
Using reaching-defs and type-flow analyses to

obtain three-address code in the Scala compiler

c© Miguel Garcia, LAMP,

École Polytechnique Fédérale de Lausanne (EPFL)
http://lamp.epfl.ch/~magarcia

April 24th, 2010

Contents

1 What’s new over previous write-ups 2

2 Jimplification in Soot 2
2.1 ICode locals are typed, bytecode slots aren’t 2
2.2 ICodeReader.parseByteCode() 6
2.3 From stack-based to untyped 3-address 6
2.4 Bellamy’s type inference: TypeResolver 8

3 Prototypes using ICode mechanisms 8
3.1 First prototype: seeing what ICode knows 8
3.2 Second prototype: setting up maps inspired in Soot 8
3.3 AST classes for Stackless ICode 10
3.4 How to run the prototypes . 10

4 A3Code, finally 11
4.1 Computing webs . 11
4.2 Once we have the webs . 13
4.3 The fine print . 14

5 TODO 15
5.1 Understanding CALL METHOD . 15
5.2 TODO A3PrettyPrinter, A3Phase 16

Abstract

We review first the ICode mechanisms needed for jimplification (pre-
viously, we had used Soot for that). Some differences between ICode and
JVM bytecode make easier obtaining 3-address form. For example, local
slots are typed in ICode, and stack slots are not reused with different
types. The ICode mechanisms we employ are: (a) fixpoint on type-stacks
and abstract interpretation on type-stacks; and (b) reaching defs for stack
slots and local variables. We show how our prototype evolves from a ver-
sion that only displays results from those analyses, to the final version
where ASTs for A3Code are built.

1

http://lamp.epfl.ch/~magarcia

1 What’s new over previous write-ups

Previous write-ups provided background information on the conversion from
bytecode into 3-address form:

• Jimple to C# proof-of-concept http://www.sts.tu-harburg.de/people/
mi.garcia/ScalaCompilerCorner/GenCSharp01.pdf

• Towards a typed 3-address IR from ICode http://www.sts.tu-harburg.

de/people/mi.garcia/ScalaCompilerCorner/StacklessICode.pdf

Sec. 2 covers jimplification in Soot 2.4.0 (the steps below) in more detail:

1. (stack-based) bytecode is converted into untyped 3-address form.

2. Bellamy’s type inference algorithm [1] gives types to local variables.

3. a post-processing step disambiguates bytecode-level usages of int into
Java-level boolean, byte, char, or int [1, § 5]. This step is not necessary
for ICode because “small-ints” weren’t lumped together in the first place.

In Sec. 3, the beginngs of a compiler plugin are described that converts ICode
into 3-address form, which can be used as IR to generate C#. Another hurdle
to overcome before obtaining C# are the dollar signs in mangled names, which
C# compilers don’t like. A re-mangling step is necessary.

2 Jimplification in Soot

2.1 ICode locals are typed, bytecode slots aren’t

ICode contains instructions not present in JVM bytecode (e.g., LOAD MODULE,
Figure 1) and is in fact more expressive. For comparison, the factory methods
in soot.jimple.Jimple create Jimple CST/AST nodes (the same class hierarchy
is used when building Jimple CST trees from parsing, and AST trees from
transformations, Figure 2). Also for comparison, the statement hierarchy of
Jimple is shown in Figure 3a). The other syntactic category that comes into
play is for bytecode and rooted at soot.coffi.Instruction.

Regarding the CFGs in Soot and ICode, the following differences exist (not
sure yet whether jimplification will thus be different for ICode):

• the algorithm described in Sec. 2.3 initially builds a list of possible suc-
cessors for each instruction, including those resulting from exceptional
control flow. In contrast, ICode keeps CFGs consisting of BasicBlocks,
and no explicit edges reflect exceptional control flow.

• Soot follows the JVM convention where local variables are represented as
untyped slots. In common with Soot, ICode has no assignment statement.
However, local variables in ICode are typed. This also causes a difference
in terminology: the Soot documentation frequently uses the term local
variable only for formal parameters and for this (in non-static methods),
reserving the term untyped variable for those added during jimplification.

2

http://www.sts.tu-harburg.de/people/mi.garcia/ScalaCompilerCorner/GenCSharp01.pdf
http://www.sts.tu-harburg.de/people/mi.garcia/ScalaCompilerCorner/GenCSharp01.pdf
http://www.sts.tu-harburg.de/people/mi.garcia/ScalaCompilerCorner/StacklessICode.pdf
http://www.sts.tu-harburg.de/people/mi.garcia/ScalaCompilerCorner/StacklessICode.pdf

Figure 1: ICode Instructions

3

Figure 2: Where factory methods to create Jimple are used

Figure 3: Statement and expression hierarchies of Jimple

4

Listing 1: An ICode Local

/** Represent local variables and parameters */

class Local(val sym: Symbol, val kind: TypeKind, val arg: Boolean) {

var index: Int = -1

/** Starting PC for this local’s visbility range. */

var start: Int = _

/** Ending PC for this local’s visbility range. */

var end: Int = _

/** PC-based ranges for this local variable’s visibility */

var ranges: List[(Int, Int)] = Nil

override def equals(other: Any): Boolean = (

other.isInstanceOf[Local] &&

other.asInstanceOf[Local].sym == this.sym

);

override def hashCode = sym.hashCode

override def toString(): String = sym.toString()

}

• Printouts of ICode do not show the type of locals by default, but this in-
formation is available in Local.kind (Listing 1) and could be printed from
Printers.TextPrinter.printMethod(m: IMethod) in package scala.tools.nsc.backend.icode.

There are also differences in the compilation pipelines leading to bytecode
and ICode. The paper by Gagnon et al. [2] shows examples where it’s necessary
to create dedicated variables for independent uses of the same slot. However,
these examples (Listing 2 and Listing 3) do not lead to ICode exhibiting untyped
local variables. For example, ICode for Listing 3 is shown in Listing 4.

Listing 2: Harder from [2], Scala version

class Harder extends Object {

def harder() {

var y : <untyped> /*- <--- this <untyped> stuff is possibly in JVM bytecode */

/*- but not in Scala and thus not in ICode */

if(System.currentTimeMillis() == 0) {

y = new CA(); y.f();

} else {

y = new CB(); y.g();

}

y.toString()

}

}

5

Listing 3: Hardest from [2], Scala version

class InterfaceDemo {

def getC() : IC = new CC();

def getD() : ID = new DD();

def hardest() {

var aa = if(System.currentTimeMillis() == 0)

getC();

else

getD();

aa.f() // invokeinterface IA.f

aa.g() // invokeinterface IB.g

}

class CC extends IC {

def f() {}

def g() {}

}

class DD extends ID {

def f() {}

def g() {}

}

trait IA { def f(); }

trait IB { def g(); }

trait IC extends IA with IB {}

trait ID extends IA with IB {}

}

2.2 ICodeReader.parseByteCode()

As part of Inliners, the object icodereader is invoked to obtain ICode from
bytecode.

object icodeReader extends ICodeReader {

lazy val global: ICodes.this.global.type = ICodes.this.global

}

Types are ascribed to local variables, but still the resulting ICode makes use
of implicit variables (i.e., positions on the evaluation stack) that get no type
ascribed. Although ICode allows typed local variables, it has no instruction to
directly assign one local to another: those data transfers have to go through the
evaluation stack. Similarly, the results of method invocations and of operators
applications are left on the stack. Summing up, the only way for a local to be
assigned a value is from the top of the stack.

2.3 From stack-based to untyped 3-address

The main reference for this phase is the tech report [4, § 3]. The entry point is
soot.coffi.CFG.jimplification(). Before that invocation, a control flow graph
for the given method is built (when running the constructor invocation new

soot.coffi.CFG(coffiMethod)).

6

Listing 4: Hardest from [2], ICode version

class InterfaceDemo extends java.lang.Object, ScalaObject {

. . .

def hardest(): Unit {

locals: variable aa

startBlock: 1

blocks: [1,2,3,4]

1:

6 CALL_METHOD java.lang.Systemjava.lang.System.currentTimeMillis (static-class)

6 CONSTANT (Constant(0))

6 CJUMP (LONG)EQ ? 2 : 3

2:

7 THIS

7 CALL_METHOD InterfaceDemoInterfaceDemo.getC (dynamic)

7 JUMP 4

3:

9 THIS

9 CALL_METHOD InterfaceDemoInterfaceDemo.getD (dynamic)

6 JUMP 4

4:

6 STORE_LOCAL variable aa

6 SCOPE_ENTER variable aa

11 LOAD_LOCAL variable aa

11 CALL_METHOD InterfaceDemo$IAInterfaceDemo$IA.f (dynamic)

12 LOAD_LOCAL variable aa

12 CHECK_CAST REFERENCE(InterfaceDemo$IB)

12 CALL_METHOD InterfaceDemo$IBInterfaceDemo$IB.g (dynamic)

12 SCOPE_EXIT variable aa

12 RETURN (UNIT)

}

Exception handlers:

}

This step computes TypeStacks pre- and post-instruction as well as a pre-
instruction array of TypeLocal, for the sole purpose of making untyped local
variables that approximate the (true) use-defs relationships between stack loca-
tions at different program points during execution. Given that ICode already
provides us with similar information, we won’t need to build these maps. Locals
themselves are created in CFG.generateJimple() and getLocalForStackOp.

Afterwards, some of the (untyped) variables have to be “linked” [4, § 3.4],
because in fact they were the same variable. The stack positions to link (called
“slots” in [4, § 3.4]) are represented as pairs (instruction, stack height).

Given that the ICode infrastructure contains a ReachingDefinitions analysis,
we’ll rely on it to avoid creating duplicate locals.

7

2.4 Bellamy’s type inference: TypeResolver

Code to look at: soot.jimple.toolkits.typing.fast.TypeResolver.
The step that need not be performed for ICode (disambiguating small inte-

gers) is done in soot.jimple.toolkits.typing.fast.TypeResolver.typePromotion(Typing).
The original Soot algorithm for inserting casts (still necessary in fast.TypeResolver

in a few cases) is implemented by soot.jimple.toolkits.typing.integer.TypeResolver.resolve(JimpleBody).

3 Prototypes using ICode mechanisms

3.1 First prototype: seeing what ICode knows

Our first prototype will compute nothing itself but display instead the results of
two forward dataflow analyses (MethodTFA and ReachingDefinitions) alongside
the ICode instructions (program points) to which they apply. The prototype
will thus set the stage for later functionality, allowing first to get some plumbing
code right. A brief description of type-flow analysis appears in Ch. 2 of Towards
a typed 3-address IR from ICode1.

The prototype is a compiler plugin that adds an ICode-processing phase to
run before all ICode optimizations are performed, i.e. right after GenICode. Our
custom phase:

• gathers the aforementioned information (types for stack positions, and
instructions that loaded a value into stack positions), and then

• writes a .cs file for each compilation unit, containing all ICode classes
for that compilation unit, showing for each instruction the information
mentioned above.

The part in charge of writing files to disk is based on Scala X-Ray (thanks
Mark!) (BTW, a code walkthrough on how Scala X-Ray works appers in Ch. 3
of the Untangling Scala ASTs write-up2). The part in charge of computing
type-stacks and reaching-defs is based on GenJVM and Inliners. To give a first
idea on these steps, Listing 9 shows what our ICode-processing phase looks like
at this moment (displaying output on the console for now). This snippet may
be simple-minded, but it already allows visualizing (Listing 5) the workings of
the ICode utilities (in this case, how a lattice element is updated one ICode
instruction at a time, by performing abstract interpretation).

3.2 Second prototype: setting up maps inspired in Soot

The information on pre- and post-instruction type stacks can be obtained with
MethodTFA, as well as that for reaching definitions (with ReachingDefinitions). In
Soot, the latter is represented in the map changedInstructions (for an Instruction

loading onto the stack, it returns the instruction(s) reading that stack slot). In
the paper by Bellamy et al. [1] that same map is called depends. That name
hints to the fact that, when creating locals from stack slots, use-defs should be

1http://www.sts.tu-harburg.de/people/mi.garcia/ScalaCompilerCorner/

StacklessICode.pdf
2http://www.sts.tu-harburg.de/people/mi.garcia/ScalaCompilerCorner/

UntanglingScalaASTs1ofN.pdf

8

http://www.sts.tu-harburg.de/people/mi.garcia/ScalaCompilerCorner/StacklessICode.pdf
http://www.sts.tu-harburg.de/people/mi.garcia/ScalaCompilerCorner/StacklessICode.pdf
http://www.sts.tu-harburg.de/people/mi.garcia/ScalaCompilerCorner/UntanglingScalaASTs1ofN.pdf
http://www.sts.tu-harburg.de/people/mi.garcia/ScalaCompilerCorner/UntanglingScalaASTs1ofN.pdf

followed as close as possible, otherwise more instructions than necessary will be
flagged as dependent on a stack-slot-loading instruction.

The maps we’ll set up in this iteration are preStack(IMethod, BasicBlock,

InstructionIndex) and postStack(IMethod, BasicBlock, InstructionIndex), which
are identical in purpose to the maps used in Soot (instructionToTypeStack and
instructionToPostTypeStack). The remaining map used in Soot, from local
slots to type, is not needed in our context because there are no local slots
in ICode but typed local variables instead. And their type does not change
across instructions as in JVM bytecode. Another Soot map we won’t reproduce
is instructionToSuccessors.

A caveat: whenever “instruction” is mentioned in Soot literature, we use
instead a pair (BasicBlock, zeroBasedIndex) to stand for that program point,
because Instructions are case classes, and thus given an Instruction value we
can’t reliable find a “single” owning block for it. Try yourself:

val basicBlock = scala.collection.mutable.Map[Instruction, BasicBlock]()

for (bb <- method.code.blocks) {

for (ins <- bb.toList) {

if(basicBlock.isDefinedAt(ins)) {

scala.Console.println("problem") /*- <- This in general is hit */

}

basicBlock += ins -> bb

}

}

The computed reaching definitions give for each stack slot the instruction(s)
that have written the slot. As slots are pushed on top, the depth of a slot goes
down (obviously but keep reading) which means that the same instruction will
appear multiple times as defining slots at different depths for different program
points. For example, the following instructions:

method: InterfaceDemo.hardest

block: 1

type stack : []

0| CALL_METHOD java.lang.Systemjava.lang.System.currentTimeMillis (static-class)

type stack : [LONG]

1| CONSTANT (Constant(0))

type stack : [LONG,LONG]

2| CJUMP (LONG)EQ ? 2 : 3

last type stack : []

make the traversal of reaching-defs report the first instruction twice (until its
stack slot gets popped). That instruction appears in Listing 6 (as definition)
first with depth 0 (i.e., the value is on top) and after the push by CONSTANT with
depth 1.
The traversal was performed in the “natural” way:

/** Prints as a table the defs reaching instrIdx. */

def makeSenseOfReachingDefs(rdefVars: Set[(Local, BasicBlock, Int)],

rdefStack: List[Set[(BasicBlock, Int)]],

instrIdx: Int) {

//

if(rdefStack.isEmpty){

scala.Console.println("\t\t\t no reaching-defs on the empty stack")

}

for((slot, depth) <- rdefStack.zipWithIndex){

scala.Console.println("\t\t\t reaching the slot at depth: " + depth)

9

for((bb, bbidx) <- slot) {

scala.Console.println("\t\t\t\t def: " + where(bb, bbidx))

}

}

def where(b: BasicBlock, i: Int) = "/" + b(i) + " in block " + b + "\\"

}

3.3 AST classes for Stackless ICode

The semantics of ICode and 3-address-ICode are the same. In particular the
semantics of object initialization. That semantics dictates how LOAD MODULE,
NEW, and other ICode instructions are implemented. Well, in 3-address there
are (assignment) FROM MODULE, FROM NEW, and so on. Values go to local variables
rather than stack slots. That’s all. Examples below and in Listing 7.

abstract case class ThreeAddressStmt {}

/** ‘lhs’ gets a value assigned from the element of array ‘arr’ at index ‘index’. */

case class FROM_ARRAY_ITEM(lhs: Local, arr: Local, index: Local) extends ThreeAddressStmt {

override def toString(): String = lhs+" = "+arr+"["+index+"]"

}

/** ‘lhs’ gets a value assigned from ‘var’ */

case class FROM_VAR(lhs: Local, rhs: Local) extends ThreeAddressStmt {

override def toString(): String = lhs+" = "+rhs

}

case class A3_JUMP(whereto: BasicBlock) extends ThreeAddressStmt {

override def toString(): String ="goto "+whereto.label

}

/** assigns the value of ‘rhs’ to ‘instance.field’ (non-static) or to ‘field’ (static) */

case class TO_FIELD(instance: Local, field: Symbol,

isStatic: Boolean, rhs: Local) extends ThreeAddressStmt {

override def toString(): String = {

val fieldName = (if (isStatic) field.fullName else field.toString())

val instanceNameDot = (if (isStatic) "" else instance+".")

instanceNameDot + fieldName+" = "+rhs

}

}

3.4 How to run the prototypes

The prototypes can be run in debug mode from IntelliJ IDEA after creating a
launch configuration as follows:

Main class: scala.tools.nsc.Main

VM parameters: -Xbootclasspath/a:scala-compiler.jar;scala-library.jar;fjbg.jar

Program parameters:

-Xplugin:Z:\scalaproj\scala\srcmyplugins\a3.jar

-d Z:\scalaproj\simple\Hardest

Z:\scalaproj\simple\Hardest\InterfaceDemo.scala

Z:\scalaproj\simple\Hardest

10

4 A3Code, finally

4.1 Computing webs

A web (for a given variable) is the maximal union of intersecting du-chains for
the variable. Details in [3, §8.10] (in the context of register allocation, but we
need webs instead to determine the least common ancestor over all left-hand
side occurrences of an as-of-yet untyped, about-to-created, local variable).

The data structures supporting the computation of webs are:

case class StackAccessingProgramPoint(ppbb: BasicBlock,

ppidx: Int,

ppDepthWithinInstr: Int // 0 for all push instructions

) {

override def toString() = { "/ in block " + ppbb + ",

instruction " + ppbb(ppidx) + ", depth " + ppDepthWithinInstr + "\\" }

}

case class UseDefWeb(defs: scala.collection.mutable.Set[StackAccessingProgramPoint],

uses: scala.collection.mutable.Set[StackAccessingProgramPoint])

Given the above, we’ll look up a web using a def or a use as key:

val useDefWebs = new scala.collection.mutable.HashSet[UseDefWeb]() {

def lookupForDef(bb: BasicBlock, idx: Int) : Option[UseDefWeb] = {

val candidates = this filter (_ containsDef(bb, idx))

assert (candidates.size <= 1)

if(candidates.isEmpty) None

else Some(candidates.first)

}

def lookupForUse(bb: BasicBlock, idx: Int, depth: Int) : Option[UseDefWeb] = {

val candidates = this filter (_ containsUse(bb, idx, depth))

assert (candidates.size <= 1)

if(candidates.isEmpty) None

else Some(candidates.first)

}

}

The main steps of the implementation (computeWebs) are as follows:

def computeWebs(cls: IClass, method: IMethod) : scala.collection.mutable.Set[UseDefWeb] = {

rdef.init(method)

rdef.run

// use-def webs as in Sec. 8.10 of Muchnick’s Advanced Compiler book

val useDefWebs = /*- as shown above */

for (currentBlock <- method.code.blocks) {

var rdefinfo = rdef.in(currentBlock)

for ((currentInstruction, currentIdx) <- currentBlock.toList.zipWithIndex) {

if (currentInstruction.consumed > 0) {

// the info on reaching-defs for the current instruction

val icodes.reachingDefinitions.rdefLattice.IState(

rdefVars, rdefStack : List[Set[(BasicBlock, Int)]]) = rdefinfo

All of the above was just to pick an instruction that consumes something
from the evaluation stack. And in fact, it may consume more than one slot,
i.e. for each slot we’ve got to compute its web.

11

// for each popped value

for (currentPoppedDepth <- 0 to (currentInstruction.consumed - 1)) {

val originatingSet = rdefStack(currentPoppedDepth)

The above looks up the definitions whose values may flow to the stack slot
in question. We call that set of definitions “originatingSet,” i.e. the set with
instructions that may give origin to the slot’s value. In terms of Muchnick’s
book, this is a ud-chain, not a du-chain as explained in his algorithm.

Now we need to find up to one web given those defs and the use. I added
some error-checking:

for(originating <- originatingSet) {

val webIfAny = useDefWebs.lookupForDef(originating._1, originating._2)

webIfAny match {

case None => {

/* the definition not yet in any web, but the use may be.

If so, add the definitions to that web */

val webIfAny2 = useDefWebs.lookupForUse(currentBlock, currentIdx, currentPoppedDepth)

webIfAny2 match {

case None => {

/* neither the definition nor the use are in any webs,

create a new one (with the current use as single use so far)

*/

useDefWebs += new UseDefWeb(originating._1, originating._2,

currentBlock, currentIdx, currentPoppedDepth)

}

case Some(web2) => {

web2.addDefinitions(originatingSet)

}

}

}

case Some(web) => {

/* the definition was in a web, update in place the set of uses

* in that web adding the current use,

* and add all other definitions in originatingSet to that web too. */

web.addUse(currentBlock, currentIdx, currentPoppedDepth)

if(originatingSet.size > 1) {

web.addDefinitions(originatingSet)

}

/* TODO nothing else to do for currentPoppedDepth, skip the rest of

* the traversal over originatingSet */

}

}

}

Finally, get things ready for the next instruction to check, return the com-
puted webs (as a set) after the last one, and we’re out.

}

}

/* get the reaching definitions ready for the next instruction in this basic block. */

rdefinfo = rdef.interpret(currentBlock, currentIdx, rdefinfo)

}

}

useDefWebs

}

}

12

TODO It would be great to have a Scala-based
DSL for .dot files, rather than helper methods like
useDefWebs2Console(method: IMethod, useDefWebs: collection.Set[UseDefWeb]).
Another option is to install a custom visualizer for the IDEA or Eclipse
debuggers.

4.2 Once we have the webs

For each web,

1. create a local variable whose Type is merged over those of all uses in that
web. These types are given by preStack. Should be the same type as
merging over all TypeKind and then calling getType for it (that makes for
a nice assert).

2. associate the just created local var and the web in question

/** Cut and pasted from GenICode.Context

* Make a fresh local variable. It ensures the ’name’ is unique. */

def makeLocal(unit: CompilationUnit, method: IMethod,

pos: Position, tpe: Type, name: String): Local = {

val sym = method.symbol.newVariable(pos, unit.fresh.newName(pos, name))

.setInfo(tpe)

.setFlag(scala.tools.nsc.symtab.Flags.SYNTHETIC)

method.addLocal(new Local(sym, toTypeKind(tpe), false))

}

For each basic block, for each instruction:

• if the instruction pushes, (a.1) look up the web where it appears as a def;
(a.2) the local var in that web will be on the LHS of the new A3 statement.

• if the instruction pops (this condition and the one above do not exclude
each other), (b.1) look up the web where it appears among the uses with the
depth of interest ; (b.2) the ith var being read becomes the jth operand of
the new A3 statement (i and j may differ because of one or more constants
as operands provided by the ICode instruction).

• don’t forget to also translate the instructions that neither push nor pop.

The algorithm above creates redundant vars from, for example, DUP instructions
(which consumes 1 and produces 2 slots, thus finishing a web and starting two).
Copy and constant propagation could be performed on the A3 output. The only
optimization of this kind we perform avoids creating another local variable for
those webs all of whose definitions are LOAD_LOCALs from the same variable. Given
that no assignments to that variable occur in-between uses and defs, we can use
the variable directly.

Given that the ICode instructions to be “replaced” were referred from other
places (see trait ExceptionHandler in Listing 8), those referrers either have to be
converted to point to the corresponding A3 instructions, or the correspondence
between ICode and A3 instructions has to be kept somewhere.

Talking about ExceptionHandler, when creating its TryCatch equivalent in
A3, remove the jumps at the end of the blocks protected by the clauses in the
TryCatch.

13

4.3 The fine print

The previous subsection contains the overview and here we take a look at im-
plementation details (is this refinement? Maybe).

Least common ancestor

The type for a new local variable is computed over those of its uses, by passing
a preTypeStack to leastCommonAncestor in a web:

case class UseDefWeb(defs: scala.collection.mutable.Set[StackAccessingProgramPoint],

uses: scala.collection.mutable.Set[StackAccessingProgramPoint]) {

. . .

/** over all the types of uses in this web */

def leastCommonAncestor(method: IMethod,

preTypeStack: scala.collection.Map[(IMethod, BasicBlock, Int), List[TypeKind]]) = {

var ts = for (StackAccessingProgramPoint(ppbb, ppidx, ppDepth) <- uses)

yield (preTypeStack(method, ppbb, ppidx))(ppDepth)

val t = ts reduceLeft icodes.lub

t

}

Asymmetry when creating local variables

In the previous section it was mentioned that “[to] avoid creating another local
variable for those webs all of whose definitions are LOAD_LOCALs from the same
variable. Given that no assignments to that variable occur in-between uses and
defs, we can use the variable directly”. The core of that decision can be seen in
two UseDefWeb methods:

def defsAsInstructions

= defs map { case StackAccessingProgramPoint(ppbb, ppidx, ppDepth) => ppbb(ppidx) }

def allDefsFromSameVar : Option[Local] = {

assert (!(defs.isEmpty))

val b = defsAsInstructions forall (

ins => ins.isInstanceOf[opcodes.LOAD_LOCAL])

if(!b) return None

val loadedVars : scala.collection.Set[Local]

= for (d <- defsAsInstructions;

val lolo = d.asInstanceOf[opcodes.LOAD_LOCAL]) yield lolo.local

if (loadedVars.size == 1) Some(loadedVars.first)

else None

}

We say “asymmetry” because without this optimization there’s a bijection be-
tween new locals and webs. With the optimization, there are fewer new locals
than webs :-)

Mapping webs to locals (be they old or new)

for(web <- useDefWebs) {

// val UseDefWeb(defs, uses) = web

val web2local = new scala.collection.mutable.HashMap[UseDefWeb, Local]

val local = web.allDefsFromSameVar match {

case Some(local) => local

14

case None => {

// create new local

val tk = web.leastCommonAncestor(method, preTypeStack)

val newLocal = makeLocal(cls.cunit, method,

NoPosition, tk.toType, "stackslot")

assert (newLocal.kind == tk,

"passed a Type to makeLocal (although a TypeKind was available) and got another TypeKind")

newLocal

}

}

web2local += (web -> local)

. . .

TODO agree on a token for the THIS local variable, and add it to web2local

whenever it appears as LHS (a new A3 stmt for that assignment is also needed).

5 TODO

5.1 TODO A3PrettyPrinter, A3Phase

5.2 Understanding CALL METHOD

case class CALL_METHOD(method: Symbol, style: InvokeStyle) extends Instruction {

. . .

override def consumed = method.tpe.paramTypes.length + (

style match {

case Dynamic | InvokeDynamic => 1

case Static(true) => 1 /*- Two different styles of call are Static, but */

case Static(false) => 0 /*- what’s the difference btw Static(true)and Static(false)? */

case SuperCall(_) => 1

}

)

As things stand now, the following is printed:

def getD(): InterfaceDemo$ID {

locals: []

startBlock: 1

blocks: [1]

1:

0| NEW REFERENCE(InterfaceDemo$DD)

, consumed: 0, consumed types: List()

, produced: 1, produced types: List() /*- <-- producedTypes needs a touch up */

1| DUP

, consumed: 1, consumed types: List()

, produced: 2, produced types: List()

2| THIS

, consumed: 0, consumed types: List()

, produced: 1, produced types: List(REFERENCE(InterfaceDemo))

/*- according to my math, the typestack at this point is [InterfaceDemo$DD, InterfaceDemo$DD, InterfaceDemo] */

3| CALL_METHOD InterfaceDemo$DDInterfaceDemo$DD.<init> (static-instance)

/*- <-- this is an static init, should pop only one value, not 2, or do I miss sthg? */

, consumed: 2, consumed types: List(REFERENCE(java.lang.Object), REFERENCE(InterfaceDemo))

, produced: 0, produced types: List()

/*- if CALL_METHOD consumes two, then the typestack contains [InterfaceDemo$DD] */

15

4| RETURN (REFERENCE(InterfaceDemo$ID))

, consumed: 1, consumed types: List()

, produced: 0, produced types: List()

/*- but this RETURN produces an InterfaceDemo$ID, is a CHECK_CAST implied? */

}

Exception handlers:

References

[1] Ben Bellamy, Pavel Avgustinov, Oege de Moor, and Damien Sereni. Efficient
local type inference. In Gregor Kiczales, editor, OOPSLA’07: 22nd Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications. ACM, 2008. http://progtools.comlab.ox.
ac.uk/publications/oopsla08abc.

[2] Etienne Gagnon, Laurie J. Hendren, and Guillaume Marceau. Efficient
inference of static types for Java bytecode. In Jens Palsberg, editor,
SAS, volume 1824 of Lecture Notes in Computer Science, pages 199–219.
Springer, 2000. http://www.sable.mcgill.ca/publications/papers/

2000-2/sable-paper-2000-2.ps.

[3] Steven S. Muchnick. Advanced compiler design and implementation. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1997.

[4] Raja Vallee-Rai and Laurie J. Hendren. Jimple: Simplifying Java byte-
code for analyses and transformations. Technical report, McGill University,
School of Computer Science, Sable Research Group, 1998. http://www.

sable.mcgill.ca/publications/techreports/sable-tr-1998-4.ps.

16

http://progtools.comlab.ox.ac.uk/publications/oopsla08abc
http://progtools.comlab.ox.ac.uk/publications/oopsla08abc
http://www.sable.mcgill.ca/publications/papers/2000-2/sable-paper-2000-2.ps
http://www.sable.mcgill.ca/publications/papers/2000-2/sable-paper-2000-2.ps
http://www.sable.mcgill.ca/publications/techreports/sable-tr-1998-4.ps
http://www.sable.mcgill.ca/publications/techreports/sable-tr-1998-4.ps

Listing 5: Output fragment for one block of one of the methods in the example
from Listing 4

method: InterfaceDemo.hardest

on entry to block: 4

rdef info: IState(Set(),List(Set((2,1), (3,1))))

tfa info:

entry bindings : Map()

entry type stack : [REFERENCE(InterfaceDemo$IA)]

0| STORE_LOCAL variable aa

bindings: Map(variable aa -> REFERENCE(InterfaceDemo$IA))

type stack : []

post rdef: IState(Set((variable aa,4,0)),List())

1| SCOPE_ENTER variable aa

bindings: Map(variable aa -> REFERENCE(InterfaceDemo$IA))

type stack : []

post rdef: IState(Set((variable aa,4,0)),List())

2| LOAD_LOCAL variable aa

bindings: Map(variable aa -> REFERENCE(InterfaceDemo$IA))

type stack : [REFERENCE(InterfaceDemo$IA)]

post rdef: IState(Set((variable aa,4,0)),List(Set((4,2))))

3| CALL_METHOD InterfaceDemo$IAInterfaceDemo$IA.f (dynamic)

bindings: Map(variable aa -> REFERENCE(InterfaceDemo$IA))

type stack : []

post rdef: IState(Set((variable aa,4,0)),List())

4| LOAD_LOCAL variable aa

bindings: Map(variable aa -> REFERENCE(InterfaceDemo$IA))

type stack : [REFERENCE(InterfaceDemo$IA)]

post rdef: IState(Set((variable aa,4,0)),List(Set((4,4))))

5| CHECK_CAST REFERENCE(InterfaceDemo$IB)

bindings: Map(variable aa -> REFERENCE(InterfaceDemo$IA))

type stack : [REFERENCE(InterfaceDemo$IB)]

post rdef: IState(Set((variable aa,4,0)),List(Set((4,5))))

6| CALL_METHOD InterfaceDemo$IBInterfaceDemo$IB.g (dynamic)

bindings: Map(variable aa -> REFERENCE(InterfaceDemo$IA))

type stack : []

post rdef: IState(Set((variable aa,4,0)),List())

7| SCOPE_EXIT variable aa

bindings: Map(variable aa -> REFERENCE(InterfaceDemo$IA))

type stack : []

post rdef: IState(Set((variable aa,4,0)),List())

8| RETURN (UNIT)

bindings: Map(variable aa -> REFERENCE(InterfaceDemo$IA))

type stack : []

post rdef: IState(Set((variable aa,4,0)),List())

17

Listing 6: See Sec. 3.2

method: InterfaceDemo.hardest

block: 1

type stack : []

no reaching-defs on the empty stack

0| CALL_METHOD java.lang.Systemjava.lang.System.currentTimeMillis (static-class)

type stack : [LONG]

reaching the slot at depth: 0

def: /CALL_METHOD java.lang.Systemjava.lang.System.currentTimeMillis (static-class) in block 1\

1| CONSTANT (Constant(0))

type stack : [LONG,LONG]

reaching the slot at depth: 0

def: /CONSTANT (Constant(0)) in block 1\

reaching the slot at depth: 1

def: /CALL_METHOD java.lang.Systemjava.lang.System.currentTimeMillis (static-class) in block 1\

2| CJUMP (LONG)EQ ? 2 : 3

last type stack : []

no reaching-defs on the empty stack

18

Listing 7: Examples of AST classes for 3-address form

/** ‘lhs’ gets a value assigned from the result of a method invocation (void is returned as UNIT,

* will be desugared later in GenJVM or GenMSIL)

*

* STYLE: dynamic / static(StaticInstance)

* Stack: ...:ref:arg1:arg2:...:argn

* ->: ...:result

*

* STYLE: static(StaticClass)

* Stack: ...:arg1:arg2:...:argn

* ->: ...:result

*

*/

case class FROM_METHOD_CALL(lhs: Local, method: Symbol,

style: opcodes.InvokeStyle, args: Array[Local]) extends ThreeAddressStmt {

override def toString(): String =

hostClass.fullName+"."+method.fullName+" ("+args.mkString(",")+") /* InvokeStyle: "+style.toString()+" */";

def hostClass: Symbol = method.owner;

/** This is specifically for preserving the target native Array type long

* enough that clone() can generate the right call.

*/

var targetTypeKind: TypeKind = UNIT // the default should never be used, so UNIT should fail fast.

def setTargetTypeKind(tk: TypeKind) = targetTypeKind = tk

def consumed = method.tpe.paramTypes.length + (

style match {

case opcodes.Dynamic | opcodes.InvokeDynamic => 1

case opcodes.Static(true) => 1

case opcodes.Static(false) => 0

case opcodes.SuperCall(_) => 1

}

)

def consumedTypes = {

val args = method.tpe.paramTypes map toTypeKind

style match {

case opcodes.Dynamic | opcodes.Static(true) => AnyRefReference :: args

case _ => args

}

}

def produced =

if(toTypeKind(method.tpe.resultType) == UNIT) 0

else if(method.isConstructor) 0

else 1

}

19

Listing 8: trait ExceptionHandlers

trait ExceptionHandlers { self: ICodes =>

import global.{Symbol, NoSymbol};

class ExceptionHandler(val method: IMethod, val label: String, val cls: Symbol) {

private var _startBlock: BasicBlock = _;

var finalizer: Finalizer = _;

/** Needed for the MSIL backend. */

var resultKind: TypeKind = _;

def setStartBlock(b: BasicBlock) = {

_startBlock = b;

b.exceptionHandlerStart = true

}

def startBlock = _startBlock;

/** The list of blocks that are covered by this exception handler */

var covered: immutable.Set[BasicBlock] = immutable.HashSet.empty[BasicBlock]

def addCoveredBlock(b: BasicBlock): ExceptionHandler = {

covered = covered + b

this

}

/** Is ‘b’ covered by this exception handler? */

def covers(b: BasicBlock): Boolean = covered(b);

/** The body of this exception handler. May contain ’dead’ blocks (which will not

* make it into generated code because linearizers may not include them) */

var blocks: List[BasicBlock] = Nil;

def addBlock(b: BasicBlock): Unit = blocks = b :: blocks;

override def toString() = "exh_" + label + "(" + cls.simpleName + ")";

/** A standard copy constructor */

def this(other: ExceptionHandler) = {

this(other.method, other.label, other.cls);

covered = other.covered;

setStartBlock(other.startBlock);

finalizer = other.finalizer;

}

def dup: ExceptionHandler = new ExceptionHandler(this);

}

class Finalizer(method: IMethod, label: String) extends ExceptionHandler(method, label, NoSymbol) {

override def toString() = "finalizer_" + label;

override def dup: Finalizer = new Finalizer(method, label);

}

object NoFinalizer extends Finalizer(null, "<no finalizer>") {

override def startBlock: BasicBlock = error("NoFinalizer cannot have a start block.");

override def setStartBlock(b: BasicBlock): Unit = error("NoFinalizer cannot have a start block.");

}

}

20

Listing 9: A snippet from the first prototype, to show reaching-defs and type-
stacks on the console

class GenCSharpPhase(prev: Phase) extends ICodePhase(prev)

{

def name = GenCSharpPlugin.PluginName

override def run {

if (settings.debug.value) inform("[running phase " + name + " on icode]")

if (settings.Xdce.value)

for ((sym, cls) <- icodes.classes ; if inliner.isClosureClass(sym) && !deadCode.liveClosures(sym))

icodes.classes -= sym

icodes.classes.values foreach apply

generateOutput()

}

override def apply(cls: IClass) {

for (method <- cls.methods if method.code != null) {

val rdef = new icodes.reachingDefinitions.ReachingDefinitionsAnalysis

rdef.init(method)

rdef.run

val tfa = new analysis.MethodTFA

tfa.init(method)

tfa.run

import icodes.opcodes.CALL_METHOD

import icodes.opcodes.Static

for (bb <- method.code.blocks) {

scala.Console.println("method: " + method.toString)

scala.Console.println("\t on entry to block: " + bb)

var rdefinfo = rdef.in(bb)

val icodes.reachingDefinitions.rdefLattice.IState(rdefVars, rdefStack) = rdefinfo

scala.Console.println("\t\t rdef info: " + rdefinfo)

var tfainfo = tfa.in(bb)

val tfa.lattice.IState(tfavars, tfastack) = tfainfo

scala.Console.println("\t\t tfa info: ")

scala.Console.println("\t\t\t entry bindings : " + tfavars)

scala.Console.println("\t\t\t entry type stack : " + tfastack.types.mkString("[", ",", "]"))

for ((ins, idx) <- bb.toList.zipWithIndex) {

scala.Console.println("\t\t" + idx + "|\t" + ins)

tfainfo = tfa.interpret(tfainfo, ins)

val tfa.lattice.IState(entryBindings, typeStack) = tfainfo

scala.Console.println("\t\t\t bindings: " + entryBindings)

scala.Console.println("\t\t\t type stack

: " + typeStack.types.mkString("[", ",", "]"))

/** Return the reaching definitions corresponding to the point after idx. */

rdefinfo = rdef.interpret(bb, idx, rdefinfo)

scala.Console.println("\t\t\t post rdef: " + rdefinfo)

}

}

}

}

} 21

	What's new over previous write-ups
	Jimplification in Soot
	ICode locals are typed, bytecode slots aren't
	ICodeReader.parseByteCode()
	From stack-based to untyped 3-address
	Bellamy's type inference: TypeResolver

	Prototypes using ICode mechanisms
	First prototype: seeing what ICode knows
	Second prototype: setting up maps inspired in Soot
	AST classes for Stackless ICode
	How to run the prototypes

	A3Code, finally
	Computing webs
	Once we have the webs
	The fine print

	TODO
	Understanding CALL_METHOD
	TODO A3PrettyPrinter, A3Phase

