
Making ILPrinterVisitor ready for Generics

c© Miguel Garcia, LAMP,

École Polytechnique Fédérale de Lausanne (EPFL)
http://lamp.epfl.ch/~magarcia

June 24th, 2010

Abstract

The process by which .msil files are written to disk starts with GenMSIL

building an internal representation of the assembly to serialize. This rep-
resentation comprises instances of AssemblyBuilder and TypeBuilder,
builders for type members, and ILGenerator instances. The resulting
tree (rooted at AssemblyBuilder) resembles a concrete syntax tree, with
each MethodBuilder and ConstructorBuilder (for non-abstract mem-
bers) owning an ILGenerator to record a stream of CIL instructions.
Serialization into an .msil file is the responsiblity of ILPrinterVisitor.
In order to make this visitor ready for Generics, it should serialize the
additions (for Generics) that the representation classes will exhibit. Af-
ter these updates, switching to CCI (Common Compiler Infrastructure)
should be easier: only ILPrinterVisitor and its two subclasses would
need to be re-written, while AssemblyBuilder & Co. will stay the same.

Contents

1 IDE Setup 1
1.1 Volatiles make their splash . 2
1.2 Bringing in predef.dll and JavaFilesCompilerMSIL.dll 3
1.3 Trying our luck with scala-lib . 4

2 What needs to be changed 5
2.1 Grammar productions . 5
2.2 Well-Formedness-Rules (WFRs) . 6
2.3 Looking back at metadata parsing . 6

3 caseTypeBuilder() and caseMethodBuilder() do generics 8
3.1 References to type-params in type ascriptions 9
3.2 Unparsing (references to) constructed types 9

4 To be Continued 9

5 NaN, Infinity, and -Infinity in ILAsm 10

1 IDE Setup

For those just arriving to The Scala Compiler Corner, here go the instructions
to set up a debugging session:

1

http://lamp.epfl.ch/~magarcia

svn co http://lampsvn.epfl.ch/svn-repos/scala/scala-msil/trunk sn2

ant clean build

I’ve unpacked the .dlls from ikvmbin-0.43.3824 into Z:\scalaproj\mscor\sn2,
adding scalaruntime.dll, mscorlib.dll, and System.dll (all from the lib folder
in scala-msil)

• Main class: scala.tools.nsc.Main

• VM parameters:

-Xbootclasspath/a:Z:\scalaproj\sn2\build\pack\lib\scala-compiler.jar;

Z:\scalaproj\sn2\build\pack\lib\scala-library.jar

When compiling the compiler for JVM we also included:

Z:\scalaproj\sn2\lib\fjbg.jar;

Z:\scalaproj\sn2\lib\msil.jar

but they are not necessary now (in fact, they were not necessary then
either, somehow they managed to slip through all along).

• Program parameters:

-target:msil -Xassem-extdirs Z:\scalaproj\mscor\sn2

-no-specialization -Ystruct-dispatch:no-cache

-Ydebug

@Z:\scalaproj\sn2\allLibraryFiles.txt

As you can see, rather than listing all the .scala files as in previous write-
ups, I’ve become in the meantime a big fan of @ parameters to scalac (I
was getting funky errors due to the interplay of source folder and whatever
when sticking to the old habit).

• Working directory: Z:\scalaproj\sn\src

1.1 Volatiles make their splash

So that you see the realities of software, on first attempt we get an exception
(scala.tools.nsc.MissingRequirementError) because scala.runtime.VolatileBooleanRef

can’t be found (Definitions.scala). The following:

volatileRefClass(clazz) = getClass("scala.runtime.Volatile" + name + "Ref")

causes trouble because VolatileByteRef and similar (Java) classes were not there
last time. The volatileRefClass map is used at:

2

Two write-ups ago we prepared JavaFilesInScalaLib.dll, containing just
scala.math.ScalaNumber and scala.runtime.BoxesRunTime because in those times
those were the only .java files not delivered out-of-the-box in scalaruntime.dll.
But now some more .java files show up under src\dotnet-full-library:

scala.reflect.ScalaLongSignature

scala.reflect.ScalaSignature

scala.runtime.ArrayRuntime

scala.runtime.VolatileBooleanRef

scala.runtime.VolatileByteRef

scala.runtime.VolatileCharRef

scala.runtime.VolatileDoubleRef

scala.runtime.VolatileFloatRef

scala.runtime.VolatileIntRef

scala.runtime.VolatileLongRef

scala.runtime.VolatileObjectRef

scala.runtime.VolatileShortRef

The scala-lib.dll compiled in a previous write-up also does not contain the
Volatile classes. They need to be compiled. The .bat file in Listing 1 just got
longer.

An update:

In the repository-based build, scalaruntime.dll is not created with ikvmc.
Instead, for each .java file in the src/library folder a corresponding C# file is
created in src/dotnet-library and then compiled with:

mcs -target:library -out:scalaruntime.dll ‘find src/dotnet-library -name *.cs‘

Documentation about this at http://lampsvn.epfl.ch/trac/scala/browser/
scala-msil/trunk/src/dotnet-library/README

1.2 Bringing in predef.dll and JavaFilesCompilerMSIL.dll

We copy scala-lib.dll into Z:\scalaproj\mscor\sn2 and rename it to predef.dll.
Together with JavaFilesCompilerMSIL.dll (details in the “Bootstrap (1 of 2)”
write-up). If you prefer, the command-line to compile the compiler is shown in
Listing 2. To reproduce, run Z:\scalaproj\sn2>compCompiler.bat without forgetting
to place JavaFilesCompilerMSIL.dll alongside the other dlls, that one contains
the ch.epfl.lamp.msil package.

3

http://lampsvn.epfl.ch/trac/scala/browser/scala-msil/trunk/src/dotnet-library/README
http://lampsvn.epfl.ch/trac/scala/browser/scala-msil/trunk/src/dotnet-library/README

Listing 1: So that Definitions can find the Volatiles it looks for

rd /Q /S .\classes
mkdir classes

javac −d .\classes −cp .\classes Z:\scalaproj\sn2\src\dotnet−full−library\scala\math\ScalaNumber.java
javac −d .\classes −cp .\classes Z:\scalaproj\sn2\src\dotnet−full−library\scala\runtime\BoxesRunTime.java

javac −d .\classes −cp .\classes Z:\scalaproj\sn2\src\dotnet−full−library\scala\reflect\ScalaLongSignature.java
javac −d .\classes −cp .\classes Z:\scalaproj\sn2\src\dotnet−full−library\scala\reflect\ScalaSignature.java

javac −d .\classes −cp .\classes Z:\scalaproj\sn2\src\dotnet−full−library\scala\runtime\ArrayRuntime.java
javac −d .\classes −cp .\classes Z:\scalaproj\sn2\src\dotnet−full−library\scala\runtime\VolatileBooleanRef.java
javac −d .\classes −cp .\classes Z:\scalaproj\sn2\src\dotnet−full−library\scala\runtime\VolatileByteRef.java
javac −d .\classes −cp .\classes Z:\scalaproj\sn2\src\dotnet−full−library\scala\runtime\VolatileCharRef.java
javac −d .\classes −cp .\classes Z:\scalaproj\sn2\src\dotnet−full−library\scala\runtime\VolatileDoubleRef.java
javac −d .\classes −cp .\classes Z:\scalaproj\sn2\src\dotnet−full−library\scala\runtime\VolatileFloatRef.java
javac −d .\classes −cp .\classes Z:\scalaproj\sn2\src\dotnet−full−library\scala\runtime\VolatileIntRef.java
javac −d .\classes −cp .\classes Z:\scalaproj\sn2\src\dotnet−full−library\scala\runtime\VolatileLongRef.java
javac −d .\classes −cp .\classes Z:\scalaproj\sn2\src\dotnet−full−library\scala\runtime\VolatileObjectRef.java
javac −d .\classes −cp .\classes Z:\scalaproj\sn2\src\dotnet−full−library\scala\runtime\VolatileShortRef.java

del JavaFilesInScalaLib . jar
jar −cf JavaFilesInScalaLib . jar −C .\classes\ .
del JavaFilesInScalaLib . dll
ikvmc −target: library JavaFilesInScalaLib . jar

Listing 2: Command-line to compile the compiler (Sec. 1.2)

cd Z:\scalaproj\sn\src

”C:\Program Files\Java\jdk1.6.0 19\bin\java” −Xms512M −Xmx1236M −Xss8M −XX:MaxPermSize=128M
−Xbootclasspath/a:Z:\scalaproj\sn2\build\pack\lib\scala−compiler.jar;Z:\scalaproj\sn2\build\pack\lib\scala−library.jar −classpath
”C:\Program Files\Java\jdk1.6.0 19\jre\lib\alt−rt.jar;C:\Program Files\Java\jdk1.6.0 19\jre\lib\charsets.jar;C:\Program
Files\Java\jdk1.6.0 19\jre\lib\deploy.jar ;C:\Program Files\Java\jdk1.6.0 19\jre\lib\javaws.jar;C:\Program
Files\Java\jdk1.6.0 19\jre\lib\jce. jar ;C:\Program Files\Java\jdk1.6.0 19\jre\lib\jsse.jar ;C:\Program
Files\Java\jdk1.6.0 19\jre\lib\management−agent.jar;C:\Program Files\Java\jdk1.6.0 19\jre\lib\plugin.jar;C:\Program
Files\Java\jdk1.6.0 19\jre\lib\resources. jar ;C:\Program Files\Java\jdk1.6.0 19\jre\lib\rt.jar ;C:\Program
Files\Java\jdk1.6.0 19\jre\lib\ext\dnsns.jar;C:\Program Files\Java\jdk1.6.0 19\jre\lib\ext\localedata.jar;C:\Program
Files\Java\jdk1.6.0 19\jre\lib\ext\sunjce provider. jar ;C:\Program Files\Java\jdk1.6.0 19\jre\lib\ext\sunmscapi.jar;C:\Program
Files\Java\jdk1.6.0 19\jre\lib\ext\sunpkcs11.jar”
scala . tools .nsc.Main
−target:msil
−Xassem−name compilerRESULT
−Xassem−extdirs Z:\scalaproj\mscor\sn2
−no−specialization −Ystruct−dispatch:no−cache
−d Z:\scalaproj\sn2\out
@Z:\scalaproj\sn2\ allCompilerfiles . txt

copy Z:\scalaproj\sn2\out\compilerRESULT.msil Z:\scalaproj\mscor\sn2\scala−compiler.msil

ilasm /QUIET /DEBUG /EXE scala−compiler.msil

cd Z:\scalaproj\sn2\

1.3 Trying our luck with scala-lib

By now you may have realized that before getting to ILPrinterVisitor proper
we’re checking whether the latest version from trunk compiles the sources that
were patched to comply with IKVM.

I’m eliding here some funky errors I was getting for not using an @ parameter
in the launch configuration. In general, there’s no easy way to determine if
compilation errors are unrelated to Scala.NET (say, by successufully compiling
those same sources “for JVM” for comparison). In our case, sources already
contain references to .NET (System.Object in the snippet).

The changes to the Scala.NET compiler required to bootstrap are minimal,
as shown in Figure 1 (that summary should have appeared in the write-up on
bootstrapping). ILPrinterVisitor is also shown there, but due to differences
in formatting only. By the end of this write-up, it will have been updated in
preparation for Generics.

4

Figure 1: Changes required in Scala.NET to bootstrap

2 What needs to be changed

Each node handler in the msil.emit.Visitor trait returns Unit, and their real-
ization in ILPrinterVisitor chooses the visit order of child nodes (by invoking
print(node), which in turn applies the visitor). To realize a multi-pass visitor
(CCI likely requires that), a visitor can be defined that visits in some order and
delegates node processing proper to subclasses mixing-in this trait.

At the level of msil.emit, support for generics comprises:

• definitions introducing type parameters into scope (type, instance con-
structor, and method definitions). The kinds of constraints (on type ar-
guments) that a type-param may specify are: variance, reference or value
type, default constructor, base type, and supported interfaces.

• references to generic types, constructor, or methods. In all cases, these
references must be to instantiations i.e., a type argument must be supplied
for each parameter. The supplied type argument may be a reference to
a type parameter in scope (an instantiation need not denote a concrete
type). In ILAsm, these references can appear4:

– as part of type ascriptions (this includes type-param constraints)

– in an explicit .override

– as part of an invocation of a generic method

We review next (most of) the grammar productions for the items above.

2.1 Grammar productions

ILAsm grammar productions for type definitions:

.class <flags> <dotted_name> < <gen_params> > [extends <class_ref>] [implements <class_refs>] { ... }

<gen_params> ::= <gen_param> [, <gen_param>]*

<gen_param> ::= [<constraint_flags>] [(<constraints>)] <gen_param_name>

5

<constraint_flags> ::= + | - | class | valuetype | .ctor

<constraints> ::= <class_ref> [, <class_ref>]*

And for method definitions:

<gen_method_def> ::=

.method <flags> <call_conv> <ret_type> <name>< <gen_params> > (<arg_list>) <impl>

{ <method_body> }

2.2 Well-Formedness-Rules (WFRs)

The WFRs around generics are formulated in terms of the “logical metadata”
format, but their mapping to ILAsm should be apparent. A sample of the WFRs
for generic method definitions follows:

• The implementation flags <impl> of a generic method definition may be
only cil or managed (the defaults).

• The <flags> clause of a generic method definition cannot contain the
pinvokeimpl flag.

• The <call_conv> of a generic method cannot be vararg.

• Class constructors (.cctor) cannot be generic, because they are not called
explicitly, so there is no way to specify a type argument for a .cctor. The
instance constructors (.ctor), which are called explicitly (newobj instruc-
tion), can be generic [1]

A WFR about references to generic methods:

• When calling (or otherwise referencing) a generic method instantiation
directly, you need to specify its signature as it was defined, not as it became
in the instantiation. It is the same rule that applies to calling nongeneric
methods of generic types: if a parameter or return type of the method is
declared as a type parameter (of class or method) number 0, it should be
specified as such at the call site, no matter what type substitutes for the
type parameter number 0. [1] The only text being different are the type
arguments, otherwise a method reference resembles the signature of its
definition.

TODO It would be great if some of the WFRs around generics were made
checkable on TypeBuilder and such.

2.3 Looking back at metadata parsing

We added fields to msil.Type to hold type-params defs, and these fields are in-
herited by TypeBuilder. Given that ILPrinterVisitor serializes all ...Builders,
we review here those additions.

• http://lampsvn.epfl.ch/trac/scala/changeset/22150

• http://lampsvn.epfl.ch/trac/scala/changeset/22212

6

http://lampsvn.epfl.ch/trac/scala/changeset/22150
http://lampsvn.epfl.ch/trac/scala/changeset/22212

Listing 3: TMVarUsage, (Sec. 2.3)

static final class TMVarUsage extends Type {

public final int Number;

public final boolean isTVar;

/** Non-defining reference to either a TVar or an MVar */

public TMVarUsage(int Number, boolean isTVar) {

super(null, 0, ((isTVar ? "!" : "!!") + Number), null, null, null, 0, null);

this.Number = Number;

this.isTVar = isTVar;

}

public String toString() {

return (isTVar ? "!" : "!!") + Number;

}

}

Basically, as shown in Listing 3 and Listing 4, which in turn are used in:

msil.Type sports a getSortedTVars() getter, while MethodInfo has getSortedMVars().
Both return an array of GenericParamAndConstraints and perform sorting on
demand. Whenever a type-param definition is added (by invoking addTVar

or addMVar) the sorting is invalidated (sortedTVars = null resp. sortedMVars

= null) and recomputed upon the getter’s invocation.

Listing 4: GenericParamAndConstraints, (Sec. 2.3)

public class GenericParamAndConstraints {

public GenericParamAndConstraints(int Number, String Name, Type[] Constraints,

boolean isInvariant, boolean isCovariant, boolean isContravariant)

{ // TODO representation for the class and new() constraints missing

. . .

}

public final int Number;

public final String Name; // can be null

public final Type[] Constraints; // can be empty array

public final boolean isInvariant; // only relevant for TVars, not for an MVar

public final boolean isCovariant; // only relevant for TVars, not for an MVar

public final boolean isContravariant; // only relevant for TVars, not for an MVar

public String toString() { . . . }

}

7

Figure 2: msil.Type

3 caseTypeBuilder() and caseMethodBuilder() do
generics

The latest additions to msil.Type (e.g., sortedTVars for parsing metadata, Sec. 2.3)
don’t follow the TypeBuilder idioms to build type representations (DefineField(),
DefineMethod(), DefineConstructor(), and DefineNestedType()). Instead, type
parameters are defined by invoking:

public void addTVar(GenericParamAndConstraints tvarAndConstraints) {

sortedTVars = null;

tVars.add(tvarAndConstraints);

}

on a type. Actually, invoking addTVar() on PEType and TypeBuilder make sense,
unlike for the two other subclasses of the msil.Type abstract class (TMVarUsage
and PrimitiveType). For similar reasons, a TMVarUsage shouldn’t be stored in the
Type.types map from a type’s fullname to its representation, i.e. don’t invoke
Type.addType(t) with t a TMVarUsage (there’s an assert guarding against this,
BTW).

In ILAsm notation, lists of type params (enclosed in angle brackets) follow
the same grammar production for both types and methods, and thus the fol-
lowing helper (in ILPrinterVisitor) unparses them (those lists differ in WFRs
however, e.g. variance can’t be specified for method-scoped type params).

def printTypeParams(sortedTVars : Array[GenericParamAndConstraints])

Actually, we need to unparse type-param names only for types we define
ourselves, as the following comment in ILPrinterVisitor shows:

def tparamName(tVar : GenericParamAndConstraints) = {

/* TODO Type-params in referenced assemblies may lack a name

(those in a TypeBuilder or MethodBuilder shouldn’t).

Given that we need not list (in ilasm syntax) the original type-params’ names when

providing type arguments to it, the only type-param-names we’ll serialize into a .msil file

are those for type-params in a TypeBuilder or MethodBuilder. Still, more details on this

appear in Sec. 4.5 "Faulty metadata in XMLReaderFactory" of

http://lamp.epfl.ch/~magarcia/ScalaCompilerCornerReloaded/Libs4Lib.pdf

8

To avoid name clashes when choosing a param name,

first collect all existing tparam-names from a type (and its nested types).

Not that those names are needed (ordinal positions can be used instead)

but will look better when disassembling with ildasm. */

assert(tVar.Name != null)

tVar.Name

}

3.1 References to type-params in type ascriptions

There’s another low-hanging fruit besides those described in the previous sub-
section. Given that TMVarUsage subclasses msil.Type, existing unparsing code
will produce the correct ILAsm syntax whenever a type-param is addressed.
ILPrinterVisitor.printReference() serializes the TMVarUsage’s Name as an ordi-
nal reference (due to the assignment shown in Listing 3).

A type-param reference (ordinal or name-based) always refers to a type
param defined in the immediately enclosing scope (type for !-style usages,
method or instance constructor for !!-style usages) (EXCEPT when referring
to the signature of a generic method, as part of invocations or explicit overrides,
where type-param usages refer to the type vars in scope in the method declara-
tion). Unlike in Java, in a class N nested in C, the type params (if any) of C are
not in scope in N.

A TMVarUsage neither points nor is pointed to by other nodes (as already
mentioned, the trees rooted at AssemblyBuilder are CSTs rather than ASTs).

3.2 Unparsing (references to) constructed types

In keeping with .NET speak, appling a type constructor to type-args results in
a constructed type:

.field private class List‘1<string> nameList

.field private class List‘1<[mscorlib]System.Type> typeList

Note: Please notice the class keyword in the snippet above (in a type ref-
erence) hinting ilasm to encode the thing as a row in the TypeSpec ta-
ble (and not in the TypeRef table). Quoting from [1, p. 232]: “This
is a general rule of ILAsm, not specific to the generic type instantiations.
For example, the notation [mscorlib]System.Type translates into a TypeRef,
while the notation class [mscorlib]System.Type translates into a TypeSpec

with the signature {E T CLASS, <token>}, where <token> is a TypeRef token of
[mscorlib]System.Type.”

4 To be Continued

At this point we noticed that no more changes to ILPrinterVisitor make sense
until the representation of generics in terms of msil.Type has been decided, and
for that we need to extend TypeParser. That’s the topic of the next write-up.
We’ll start there with a newly added class for this purpose:

9

Listing 5: Quiet NaN vs. Signaling NaN (Sec. ??)

. . .

} else if (value.isInstanceOf[Float]) {

// TODO !!! check if encoding is correct

val bits = java.lang.Float.floatToRawIntBits((value.asInstanceOf[Float]).floatValue())

// float32(float32(...)) != float32(...)

print("float32 (float32 (")

/* see p. 170 in Lidin’s book Expert .NET 2.0 IL Assembler */

val valFlo = value.asInstanceOf[Float]

if (java.lang.Float.NaN == valFlo) print("0xFFC00000 /* NaN */ ") /*- TODO this is ‘quiet NaN’,

http://www.savrola.com/resources/NaN.html , what’s the difference with a ‘signaling NaN’ ?? */

else if (java.lang.Float.NEGATIVE_INFINITY == valFlo) print("0xFF800000 /* NEGATIVE_INFINITY */ ")

else if (java.lang.Float.POSITIVE_INFINITY == valFlo) print("0x7F800000 /* POSITIVE_INFINITY */ ")

else print(bits)

print("))")

} else if (value.isInstanceOf[Double]) {

. . .

5 NaN, Infinity, and -Infinity in ILAsm

Quoting from [1]:

Floating-point numbers have special cases, such as positive infinity,
negative infinity, and not-a-number (NaN), that cannot be presented
textually in simple floating-point format. In these special cases, the
floating-point constants can alternatively be represented as integer
values with a matching byte count . . .

.field public float32 fPosInf = float32(0x7F800000)

.field public float32 fNegInf = float32(0xFF800000)

.field public float32 fNAN = float32(0xFFC00000)

The current solution appears in Listing 5.

TODO References to type-params in CIL instructions

References

[1] Serge Lidin. Expert .NET 2.0 IL Assembler. Apress, Berkely, CA, USA,
2006.

10

	IDE Setup
	Volatiles make their splash
	Bringing in predef.dll and JavaFilesCompilerMSIL.dll
	Trying our luck with scala-lib

	What needs to be changed
	Grammar productions
	Well-Formedness-Rules (WFRs)
	Looking back at metadata parsing

	caseTypeBuilder() and caseMethodBuilder() do generics
	References to type-params in type ascriptions
	Unparsing (references to) constructed types

	To be Continued
	NaN, Infinity, and -Infinity in ILAsm

