

IL_0001: ldc.i4.0

IL_0002: stloc.0 /*- Color c = Color.Red; */

IL_0003: ldloc.0

IL_0004: ldc.i4.1

IL_0005: and

IL_0006: stloc.1 /*- Color d = c & Color.Green; */

IL_0007: ldloc.1

IL_0008: box Color

IL_000d: call void [mscorlib]System.Console::WriteLine(object) /*- System.Console.WriteLine(d); */

IL_0012: nop

IL_0013: ldc.i4.0

IL_0014: stloc.2 /*- Color w = new Color(); */

IL_0015: ldloca.s c

IL_0017: call void ColorDemo::rcvColor(valuetype Color&) /*- ColorDemo.rcvColor(ref c); */

IL_001c: nop

IL_001d: ldloca.s d

IL_001f: call void ColorDemo::rcvColor(valuetype Color&) /*- ColorDemo.rcvColor(ref d); */

IL_0024: nop

IL_0025: ret

} // end of method MoreColorDemo::main

21

D
RA
FT

3.9 CIL samples, valuetypes

public struct X

{

public Int32 x;

public void v() { }

public X(Int32 x) { this.x = x; }

}

And the main driver program, XDemo:

public class XDemo

{

public static readonly X fvA = new X();

public static readonly X fvB = new X(42);

public static void rcvX(ref X rx) { rx = fvB; }

public static void main()

{

X c = fvA;

System.Console.WriteLine(c);

rcvX(ref c); // but not ref fvA

}

}

First, rcvX

.method public hidebysig static void rcvX(valuetype X& rx) cil managed

{

// Code size 13 (0xd)

.maxstack 8

IL_0000: nop

IL_0001: ldarg.0

IL_0002: ldsfld valuetype X XDemo::fvB

IL_0007: stobj X

IL_000c: ret

} // end of method XDemo::rcvX

CIL for the main test:

.method public hidebysig static void main() cil managed

{

// Code size 28 (0x1c)

.maxstack 1

.locals init ([0] valuetype X c)

IL_0000: nop

IL_0001: ldsfld valuetype X XDemo::fvA

IL_0006: stloc.0

IL_0007: ldloc.0

IL_0008: box X

IL_000d: call void [mscorlib]System.Console::WriteLine(object)

IL_0012: nop

IL_0013: ldloca.s c

IL_0015: call void XDemo::rcvX(valuetype X&)

IL_001a: nop

IL_001b: ret

} // end of method XDemo::main

22

D
RA
FT

4 Mechanics of emitting CIL to load raw values,
address values, or boxed values

Previous sections spell out the issues around raw values, managed pointers, and
boxed values. This section covers the changes in TypeParser, GenICode, and
GenMSIL necessary to address those issues. Before getting there, we recap how
boxing is used for primitives. The current solution is described in Sec. 4.3, while
Sec. 4.2 covers another approach which was not followed.

4.1 To recap: boxing for Scala value classes

// Definitions.scala

def ScalaValueClasses = List(

UnitClass, ByteClass, ShortClass, IntClass, LongClass,

CharClass, FloatClass, DoubleClass, BooleanClass

)

GenMSIL emits boxing in only two cases:
• upon visiting an ICode stmt BOX(sourceTypeKind)

case BOX(boxType) => emitBox(mcode, boxType)

• as part of createDelegateCaller

Similarly for unboxing (i.e., upon visiting UNBOX(toTypeKind), and as part of
createDelegateCaller).

GenICode in turn inserts BOX stmts only when a method marked isBox receives
a single argument (the boxeable-typed expression to box):

case Apply(fun @ _, List(expr)) if (definitions.isBox(fun.symbol)) =>

where definitions.isBox(msym) just looks up the method symbol among boxMethod’s
values. (Similarly, GenICode emits unboxing for expressions of shape as above
where definitions.isUnbox(fun.symbol)).

In both cases, the BOX and the UNBOX instructions carry as argument the pre-
instruction type on the stack (the source or raw type for INBOX, and the boxed
version for UNBOX). These also correspond to the typeTok expected by CIL box

and unbox instructions.
However, ICode-level boxing is not the only means to emit CIL (un)boxing.

Additionally, one may enter (synthetic) implicit (static) conversion methods,
and have GenMSIL special-case their handling by case CALL METHOD in a type-safe
manner (the emitted CIL (un)boxing instruction expects the same type-stack
and leaves the same type-stack as the original case CALL METHOD instruction).

• The technique above works when the expected type is a boxed value, which
can be obtained from either a raw value or a managed pointer already on
the evaluation stack (by emitting CIL box V in the former case and ldobj

V; box V in the second).

• It also works to obtain a raw value from a managed pointer on the stack,
i.e. ldobj V

23

D
RA
FT

However it does not work when the conversion-result should be a managed
pointer. For that, we need another technique. Two candidates are described
next (Sec. 4.2 and Sec. 4.3).

4.2 A trick: Use-def analysis to patch ICode instructions

This trick sounds almost too good to be true. So caution is advised.
Rather than making TypeParser distinguish between the raw-type, boxed-

type, and reference-to-raw-type representations that a valuetype V gives origin
to, let it blissfully ignore those differences, regarding V as a classtype, just
another subtype from System.Object.

To do away with ensuing peverify errors like ‘ref expected, value found’
adapt an existing use-def analysis (Using reaching-defs and type-flow analyses
to obtain three-address code in the Scala compiler2) to detect for example a
valuetype-pushing instruction Instr whose next should be BOX(V).

Instr can be one of:

• LOAD FIELD, which GenMSIL will later inline by emitting ldc. Box the prim-
itive on the stack.

• CALL PRIMITIVE, this case results from an enum operator. Box the result
on the stack.

• CALL METHOD, i.e. a method returns a value of the underlying type. Box it
with BOX(V).

• DUP. See remarks below.

TODO: What if Instr is DUP? A use-def pointing to DUP as def means only
the topmost value in the stack should be boxed. If the load instruction (im-
mediately before) the DUP is pointed as def, then the next-to-topmost is to be
boxed. In the latter case, we can’t box and then DUP if the dupped value is
going to be used unboxed

.

TODO Not clear whether this trick will reliably achieve all needed conversions,
while not inserting superflous boxing (which leads to mutations affecting tem-
porary values and thus getting lost)

4.3 A more elaborate trick: fine-granular types for value-
types

At the assemly-metadata level there is just one declaration for a valuetype
V (conceptually describing the boxed formulation) that is referred from both
constructs expecting raw values (e.g., a V field) and those expecting managed
pointers (e.g., a V& param).

Given a metadata valuetype V we enter type symbols for each of raw-values,
managed-pointers, and boxed-values of V.

• in terms of Scala programs, only the “raw-values type” can be mentioned
in user programs (it has the same name as V). The two others have un-
speakable names.

2http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2010Q2/

threeaddress.pdf

24

http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2010Q2/threeaddress.pdf
http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/2010Q2/threeaddress.pdf

D
RA
FT

• a type symbol for managed pointers is needed because constructs in externally-
defined assemblies mention it (in params and returns) (and we want to
consume those assemblies from Scala).

• boxed values can live only on the evaluation stack, and therefore no meta-
data construct has that type (nor can .NET programs declare variables
of that type, no, not even ILAsm). If that were the full story, Scala.NET
could do without a type symbol for them. However, valuetypes can
implement interfaces, and virtual methods in general (whether overrid-
ing an interface member or locally declared) can be invoked only on a
boxed receiver. Therefore, an implicit conversion from raw value into
System.Object is too coarse.

A raw value on the stack tells us nothing about the location it came from.
In case a raw value of V appears where V& is expected, the usual process by
which GenICode emits LOAD FIELD, LOAD LOCAL, and LOAD ARRAY ITEM has to be
customized as follows.

4.3.1 Raw-valued expression found where managed pointer expected

Taking LOAD FIELD as an example, let’s assume a field sf has been declared
of valuetype V and a Scala snippet where sf has to be passed “by reference”
to a method expecting V&. At GenICode, the input contains a subexpression
along the lines of “convertV2AddressOfV(sf)” and the desired CIL is “ldflda
sf-FieldInfo ”, i.e. we want to elide the invocation to the marker method, gener-
ating an ICode instruction, CIL LOAD FIELD ADDRESS for the whole tree “convertV2AddressOfV(sf)”
(the translation of the receiver of that Select is another matter).

1. Currently, genLoad in GenICode already showcases how an input tree with
shape “callsite(arg) ” is detected (for the purpose of replacing the “callsite ”
with a BOX instruction), Listing 2. The differences with our goal are de-
scribed in the next item.

2. In our case, (a) we emit no instruction for the call, after recognizing it by
looking up in a dedicated set, and (b) the tree for the argument to the
call is explored to detect whether it’s any of:

(a) Select(qualifier, selector), which may be translated with genLoadModule

(in case tree.symbol.isModule), or as a LOAD FIELD instruction. This
last case we want to handle our way, emitting instead LOAD FIELD ADDRESS.
TODO: what about getters.

(b) similarly for those places where LOAD LOCAL is emitted

(c) and for genArrayOp, the only place where the string “.emit(LOAD ARRAY ITEM(”
shows up in GenICode

(d) trees not matching any of the shapes above denote a computation of
a raw value of V as intermediate result, we can still take its address
(with CIL box V; unbox V). The user should be aware that muta-
tions on the intermediate value will get lost. Of the two previous
CIL instructions, the first one results from emitting an ICode BOX(V)

instruction. For the second instruction, ICode UNBOX is not what we

25

D
RA
FT

need (GenMSIL emits unbox V; ldobj V for it). A new ICode instruc-
tion (termed CIL UNBOX(V)) is needed to be translated by GenMSIL into
unbox V.

4.3.2 Managed-pointer found, raw value expected (dereference)

This case results from invoking an externally-defined method returning “by
reference” a managed pointer mp. Instance methods can be invoked on mp.
Additionally, an implicit can be defined to convert mp to raw value (say, for
assignment). Such implicit is translated by GenMSIL just to ldobj V.

4.3.3 Raw-valued expression found, boxed value expected

A boxed value is needed in a few situations:

• a System.Object is needed. For example: System.Console.WriteLine(sf).
First, an implicit conversion expands to System.Console.WriteLine(convertV2BoxedV(sf)),
and the conversion’s invocation is later desugared by GenMSIL into CIL
box V (Sec. 6.5).

• a boxed value (and only a boxed value) is needed. This may be due to a
number of factors. In all cases, the technique above also works here.

– a virtual method is to be invoked on the the boxed value.

– the raw value is assigned to a location typed with one of V’s supported
interfaces

4.3.4 Managed-pointer found, boxed value expected

Do we want to support this? It’s only needed if a by-ref returning method
is invoked, say, as argument to System.Console.WriteLine(). A workaround
consists in assigning first the method result to a raw-valued local (relying on
the dereferencing conversion). The code is quite readable this way, thus why
bother to add yet another implicit? If for some reason we’re already emitting
ldobj V; box V then maybe it’s ok to special-case this conversion, otherwise I
suggest the workaround.

4.4 Recipe for TypeParser

4.4.1 Boxed and ByRef

Given a valuetype V in metadata, we enter type symbols for each of raw-values,
managed-pointers (“VMgdPtr”), and boxed-values (“VBoxed”). This happens
here:

val canBeTakenAddressOf = (typ.IsValueType || typ.IsEnum) && (typ.FullName != "System.Enum")

if(canBeTakenAddressOf) {

clazzBoxed = clazz.owner.newClass(clazz.name + "Boxed")

clazzMgdPtr = clazz.owner.newClass(clazz.name + "MgdPtr")

/*- adding typMgdPtr to clrTypes.sym2type should happen early (before metadata for supertypes is parsed,

before metadata for members are parsed) so that clazzMgdPtr can be found by sig2type. */

val typMgdPtr = MSILType.mkByRef(typ)

clrTypes.types(clazzMgdPtr) = typMgdPtr

clrTypes.sym2type(typMgdPtr) = clazzMgdPtr

26

D
RA
FT

val instanceDefsMgdPtr = new Scope

val classInfoMgdPtr = ClassInfoType(definitions.anyvalparam, instanceDefsMgdPtr, clazzMgdPtr)

clazzMgdPtr.setFlag(flags)

clazzMgdPtr.setInfo(classInfoMgdPtr)

}

Only the “raw values type” can be ascribed in user programs (it has the
same name as V) (the two others should have unspeakable names).

4.4.2 Converting to Boxed and to ByRef when needed

Shortly after, three views are entered (from raw to managed pointer and to
boxed; also from managed pointer to raw value). Their sole purpose is hinting
GenICode and GenMSIL to insert the appropriate CIL instruction sequences to
realize boxing/address-taking/dereferencing, as we’ll see later.

4.4.3 When metadata refers to a ByRef type

During metadata parsing, we may encounter a usafe of the byref version of a
valuetype V which hasn’t been parsed yet. Given that we instantiate a class
symbol for V& in TypeParser.parseClass() only, sig2type has to know how to
have V completed when the type symbol for V& is requested:

private def sig2type(tMSIL: MSILType): Type = {

var res = getCLRTypeIfPrimitiveNullOtherwise(tMSIL)

if (res != null) res

else if (tMSIL.isInstanceOf[ConstructedType]) {

. . .

} else if (tMSIL.isInstanceOf[TMVarUsage]) {

. . .

} else if (tMSIL.IsArray()) {

. . .

} else {

res = clrTypes.sym2type.get(tMSIL) match {

case Some(sym) => sym.tpe

case None => if (tMSIL.IsByRef && tMSIL.GetElementType.IsValueType) {

val addressed = sig2type(tMSIL.GetElementType)

val clasym = addressed.typeSymbolDirect // TODO should be .typeSymbol?

clasym.info.load(clasym)

val secondAttempt = clrTypes.sym2type.get(tMSIL)

secondAttempt match { case Some(sym) => sym.tpe

case None => null

}

} else getClassType(tMSIL)

}

if (res == null)

. . .

else res

}

}

TODO So far sig2type can answer requests for V& with V a valuetype but
not those where V is a type parameter, e.g. 0!!&. An example of this is the
System.Enum.TryParse<TEnum> method:

public static bool TryParse<TEnum>(

27

D
RA
FT

Figure 1: raw2boxed does not get inserted

string value,

out TEnum result

)

where TEnum : struct, new()

4.4.4 Problem: implicit raw2boxed does not get inserted

For now I’m adding it manually. Example: System.Console.WriteLine(X.view2Boxed(v1)).
Two other views are found instead:

both method any2stringadd in singleton class Predef of type (<param> x: scala.this.Any)runtime.this.StringAdd

and method any2ArrowAssoc in singleton class Predef of type [<deferred> <param> A](<param> x: A)scala.this.Predef.ArrowAssoc[A]

Because of the test:

if ((found <:< AnyValClass.tpe) && (AnyRefClass.tpe <:< req))

the following error message is shown (although our X is not a primitive). Debug
view details at Figure 1.

Note: primitive types are not implicitly converted to AnyRef.

You can safely force boxing by casting x.asInstanceOf[AnyRef].

Also helpful:

val XlogImplicits = BooleanSetting ("-Xlog-implicits",

"Show more info on why some implicits are not applicable")

4.5 Recipe for GenICode

GenICode knows about several CLR-specific instructions, all dealing with man-

28

D
RA
FT

aged pointers in one way or another:

// from Opcodes.scala

case class CIL_LOAD_LOCAL_ADDRESS(local: Local) extends Instruction { . . . }

case class CIL_LOAD_FIELD_ADDRESS(field: Symbol, isStatic: Boolean) extends Instruction { . . . }

case class CIL_LOAD_ARRAY_ITEM_ADDRESS(kind: TypeKind) extends Instruction { . . . }

case class CIL_UNBOX(boxType: TypeKind) extends Instruction { . . . }

case class CIL_INITOBJ(valueType: TypeKind) extends Instruction { . . . }

case class CIL_NEWOBJ(method: Symbol) extends Instruction { . . . }

4.5.1 Solution to Raw-value found, managed-pointer expected

The first three instructions above are emitted in genLoadAddressOf, a new utility
method in GenICode that handles the cases mentioned in Sec. 4.3.1 to effect
conversions from raw value to managed pointer are inserted. Those callsites are
desugared into what genLoadAddressOf() emits:

// from GenICode.scala

case Apply(fun @ _, List(expr)) if (loaders.clrTypes.isAddressOf(fun.symbol)) =>

if (settings.debug.value)

log("ADDRESSOF : " + fun.symbol.fullName);

val ctx1 = genLoadAddressOf(expr, ctx, toTypeKind(expr.tpe))

generatedType = toTypeKind(fun.symbol.tpe.resultType)

ctx1

4.5.2 Field selection on valuetypes (Solution D.0)

As we saw in Sec. 3.1, ldfld will verify as long as the stack contains a raw value
or a managed pointer for the expected type. By default, a raw-value will be
loaded by:

// from GenICode.scala

case Select(qualifier, selector) =>

val sym = tree.symbol

generatedType = toTypeKind(sym.info)

if (sym.isModule) {

if (settings.debug.value)

log("LOAD_MODULE from Select(qualifier, selector): " + sym)

assert(!tree.symbol.isPackageClass, "Cannot use package as value: " + tree)

genLoadModule(ctx, sym, tree.pos)

ctx

} else if (sym.isStaticMember) {

ctx.bb.emit(LOAD_FIELD(sym, true), tree.pos)

ctx

} else {

val ctx1 = genLoadQualifier(tree, ctx) /*- for sym.owner a valuetype, loads raw value, not address */

ctx1.bb.emit(LOAD_FIELD(sym, false), tree.pos)

ctx1

}

29

D
RA
FT

Irrespective of the field’s type, the value that LOAD FIELD in turn loads onto
the stack is the same, whether genLoadQualifier loaded a raw value (as done
now) or an address. Therefore, we don’t mess with the current functionality
as it’s ok as is (internally, the runtime copies the address for large valuetypes,
Sec. 6.1, so no performance is lost).

4.5.3 Invocations with valuetyped receiver (Solutions D.1 and D.2)

Summing up sections 3.2 and 3.3, we adopt the idioms below when invoking
valuetype-defined methods:

// instance method

IL_0009: ldloca.s a

IL_000b: ldc.i4.s 20

IL_000d: call instance void ReferstoUsingBlaBla.S::setAge(int32)

/*- only way that works */

/*- WAY 1 of 2 of invoking a valuetype-defined virtual method without boxing */

IL_0013: ldloca.s a

IL_0015: constrained. ReferstoUsingBlaBla.S

IL_001b: callvirt instance string [mscorlib]System.Object::ToString()

TODO

4.5.4 TODO toString vs. ToString

There’s a quirk in that:

System.Console.WriteLine(X.view2Boxed(v1).toString)

typechecks all right, but if one writes X.view2Boxed(v1).ToString then one sees:

error: value ToString is not a member of <empty>.this.XBoxed

qual = X.view2Boxed(v1):<empty>.this.XBoxed

Symbol=<none>

symbol-info = <notype>

scope-id = 22516593

members = List(method hashCode, method equals, method toString, constructor ValueType, method notifyAll, method notify, method wait, method wait, method clone, method $asInstanceOf, method $isInstanceOf, method synchronized, method ne, method eq, method !=, method ==, method ##, method finalize, method MemberwiseClone, method GetType, method asInstanceOf, method isInstanceOf, method equals, method !=, method ==)

name = ToString

found = <none>

owner = singleton class bt2

4.5.5 Desugar (default) constructor-invocation on valuetypes

Sec. 2.1 covers the CIL idioms to obtain a raw value on the stack. Default
constructors are added by TypeParser to non-enum valuetypes, just after adding
the implicit conversions (Sec. 1.5 on p. 7). After invocation, the new values
usually appear as RHS in Assign(lhs, rhs) statements or in ValDef statements,
which are translated by GenICode as follows (FYI):

private def genStat(tree: Tree, ctx: Context): Context = tree match {

case Assign(lhs @ Select(_, _), rhs) =>

val isStatic = lhs.symbol.isStaticMember

30

D
RA
FT

var ctx1 = if (isStatic) ctx else genLoadQualifier(lhs, ctx)

ctx1 = genLoad(rhs, ctx1, toTypeKind(lhs.symbol.info))

ctx1.bb.emit(STORE_FIELD(lhs.symbol, isStatic), tree.pos)

ctx1

case Assign(lhs, rhs) =>

val ctx1 = genLoad(rhs, ctx, toTypeKind(lhs.symbol.info))

val Some(l) = ctx.method.lookupLocal(lhs.symbol)

ctx1.bb.emit(STORE_LOCAL(l), tree.pos)

ctx1

case _ => /*- ValDef */

genLoad(tree, ctx, UNIT)

}

If left to its own devices, GenICode translates a constructor invocation for a
valuetype as for any REFERENCE(cls), i.e. as shown below.

private def genLoad(tree: Tree, ctx: Context, expectedType: TypeKind): Context = {

var generatedType = expectedType

if (settings.debug.value)

log("at line: " + (if (tree.pos.isDefined) tree.pos.line else tree.pos))

val resCtx: Context = tree match {

. . .

// ’new’ constructor call: Note: since constructors are

// thought to return an instance of what they construct,

// we have to ’simulate’ it by DUPlicating the freshly created

// instance (on JVM, <init> methods return VOID).

case Apply(fun @ Select(New(tpt), nme.CONSTRUCTOR), args) =>

val ctor = fun.symbol

generatedType = toTypeKind(tpt.tpe)

generatedType match {

. . .

case rt @ REFERENCE(cls) =>

if (settings.debug.value)

assert(ctor.owner == cls,

"Symbol " + ctor.owner.fullName + " is different than " + tpt)

/*- here’s where the constructor call is emitted, details below */

case _ =>

abort("Cannot instantiate " + tpt + "of kind: " + generatedType)

}

. . .

BTW, the above shows that valuetypes’ class symbols are wrapped in REFERENCEs
just like those for .NET classtypes. Details around this at Sec. 6.2.

By the time control flow gets into “case rt @ REFERENCE(cls) =>” we might
be in any of the cases where a classtype or a valuetype is being constructed,
either with the default constructor or a parameterful one. In order to share
code-emitting code, let’s use this building block:

/**

* Adds a local var, the emitted code requires one more slot on the stack as on entry

*/

private def genLoadZeroOfNonEnumValuetype(ctx: Context, kind: TypeKind, pos: Position,

leaveAddressOnStackInstead: Boolean): Context = {

val REFERENCE(clssym) = kind

31

D
RA
FT

assert(loaders.clrTypes.isNonEnumValuetype(clssym))

val local = ctx.makeLocal(pos, clssym.tpe, "tmp")

ctx.method.addLocal(local)

ctx.bb.emit(CIL_LOAD_LOCAL_ADDRESS(local), pos)

ctx.bb.emit(CIL_INITOBJ(kind), pos)

val instr = if (leaveAddressOnStackInstead)

CIL_LOAD_LOCAL_ADDRESS(local)

else

LOAD_LOCAL(local)

ctx.bb.emit(instr, pos)

ctx

}

The snippet below constitutes the forJVM handler for “case rt @ REFERENCE(cls)

=>”. Its net effect is to leave on the stack a new value:

val nw = NEW(rt) /*- no receiver is pushed */

ctx.bb.emit(nw, tree.pos) /*- NEW(REFERENCE(cls)) emitted */

ctx.bb.emit(DUP(generatedType)) /*- DUP emitted */

val ctx1 = genLoadArguments(args, ctor.info.paramTypes, ctx) /*- the args are pushed */

val init = CALL_METHOD(ctor, Static(true)) /*- finally, call to constructor */

nw.init = init

ctx1.bb.emit(init, tree.pos)

ctx1

For non-enum valuetypes, we’ll emit code with the same net effect (and consum-
ing no more stack slots, thus we don’t need to update maxstacksize). genLoadZeroOfNonEnumValuetype

does most of the job already, but does not handle parameterful constructors
(which are the only custom constructors, a default constructor can’t be defined
for valuetypes, CLR dixit). The emitted code contains neither NEW nor DUP

instructions:

val ctx2 = if (loaders.clrTypes.isNonEnumValuetype(cls)) {

/* parameterful constructors are the only possible custom constructors,

a default constructor can’t be defined for valuetypes, CLR dixit */

val isDefaultConstructor = args.isEmpty

if (isDefaultConstructor) {

genLoadZeroOfNonEnumValuetype(ctx, rt, tree.pos, leaveAddressOnStackInstead = false)

ctx

} else {

val ctx1 = genLoadArguments(args, ctor.info.paramTypes, ctx)

ctx1.bb.emit(CIL_NEWOBJ(ctor), tree.pos)

ctx1

}

} else {

/*- code for classtypes (emits NEW, DUP, loads args, and ctor call) */

}

Finally, what GenMSIL does for CIL NEWOBJ is unsurprising:

case CIL_NEWOBJ(msym) =>

assert(msym.isClassConstructor)

val constructorInfo: ConstructorInfo = getConstructor(msym)

mcode.Emit(OpCodes.Newobj, constructorInfo)

32

D
RA
FT

4.6 Recipe for GenMSIL

The idea is to keep GenMSIL as straightforward as possible, i.e., no complex logic
about what to emit should end up there (that can be expressed more succinctly
in GenICode). For example:

case LOAD_LOCAL(local) => loadLocalOrAddress(local, "load_local", loadAddr = false)

case CIL_LOAD_LOCAL_ADDRESS(local) => loadLocalOrAddress(local, "cil_load_local_address", loadAddr = true)

case LOAD_FIELD(field, isStatic) => loadFieldOrAddress(field, isStatic, "load_field", loadAddr = false)

case CIL_LOAD_FIELD_ADDRESS(field, isStatic) => loadFieldOrAddress(field, isStatic, "cil_load_field_address", loadAddr = false)

where loadLocalOrAddress() and loadFieldOrAddress() exist to avoid code du-
plication, but do little more than emitting the actual opcodes.

Other cases (CIL NEWOBJ) were discussed in-line alongside their GenICode dis-
cussion in the previous section.

5 System.Decimal has operator overloads and con-
version operators

Certain CLR method signatures define operator overloads. These methods must
be public, static, and flagged as SpecialName so that they do not collide with the
users name space. The list of unary (§I.10.3.1) and binary operators (§I.10.3.2)
amenable to this technique is cast in stone by the CIL spec. The following
conveys the idea how metadata-level names are mapped to operator symbols:

// from TypeParser.scala

private def getName(method: MethodBase): Name = {

def operatorOverload(name : String, paramsArity : Int) : Option[Name] = paramsArity match {

case 1 => name match {

// PartitionI.10.3.1

case "op_Decrement" => Some(encode("--"))

case "op_UnaryNegation" => Some(nme.UNARY_-)

. . .

case _ => None

}

. . .

}

Quoting from §I.10.3.3 Conversion operators:

Conversion operators are unary operations that allow conversion
from one type to another. The operator method shall be defined as
a static method on either the operand or return type. There are two
types of conversions:

• An implicit (widening) coercion shall not lose any magnitude
or precision. These should be provided using a method named
op Implicit.

• An explicit (narrowing) coercion can lose magnitude or preci-
sion. These should be provided using a method named op Explicit.

33

D
RA
FT

// from TypeParser.scala

/*- remember, there’s typ.getMethods and type.GetMethods */

for (method <- typ.getMethods)

if(!method.HasPtrOrByRefParamOrRetType &&

method.IsPublic && method.IsStatic && method.IsSpecialName &&

method.Name == "op_Implicit") {

// create a view: typ => method’s return type

val viewRetType: Type = sig2type(method.ReturnType)

val viewParamTypes: List[Type] = method.GetParameters().map(_.ParameterType).map(getCLSType).toList;

/* The spec says "The operator method shall be defined as a static method on either the operand or return type."

* We don’t consider the declaring type for the purposes of definitions.functionType,

* instead we regard op_Implicit’s argument type and return type as defining the view’s signature.

*/

if (viewRetType != null && !viewParamTypes.contains(null)) {

/* The check above applies e.g. to System.Decimal that has a conversion from UInt16,

a non-CLS type, whose CLS-mapping returns null */

val funType: Type = definitions.functionType(viewParamTypes, viewRetType);

val flags = Flags.JAVA | Flags.STATIC | Flags.IMPLICIT; // todo: static? shouldn’t be final instead?

val viewMethodType = (msym: Symbol) => JavaMethodType(msym.newSyntheticValueParams(viewParamTypes), funType)

val vmsym = createMethod(nme.view_, flags, viewMethodType, method, true);

methodsSet -= method;

}

}

TODO: interface name should be stripped from method name (when intered
into Scope) however in MethodInfo should remain “non-stripped”.

TODO no field in MethodInfo gives the explicitly overriden MethodInfo (if any).

34

D
RA
FT

6 Sidenotes

6.1 How are value types implemented in the 32-bit CLR?

http://blogs.msdn.com/b/clrcodegeneration/archive/2007/11/02/how-are-value-types-implemented-in-the-32-bit-clr-what-has-been-done-to-improve-their-performance.

aspx

6.2 GenICode: valuetype class symbols are wrapped in REFERENCEs
just like those for classtypes

This causes no problem as long as we don’t step into trouble. Invoking zeroOf()

for a REFERENCE(valuetype) would lead to trouble:

def zeroOf(k: TypeKind): Tree = k match {

case UNIT => Literal(())

case BOOL => Literal(false)

case BYTE => Literal(0: Byte)

case SHORT => Literal(0: Short)

case CHAR => Literal(0: Char)

case INT => Literal(0: Int)

case LONG => Literal(0: Long)

case FLOAT => Literal(0.0f)

case DOUBLE => Literal(0.0d)

case REFERENCE(cls) => Literal(null: Any)

case ARRAY(elem) => Literal(null: Any)

case BOXED(_) => Literal(null: Any)

case ConcatClass => abort("no zero of ConcatClass")

}

BTW, TypeKind.isValueType has nothing to do with .NET valuetypes:

6.3 GenMSIL: unboxing of Booleans without System.Convert

In GenMSIL.emitUnbox most conversions invoke utilities in System.Convert, ex-
cept:

def emitUnbox(code: ILGenerator, boxType: TypeKind) = (boxType: @unchecked) match {

case UNIT => code.Emit(OpCodes.Pop)

case BOOL => code.Emit(OpCodes.Unbox, MBOOL); code.Emit(OpCodes.Ldind_I1)

. . .

35

http://blogs.msdn.com/b/clrcodegeneration/archive/2007/11/02/how-are-value-types-implemented-in-the-32-bit-clr-what-has-been-done-to-improve-their-performance.aspx
http://blogs.msdn.com/b/clrcodegeneration/archive/2007/11/02/how-are-value-types-implemented-in-the-32-bit-clr-what-has-been-done-to-improve-their-performance.aspx

D
RA
FT

For the record, details about the idiom “unbox typeTokOfValueType; ldind.1;”:
Unboxing: unbox typeTokOfValueType. Stack transition:

..., obj -> ..., valueTypePtr

The unbox instruction converts obj (of type O), the boxed representation of a
value type, to valueTypePtr (a controlled-mutability managed pointer, type &),
its unboxed form. The type of the value type contained within obj must be
assignment compatible with valuetype. Note: This effects the behavior with
enum types, see Partition II.14.3. Unlike box, which is required to make a
copy of a value type for use in the object, unbox simply computes the address
of the value type that is already present inside of the boxed object.

Indirect load of a bye: ldind.i1. Stack transition:

..., addr -> ..., value

6.4 Controlled-mutability managed pointers

Quoting from §III.1.8.1.2.2 Controlled-mutability managed pointers:

The readonly. prefix and unbox instructions can produce what is
called a controlled-mutability managed pointer. Unlike ordinary man-
aged pointer types, a controlled-mutability managed pointer is incom-
patible with ordinary managed pointers; e.g., it cannot be passed as
a byref argument to a method. At control flow points, a controlled-
mutability managed pointer can be merged with a managed pointer
of the same type to yield a controlled-mutability managed pointer.

Controlled-mutability managed pointers can only be used in the fol-
lowing ways:

• As the object parameter for an ldfld, ldflda, stfld, call,
callvirt, or constrained. callvirt instruction.

• As the pointer parameter to a ldind.* or ldobj instruction.

• As the source parameter to a cpobj instruction.

All other operations (including stobj, stind.*, initobj, and mkrefany) are
invalid.

The pointer is called a controlled-mutability managed pointer because the
defining type decides whether the value can be mutated. For value classes that
expose no public fields or methods that update the value in place, the pointer is
read-only (hence the name of the prefix). In particular, the classes representing
primitive types (such as System.Int32) do not expose mutators and thus are
read-only.

6.5 Emitting (un)boxing in GenMSIL

def emitBox(code: ILGenerator, boxType: TypeKind) = (boxType: @unchecked) match {

// doesn’t make sense, unit as parameter..

case UNIT => code.Emit(OpCodes.Ldsfld, boxedUnit)

case BOOL | BYTE | SHORT | CHAR | INT | LONG | FLOAT | DOUBLE =>

36

D
RA
FT

code.Emit(OpCodes.Box, msilType(boxType))

case REFERENCE(cls) if (definitions.unboxMethod.contains(cls)) =>

/*- unboxMethod.keys and boxMethod.keys contain the same, right? */

code.Emit(OpCodes.Box, (msilType(boxType)))

/*- msilType(boxType) provides the typeTok that the box instruction expects,

which in turn should be compatible with the value on the stack.

typeTok can indicate a value type (in particular a nullable type)

or a reference type (that’s why ‘box typeTok’ may push null too)

or a type param. However, ‘box typeTok’ can’t consume a managed pointer from the stack. */

case REFERENCE(_) | ARRAY(_) => ()

}

def emitUnbox(code: ILGenerator, boxType: TypeKind) = (boxType: @unchecked) match {

case UNIT => code.Emit(OpCodes.Pop)

case BOOL => code.Emit(OpCodes.Unbox, MBOOL); code.Emit(OpCodes.Ldind_I1)

case BYTE => code.Emit(OpCodes.Call, toByte)

case SHORT => code.Emit(OpCodes.Call, toShort)

case CHAR => code.Emit(OpCodes.Call, toChar)

case INT => code.Emit(OpCodes.Call, toInt)

case LONG => code.Emit(OpCodes.Call, toLong)

case FLOAT => code.Emit(OpCodes.Call, toFloat)

case DOUBLE => code.Emit(OpCodes.Call, toDouble)

case REFERENCE(cls) if (definitions.unboxMethod.contains(cls)) =>

code.Emit(OpCodes.Unbox, msilType(boxType)) /*- leaves a valueTypePtr (managed pointer) on the stack */

code.Emit(OpCodes.Ldobj, msilType(boxType)) /*- consumes the address and pushes the raw value type instance.

ldobj also accepts as typeToken a type param. */

case REFERENCE(_) | ARRAY(_) => ()

}

6.6 “Unavoidable boxing” due to event declarations on
structs

“Binding delegate to a struct causes the struct to be boxed. So, expression
xo.Xhandler evaluates to different delegate instances. ”. More at http://

social.msdn.microsoft.com/Forums/en-US/csharplanguage/thread/11335595-4ca9-4598-ad83-d03105a72442

7 TODO

7.1 Passing a literal field to a byref argument should trig-
ger an error message

Passing a literal field to a byref argument should trigger an error message (from
typer bettern than from GenICode)

ColorDemo.rcvColor(Color.Red)

As of now, it’s detected only in GenMSIL, and with an assert at that:

def loadFieldOrAddress(field: Symbol, isStatic: Boolean, msg: String, loadAddr : Boolean) {

var fieldInfo = fields.get(field) match {

case Some(fInfo) => fInfo

case None =>

val fInfo = getType(field.owner).GetField(msilName(field))

fields(field) = fInfo

fInfo

37

http://social.msdn.microsoft.com/Forums/en-US/csharplanguage/thread/11335595-4ca9-4598-ad83-d03105a72442
http://social.msdn.microsoft.com/Forums/en-US/csharplanguage/thread/11335595-4ca9-4598-ad83-d03105a72442

D
RA
FT

}

if (!fieldInfo.IsLiteral) {

. . .

} else {

assert(!loadAddr, "can’t take AddressOf a literal field (not even with readonly. prefix) because no memory was allocated to such field ...")

. . .

7.2 More TODO’s

• System.SByte is type-parsed with a type symbol different from that in
definitions.ByteClass. Type members are entered afterwards not in
definitions.ByteClass. It this good or bad?

• currently System.UInt32 is type-parsed, but not clear whether we want to
handle it.

• /* TODO IsByRef should be tracked for the param definition, not for its type */

• add code to handle UNARY_~ and sizeof for valuetypes and enums.

• check in GenMSIL whether, for sym an interface, the following overlooks one
super-interface:

val interfaces: Array[MsilType] = parents.tail.map(p => msilTypeFromSym(p.typeSymbol)).toArray

References

[1] Microsoft Corporation. C# version 3.0 language specification, 2007. http:

//msdn.microsoft.com/en-us/vcsharp/aa336809.aspx.

38

http://msdn.microsoft.com/en-us/vcsharp/aa336809.aspx
http://msdn.microsoft.com/en-us/vcsharp/aa336809.aspx

D
RA
FT

Figure 2: stind story (Sec. 3.6)

39

D
RA
FT

Figure 3: stobj story (Sec. 3.6)

40

D
RA
FT

Listing 1: Inlining of literal fields (Sec. 1.3)

case LOAD_FIELD(field, isStatic) =>

if (settings.debug.value)

log("LOAD_FIELD with owner: " + field.owner +

" flags: " + Flags.flagsToString(field.owner.flags))

var fieldInfo = fields.get(field) match {

case Some(fInfo) => fInfo

case None =>

val fInfo = getType(field.owner).GetField(msilName(field))

fields(field) = fInfo

fInfo

}

if (!fieldInfo.IsLiteral) {

mcode.Emit(if (isStatic) OpCodes.Ldsfld else OpCodes.Ldfld, fieldInfo)

} else {

/* emit as for a CONSTANT ICode stmt, with the twist that the constant value is available

* as a java.lang.Object and its .NET type allows constant initialization in CLR, i.e. that type

* is one of I1, I2, I4, I8, R4, R8, CHAR, BOOLEAN, STRING, or CLASS (in this last case,

* only accepting nullref as value). See Table 9-1 in Lidin’s book on ILAsm. */

val value = fieldInfo.getValue()

if (value == null) {

mcode.Emit(OpCodes.Ldnull)

} else {

val typ = if (fieldInfo.FieldType.IsEnum) fieldInfo.FieldType.getUnderlyingType

else fieldInfo.FieldType

if (typ == clrTypes.STRING) {

mcode.Emit(OpCodes.Ldstr, value.asInstanceOf[String])

} else if (typ == clrTypes.BOOLEAN) {

mcode.Emit(if (value.asInstanceOf[Boolean]) OpCodes.Ldc_I4_1

else OpCodes.Ldc_I4_0)

} else if (typ == clrTypes.BYTE || typ == clrTypes.UBYTE) {

loadI4(value.asInstanceOf[Byte], mcode)

} else if (typ == clrTypes.SHORT || typ == clrTypes.USHORT) {

loadI4(value.asInstanceOf[Int], mcode)

} else if (typ == clrTypes.CHAR) {

loadI4(value.asInstanceOf[Char], mcode)

} else if (typ == clrTypes.INT || typ == clrTypes.UINT) {

loadI4(value.asInstanceOf[Int], mcode)

} else if (typ == clrTypes.LONG || typ == clrTypes.ULONG) {

mcode.Emit(OpCodes.Ldc_I8, value.asInstanceOf[Long])

} else if (typ == clrTypes.FLOAT) {

mcode.Emit(OpCodes.Ldc_R4, value.asInstanceOf[Float])

} else if (typ == clrTypes.DOUBLE) {

mcode.Emit(OpCodes.Ldc_R4, value.asInstanceOf[Double])

} else {

abort("Unknown type for static literal field: " + fieldInfo)

}

}

}

41

D
RA
FT

Listing 2: How GenICode replaces some callsites with a BOX instruction

/**

* Generate code for trees that produce values on the stack

*

* @param tree The tree to be translated

* @param ctx The current context

* @param expectedType The type of the value to be generated on top of the

* stack.

* @return The new context. The only thing that may change is the current

* basic block (as the labels map is mutable).

*/

private def genLoad(tree: Tree, ctx: Context, expectedType: TypeKind): Context = {

var generatedType = expectedType

if (settings.debug.value)

log("at line: " + (if (tree.pos.isDefined) tree.pos.line else tree.pos))

val resCtx: Context = tree match {

. . .

case Apply(fun @ _, List(expr)) if (definitions.isBox(fun.symbol)) =>

if (settings.debug.value)

log("BOX : " + fun.symbol.fullName);

val ctx1 = genLoad(expr, ctx, toTypeKind(expr.tpe))

val nativeKind = toTypeKind(expr.tpe)

if (settings.Xdce.value) {

// we store this boxed value to a local, even if not really needed.

// boxing optimization might use it, and dead code elimination will

// take care of unnecessary stores

var loc1 = ctx.makeLocal(tree.pos, expr.tpe, "boxed")

ctx1.bb.emit(STORE_LOCAL(loc1))

ctx1.bb.emit(LOAD_LOCAL(loc1))

}

ctx1.bb.emit(BOX(nativeKind), expr.pos)

generatedType = toTypeKind(fun.symbol.tpe.resultType)

ctx1

. . .

case EmptyTree =>

if (expectedType != UNIT)

ctx.bb.emit(getZeroOf(expectedType))

ctx

case _ =>

abort("Unexpected tree in genLoad: " + tree + " at: " + tree.pos)

}

// emit conversion

if (generatedType != expectedType)

adapt(generatedType, expectedType, resCtx, tree.pos)

resCtx

}

42

	Enumerations
	CLR enums and CLR literal fields: What they are
	The Scala view of .NET enumerations
	Problem A: literal fields must be inlined
	`CLR Boxing Theory' for enums
	Problem B: no autoboxing from raw enum to O
	More peculiarities of CLR enums
	Emitting enumerations (no thanks)
	Fine print for enum operators in other .NET languages

	Valuetypes and managed pointers explained
	How raw values come to the world
	How managed pointers come to the world
	Managed pointer not to valuetype but to classtype
	Other .NET compilers and valuetypes

	Things to watch out for when emitting CIL for valuetypes
	Problem D.0: don't try ldfld on ref to valuetype
	Problem D.1: call valuetype-defined instance method
	Problem D.2: callvirt valuetype-defined (virtual) methods (other than on this) and the constrained. prefix
	Problem D.3: Accessing other non-static members on this
	FYI: Assignments to dereferenced address
	FYI: Indirect store instructions
	FYI: when GenMSIL emits call vs. callvirt
	CIL samples, enums
	CIL samples, valuetypes

	Mechanics of emitting CIL to load raw values, address values, or boxed values
	To recap: boxing for Scala value classes
	A trick: Use-def analysis to patch ICode instructions
	A more elaborate trick: fine-granular types for valuetypes
	Raw-valued expression found where managed pointer expected
	Managed-pointer found, raw value expected (dereference)
	Raw-valued expression found, boxed value expected
	Managed-pointer found, boxed value expected

	Recipe for TypeParser
	Boxed and ByRef
	Converting to Boxed and to ByRef when needed
	When metadata refers to a ByRef type
	Problem: implicit raw2boxed does not get inserted

	Recipe for GenICode
	Solution to Raw-value found, managed-pointer expected
	Field selection on valuetypes (Solution D.0)
	Invocations with valuetyped receiver (Solutions D.1 and D.2)
	TODO toString vs. ToString
	Desugar (default) constructor-invocation on valuetypes

	Recipe for GenMSIL

	System.Decimal has operator overloads and conversion operators
	Sidenotes
	How are value types implemented in the 32-bit CLR?
	GenICode: valuetype class symbols are wrapped in REFERENCEs just like those for classtypes
	GenMSIL: unboxing of Booleans without System.Convert
	Controlled-mutability managed pointers
	Emitting (un)boxing in GenMSIL
	``Unavoidable boxing'' due to event declarations on structs

	TODO
	Passing a literal field to a byref argument should trigger an error message
	More TODO's

