Notes on GenMSIL

(© Miguel Garcia, LAMP,
Ecole Polytechnique Fédérale de Lausanne (EPFL)
http://lamp.epfl.ch/~magarcia

April 28%, 2010

Contents
11 Following the steps of GenMSIL’s elder brother: GenJVV 2
[2__From IClass to VM-level type| 3
2.1 ested types| 4
13 Translating type members| 5
[4 _Handling static modules| 5
E odule instance field, the GenMSIL story ...|. 6
(2 Tand now the GenJVM story] 7
M3 Static ITUAZETS] - - « « « « « v v oo e e 7
4.4 dumpMirrorClass|. 10
[5"Adding constructors| 10
|6 Adding fields the GenMSIL wa 11
[6.T Adding outerField and a fake local for debugging purposes| 11
[7__Adding methods in GenMSIL) 12
[7.1 Generics, exception list, and annotations (including those for parameters)| 13
I8 Translating code blocks| 13
|9 Iltems not covered in previous sections| 13
0.1 invokedynamic| 13
0.2 Forwardersl 13
9.3 GenMSIL’s createDelegateCaller(paramType, resType)| 14
[I0Conclusions| 14

http://lamp.epfl.ch/~magarcia

Abstract

I used to believe that GenJVM and GenMSIL just duplicated one-to-one
fields, methods, and code blocks from ICode into bytecode, but in fact
there’s a fair share of non-trivial desugaring going on too. It would be
interesting to identify which of those desugarings could be performed as
ICode-to-ICode transformations. The motivation for this is our ongo-
ing work on Scala.Net, where the compiler currently emits MSIL in the
textual format expected by the IL Assembler. Making GenMSIL directly
produce a .NET assembly (e.g., reusing Microsoft’s Common Compiler
Framework) amounts to rewriting large portions of GenMSIL. Before do-
ing that, we explore in these notes the pros and cons of breaking apart
GenMSIL into two phases (ICode-to-ICode desugarings followed by a more
straightforward CLR-serialization phase). The resulting flexibility might
also prove useful for future backends that may need the results of the first
but not the second subphase (e.g., OpenCL, LLVM, program verification
frameworks, etc.). As a sidenote, when translating a Scala program into a
backend other than JVM or CLR, it is assumed that input programs make
reference only to libraries supported by the target platform. As another
advantage, an ICode-to-ICode phase would avoid unwarranted divergence
across backends (for language features that should be kept consistent).

1 Following the steps of GenMSIL’s elder brother:
GenJVM

The override of ICodePhase.run in JymPhase performs dead code elimination and
then applies codeGenerator.genClass(cls) to each IClass arriving at this phase.
genClass(IClass) is declared in BytecodeGenerator, which constitutes 99% of
GenJVM. Instead of building all JVM-level types in memory, genClass serializes
to disk each .class before processing the next IClass.

In genClass, all cls.symbol.info.parents after the first one are taken to
be interfaces. Before getting the javaName of their typeSymbol, additional super-
types are added (SerializableClass .tpe, CloneableClass.tpe, and RemoteInterface. tpe)
depending on the cls.symbol.annotations. Afterwards, no modifications to the
list of supertypes takes place.

GenMSIL instead goes first over all IClasses to find an entry point for the
future assembly, the symbol of the method thus found is tracked in (MSIL’s)
ByecodeGenerator.entryPoint. Additionally, the first non-nested IClass during
that iteration gives the string value for ByecodeGenerator.firstSourceName.

A single assembly file will be written to disk (not each CLR-level type indi-
vidually) and it’s the job of initAssembly() to prepare the ground for that (e.g.,
by setting two java.io.File fields: outDir and srcPath). From this point on,
the assembly being generated will be represented as an AssemblyBuilder (whose
constructor takes an AssemblyName, which as of now lacks public key tokens,
identifying the assembly just by assemName):

massembly = AssemblyBuilderFactory.DefineDynamicAssembly (assemblyName)

The last thing initAssembly() does before returning is creating the internal
representation of the main module (where all types and “global methods” will
go). The only global method that gets emitted by writeAssembly is globalMain
to become the assembly’s entry point.

mmodule = massembly.DefineDynamicModule(moduleName,
new File(outDir, moduleName) .getAbsolutePath())

BTW, it’s not clear why MsilPhase extends GlobalPhase and not ICodePhase
like GenJVM does (an MsilPhase can access IClasses using global.icodes.classes).

After initializing the AssemblyBuilder, GenMSIL goes on to create contents in
a top-down manner:

classes.values foreach codeGenerator.createTypeBuilder
classes.values foreach codeGenerator.createClassMembers

Afterwards, it decorates some more the created types: as shown below,
genClass adds cloning methods, dumps a mirror class for top-level modules
without a companion class, adds the symtab attribute, and other type attributes
dictated by the iclass.sym.annotations. Oh, and one more thing: genMethod
is also invoked on each iclass.methods. In terms of code, this third and last
iteration over classes.values looks as follows:

try {

classes.values foreach codeGenerator.genClass
} finally {

codeGenerator.writeAssembly

}

2 From IClass to VM-level type

With the information collected so far, GenJVM creates a JVM-level type (a
ch.epfl.lamp.fjbg.JClass) for the IClass being processed.

The correspondence IClass <+ JClass need not be tracked outside the genClass
method. In contrat, GenMSIL tracks this correspondence with the types field in
the SymbolLoaders.clrTypes object. That field allows finding a msil.Type for an
IClass.symbol.

During createTypeBuilder (IClass), GenMSIL catches up with GenJVM by com-
puting the supertypes. Please beware that inside file GenMSIL.scala the unquali-
fied Type refers to Type from trait scala.tools.nsc.symtab.Types, not msil.Type,
because of the following import:

import ch.epfl.lamp.compiler.msil.{Type => MsilType, _}

After running

val interfaces: Array[MsilType] =
parents.tail.map(p => msilTypeFromSym(p.typeSymbol)).toArray

interfaces always contains MsilTypes for which a TypeBuilder has already been
created, because of the way msilTypeFromSym works: it creates a builder in case
the types map does not yet map to it. Alternatively, all type representatives
could be created first to add the supertype topology later (I guess this idiom is
more frequent).

TODO add definitions.ObjectClass.tpe as first supertype (to IClasses that
are not interfaces) whenever it’s not in that position, not only when the parents
list is empty

At this point, the type representatives created by the JVM and MSIL back-
ends are in both cases connected over the supertype topology. GenMSIL went one
step further in connecting nested types to their declaring types (where “nest-
ing” equates iclass.symbol.isNestedClass) while GenJVM will do that only at
emitClass time (see Sec. , using as “nesting” criteria the following:

def addOwnInnerClasses(cls: Symbol) {
for (sym <- cls.info.decls.iterator if sym.isClass)
innerClasses = innerClasses + sym;

}

// add inner classes which might not have been referenced yet

atPhase (currentRun.erasurePhase.next) {
addOwnInnerClasses(clasz.symbol)
addOwnInnerClasses(clasz.symbol.linkedClass0fClass)

}

Method addOwnInnerClasses is not the only place where the innerClasses:

Set [Symbol] is assigned, invoking the getter-like javaName (sym: Symbol): String

has that as side-effect:

if (sym.isClass && !sym.rawowner.isPackageClass && !sym.isModuleClass) {
innerClasses = innerClasses + sym;

}

TODO I guess the above behavior has to be preserved in GenMSIL

2.1 Nested types

Nothing in IClass points to nested or owning classes, however the following may
be true: IClass.symbol.isNestedClass. The CLR-level type will have a different
owner in each case (where sym is iclass.symbol):

if (sym.isNestedClass) {
val ownerT = msilTypeFromSym(sym.owner) .asInstanceOf [TypeBuilder]
val tBuilder =
ownerT.DefineNestedType (msilName (sym), msilTypeFlags(sym), superType, interfac
mapType (sym, tBuilder)
} else {
val tBuilder =
mmodule.DefineType (msilName (sym), msilTypeFlags(sym), superType, interfad
mapType(sym, tBuilder)
}

es)

es)

TODO factor mapType (sym, tBuilder) out to appear after the if-then-else

In the GenJVM world, there’s something going on about nested classes as late
as emitClass. Look:

def emitClass(jclass: JClass, sym: Symbol) {
addInnerClasses(jclass) /*- <-- this must have sthg to do with nested classes */
val outfile = getFile(sym, jclass, ".class")
val outstream = new DataOutputStream(outfile.bufferedOutput)
jclass.writeTo(outstream)
outstream.close()
informProgress("wrote " + outfile)

3 Translating type members

To give some context, in GenMSIL we have explored how TypeBuilders come to
being, and are ready to tackle createClassMembers:

codeGenerator.initAssembly

classes.values foreach codeGenerator.createTypeBuilder
classes.values foreach codeGenerator.createClassMembers /*- <-- we’re about to ent]

try {

classes.values foreach codeGenerator.genClass
} finally {

codeGenerator.writeAssembly

}

er here */

In GenJVM, the first type members to be added to the current JClass are for
static initialization, where we meet isStaticModule as discussed in the following
subsection.

In GenMSIL, createClassMembers follows a different order: it adds fields first,
then methods (unless the IClass is definitions.ArrayClass which also has spe-
cial handling in GenJVM), and finally adds static initializers as parf of handling
static module as discussed next.

4 Handling static modules
Depending on whom you ask, a static module is:

e According to GenJVM.BytecodeGenerator:

def isStaticModule(sym: Symbol): Boolean = {
sym.isModuleClass && !sym.isImplClass && !sym.hasFlag(Flags.LIFTED)
}

e According to GenMSIL.BytecodeGenerator:

// if the module is lifted it does not need to be initialized in

// its static constructor, and the MODULE$ field is not required.

// the outer class will care about it.

private def isStaticModule(sym: Symbol): Boolean = {
// .net inner classes: removed ’!sym.hasFlag(Flags.LIFTED)’, added
// ’sym.%sStatic’. -> nmo longer compatible without skipping flatten!
sym.isModuleClass && sym.isStatic && !sym.isImplClass

}

e According to Symbol:

final def isStaticModule = isModule && isStatic && !isMethod

Firing Find usages for the GenJVM and the GenMSIL versions of the above
allows pinpointing where the emitted code has to abide by “static module se-
mantics”. For example (there are others), it influences how a SuperCall is
executed:

Method
e | £ isStaticModule (Symbal)
= Found usages (5 usages)
E} Value read (5 o }
-5 compiler (3
- scala. tools, nsc.backend. jvm (5 usages);
|- (0@ GenVM.scala (5 usages)
{ f (isStaticModule(c.symbol) || serialVUID = None || dasz.bootstrapClass.isDefined) {
53 (22 f (isstaticModule{c. symbol))
f (isstaticModule(dasz. symbal)) {
isStaticModule(dasz. symbal)) {
it (isstaticModule(dasz.symbol) && lisModuleInitialized &8

Figure 1: Places in GenJVM where code emission depends on isStaticModule

=~ Method
b | f izStaticModule(Symbaol)
= Found usages (7 usages)

=} Value read (3w }

=1~ 55 compiler (-)
=% scala, tools.nsc,backend. msil (7 usages)
=)~ (g GenMSIL.scala (3 usages)
s T0527 55T lisStaticModule|dasz, symbol) &8

f (isstaticModule{sym.owner) && msilName(sym) == "main”)
11if (isStaticModulelicass. symbal)) {

Figure 2: Places in GenMSIL where code emission depends on isStaticModule

case SuperCall(_) => /*- snippet from GenMSIL */
mcode .Emit (OpCodes.Call, constructorInfo)
if (isStaticModule(clasz.symbol) &&
notInitializedModules.contains(clasz.symbol))
{
notInitializedModules -= clasz.symbol
mcode .Emit (OpCodes.Ldarg_0)
mcode.Emit (OpCodes.Stsfld, getModuleInstanceField(clasz.symbol))
}

Instead of cataloging here all those places where code emission depends on
isStaticModule, we’ll cover them in the context of the construct being emit-
ted. Figure [I] shows those places in GenJVM where code emission depends on
isStaticModule, and Figure 2| does the same for GenMSIL.

4.1 Module instance field, the GenMSIL story ...

At the end of createClassMembers(IClass) in GenMSIL we find:

if (isStaticModule(iclass.symbol)) {
addModuleInstanceField(iclass.symbol)
notInitializedModules += iclass.symbol
addStaticInit(iclass.symbol)

}

CA T Object {izva.&ng!
= f_} T CustomattributeProvider (o7, eof Bmo. compier. mai)
= -@ & MemberInfo (o7 cof Bmo. compilar. i)

EI Ué:,l 'h FieldInfo 'i'."' L

S P YFieldBuilder (

Figure 3: FieldBuilder hierarchy

addModuleInstanceField retrieves a TypeBuilder for the iclass.symbol not by
using msilTypeFromSym (as we've seen so far) but with the help of getType. With
the TypeBuilder thus obtained, a FieldBuilder for MODULE$ is created. Also in

GenMSIL.BytecodeGenerator there’s mapType(sym: Symbol, mType: MsilType) which

simply adds a pair to the clrTypes.types map.

Comparing the similarly named addModuleInstanceField in GenMSIL and GenJVM

reveals them to do the same, with the addition that in MSIL the c1rTypes.fields
map (from Symbol to FieldInfo) is used to track the just created FieldBuilder
(Figureshows FieldBuilders to be FieldInfos) using the iclass.symbol as key
(therefore, c1rTypes.fields tracks only MopuLE$ fields).

4.2 ...and now the GenJVM story

The static module field is added just after creating the current JClass. The
relevant code is shown in Figure[7]on p. [15] (we’ll revisit a lot that code fragment),
where it reads:

if (isStaticModule(c.symbol) || serialVUID != None || clasz.bootstrapClass.isDef
if (isStaticModule(c.symbol))
addModuleInstanceField; /*- <-- here */
addStaticInit(jclass, c.lookupStaticCtor)

fined) {

4.3 Static initializers

As a reminder, Figures [f] and [§] quote from the JVM spec about initializers.

Reading a few more lines in Figure [7] shows that a static initializer is added
whenever the IClass isStaticModule, has a serialization version ID, or par-
ticipates in invokedynamic (Sec. , or fulfills none of these conditions but
containsStaticCtor. That means, a static module always has a static construc-
tor.

Of both similary named addStaticInit, the GenMSIL version sports longer
comments, so we start with it (reproduced below).

Unlike its GenJVM counterpart, static initializers are added here by GenMSIL
only for IClasses that are static modules. Such static initializer contains three IL
instructions: (1) newobj invoking the primary constructor of the (static module)

3.9 Specially Named Initialization Methods

At the level of the Java virtual machine. every constructor (JLS3 §8.8) appears as
an instance initialization method that has the special name <init>. This name is
supplied by a compiler. Because the name <init> is not a valid identifier, it can-
not be used directly in a program written in the Java programming language.
Instance initialization methods may be invoked only within the Java virtual
machine by the invokespecial instruction, and they may be invoked only on unini-
tialized class instances. An instance initialization method takes on the access per-
missions (JLS3 §6.6) of the constructor from which it was derived.

A class or interface has at most one class or interface initialization method and
is initialized (§5.5) by invoking that method. The initialization method of a class or
interface is static, takes no arguments, and has the special name <clinit>.” This
name is supplied by a compiler. Because the name <c1init> is not a valid identi-
fier. it cannot be used directly in a program written in the Java programming lan-
guage. Class and interface initialization methods are invoked implicitly by the Java
virtual machine; they are never invoked directly from any Java virtual machine
instruction, but are invoked only indirectly as part of the class initialization process.

Figure 4: From the JVM spec (1 of 2)

5.5 Initialization

Initialization of a class or interface consists of executing its class or interface initial-
ization method (§3.9). A class or interface may be initialized only as a result of

* The execution of any one of the Java virtual machine instructions ez,
getstatic, putstatic. or invokestatic that references the class or interface. All of
these instructions reference a class directly or indirectly through either a field
reference or a method reference. Upon execution of a new
instruction, the referenced class or interface is initialized if it has not been
initialized already. Upon execution of a gefstatic, putstatic, or invokestatic
instruction, the class or interface that declared the resolved field or method is
initialized if it has not been initialized already.

Figure 5: From the JVM spec (2 of 2)

IClass, (2) getting rid of the reference thus created on top of the stack (we're
interested only on side-effects), and (3) returning.

/*% Adds a static initializer which creates an instance of the module class
* (calls the primary comstructor).
*
* A special primary constructor will be generated (notInitializedModules)
* which stores the new instance in the MODULE$ field right after the super call.
*/
private def addStaticInit(sym: Symbol) {
val tBuilder = getType(sym).asInstance0f [TypeBuilder]

val staticInit = tBuilder.DefineConstructor(
(MethodAttributes.Static | /*- <-- MethodAttributes.Static, therefore paramete
MethodAttributes.Public).toShort,
CallingConventions.Standard,
MsilType.EmptyTypes)
val sicode = staticInit.GetILGenerator ()
val instanceConstructor = constructors(sym.primaryConstructor)
// there are no constructor parameters. Assuming the constructor takes mo paramet
// is fine: we call (in the static comstructor) the constructor of the module cla
// which takes no arguments - an object definition cannot take constructor argume
sicode.Emit (OpCodes.Newobj, instanceConstructor)
// the stsfld is done in the instance constructor, just after the super call.

sicode.Emit (OpCodes.Pop)

sicode.Emit (OpCodes.Ret)

Coming back to Figure [7] (GenJVM), the emitted static inits don’t look so
simple. As already noticed those initializers are added to any IClass that
containsStaticCtor (an IMethod) and it is that IMethod that gives the body
of the static initializer.

rless */

er
Ss,
mts.

TODO BTW, also in GenJVM, legacyStaticInitializer(cls, clinit) emits in-
structions pretty much similar to GenMSIL’S addStaticInit (with the addition
of setting the static field serialVersionUID). I guess the JVM version evolved

and now the MSIL version has some catch up to do.

In a nutshell, a static initializer is emitted by GenJVM as follows (this is
an example of an ICode-to-ICode transformation, save for the final genCode (m),
you see what I'm saying, platform-specific issues are intermingled with platform-
independent ones):

val oldLastBlock = m.code.blocks.last
val lastBlock = m.code.newBlock
oldLastBlock.replaceInstruction(oldLastBlock.length - 1, JUMP(lastBlock))

if (isStaticModule(clasz.symbol)) {
// call object’s private ctor from static ctor
lastBlock.emit (NEW(REFERENCE (m.symbol.enclClass)))
lastBlock.emit (CALL_METHOD (m.symbol.enclClass.primaryConstructor, Static(true)
}

~

. add serialVUID
. bootstrapClass stuff

lastBlock.emit (RETURN(UNIT))
lastBlock.close

method = m
jmethod = clinitMethod
genCode (m)

4.4 dumpMirrorClass

We’'re not yet done with Figure
The equivalent GenMSIL functionality can be found in genClass:

if (isTopLevelModule(sym)) {
if (sym.companionClass == NoSymbol)
dumpMirrorClass (sym)
else
log("No mirror class for module with linked class: " +
sym.fullName)

[TODO

5 Adding constructors

After the long, long, bunch of activities that Figure[7]sparks, comes the following
snippet in GenJVM’s genClass

if (clasz.bootstrapClass.isDefined) jclass.setBootstrapClass(clasz.bootstrapClass./get)
clasz.fields foreach genField
clasz.methods foreach genMethod /*- <-- constructors are added here */

GenJVM’s genMethod returns without doing anything for an IMethod that isStaticCtor
(we saw in Sec. how those methods are handled). For an argument m such
that m.symbol.isClassConstructor, the return type is set to JType.VOID. Other
than that it’s handled like any other method. BTW, the following shows that
Symbol.isConstructor encompasses the mutually exclusive isClassConstructor
and isMixinConstructor.

final def isClassConstructor = isTerm && (name == nme.CONSTRUCTOR)
final def isMixinConstructor = isTerm && (name == nme.MIXIN_CONSTRUCTOR)
final def isConstructor = isTerm && (name == nme.CONSTRUCTOR) || (name == nme.MIXIN_CONSTRUCTOR)

TODO Most of the work being done in addRemoteException appears in fact
platform-independent (adding a Scala-level annotation that later triggers
adding a platform-specific exception to the method exception list). If so, it
could be moved to an ICode-to-ICode transformation, before classfile serial-
ization takes over

Like GenJVM, GenMSIL also adds constructors while iterating over methods (in
createClassMembers0). In essence, as follows:

10

for (m: IMethod <- iclass.methods) {

val methodSym = m.symbol

val ownerType = mtype // should be == to getType(sym.enclClass).asInstanceOf [Type
var paramTypes = msilParamTypes(methodSym)

val attr = msilMethodFlags(methodSym) // %.e. methodSym.tpe.paramTypes.map (msilTy

if (m.symbol.isClassConstructor) {
val constr =
ownerType.DefineConstructor(attr, CallingConventions.Standard, paramTypes)
for (i <- O.until(paramTypes.length)) {
constr.DefineParameter (i, ParameterAttributes.None, msilName(m.params(i).sym
}
mapConstructor (sym, constr)
addAttributes(constr, sym.annotations) // not implemented yet, look in GenJVM f
} else {

Builder]

pe) . todrray

or inspiration

6 Adding fields the GenMSIL way

Fields are added at the very beginning of createClassMemberso0:

def createClassMembersO(iclass: IClass) {
val mtype = getType(iclass.symbol) .asInstanceOf [TypeBuilder]
for (ifield <- iclass.fields) {
val sym = ifield.symbol
if (settings.debug.value)
log("Adding field: " + sym.fullName)

var attributes = msilFieldFlags(sym)

val fBuilder = mtype.DefineField(msilName(sym), msilType(sym.tpe), attributes)
fields(sym) = fBuilder

addAttributes(fBuilder, sym.annotations)

6.1 Adding outerField and a fake local for debugging pur-
poses
As part of genMethod in GenJVM, the snippet shown in Figure [f] is run just be-

fore genCode (m). I'm telling you this because in GenMSIL similar functionality is
missing. An IMethod.symbol is a closure’s apply whenever:

private def isClosureApply(sym: Symbol): Boolean = {
(sym.name == nme.apply) &&
sym.owner.hasFlag(Flags.SYNTHETIC) &&
sym.owner.tpe.parents.exists { t =>
val TypeRef(_, sym, _) = t;
definitions.FunctionClass exists sym.==
}
}

TODO An ICode-to-ICode transformation? Looks like.

11

if (!jmethod.isAbstract() && !methed.native) { I
val jcode = jmethod.getCode().asInstanceOf[JExtendedCode]

/7 add g jare Local jor debugging purposes
if (emitVars &% isClosureApply(metheod.symbol)) {
val outerField = clasz.symbol.info.decl(nme.getterTolocal (nme.OUTER))
if (outerField != NoSymbol) {
log("Adding fake local to represent outer "this' for closure " + clasz)
val _this = new Local(
method.symbol.newVariable(NoPosition, "this$"), toTypeKind(outerField.tpe), false)
m.lecals = m.locals ::: List(_this)
computelocalVarsIndex(m) // since we added a new local, we need to recompute indexes

jcode.emitALOAD_©
jcode.emitGETFIELD(javaName(clasz.symbol),
javalame(outerField),
javaType(outerField))
jcode.emitSTORE(index0f(_this), javaType(_this.kind))
}
¥

for (local <- m.locals if ! m.params.contains(local)) {
if (settings.debug.value)
log("add local var: " + local);
jmethod.addNewlLocalVariable(javaType(local.kind), javaName(local.sym))
K

genCode(m)
if (emitVars)
genlocalVariableTable(m, jcode);

Figure 6: Adding outerField and a fake local for debugging purposes (Sec. D

7 Adding methods in GenMSIL

After adding fields in createClassMembers0, methods are next on the line. As we
saw in Sec. [5| (Adding constructors), both methods and constructors are added
while iterating over iclass.methods, only that an if-then-else in GenMSIL makes
a distinction that GenJVM skips. In essence, methods are added in GenMSIL as
follows:

for (m: IMethod <- iclass.methods) {
val methodSym = m.symbol
val ownerType = mtype
var paramTypes = msilParamTypes(sym)
val attr = msilMethodFlags(sym) // %.e. sym.tpe.paramTypes.map (msilType).toArray

if (m.symbol.isClassConstructor) {
} else {
var resType = msilType(m.returnType)
val method =
ownerType.DefineMethod (getMethodName (methodSym), attr, resType, paramTypes)
for (i <- O.until(paramTypes.length)) {
method.DefineParameter (i, ParameterAttributes.None, msilName(m.params(i).sym
}
if (!methods.contains(methodSym))

mapMethod (methodSym, method)
addAttributes (method, methodSym.annotations) // not implemented yet, look in Gg

12

nJVM for inspiration

7.1 Generics, exception list, and annotations (including
those for parameters)

Just before returning, the GenJVM version of genMethod deals with the following:

addGenericSignature(jmethod, m.symbol, clasz.symbol)
val (excs, others) = splitAnnotations(m.symbol.annotations, definitions.ThrowsClass)
addExceptionsAttribute(jmethod, excs)

addAnnotations(jmethod, others)

addParamAnnotations(jmethod, m.params.map(_.sym.annotations))

TODO Check how much of the above also belongs to GenMSIL but is missing
there. Please notice that genClass in GenMSIL invokes addSymtabAttribute and
addAttributes, the latter based on the iclass.symbol.annotations.

TODO However addAttributes is an empty stub pending implementation.

TODO In GenMSIL, the auto-generation of clone method has to be fixed. The
existing code can be found in genClass.

8 Translating code blocks

Local.index is accessed by both GenJVM and GenMSIL (and by no previous phase),
where it is written in computelocalVarsIndex(m: IMethod). The GenJVM version
of computeLocalVarsIndex iterates once over m.locals, while the GenMSIL version
first numbers all m.params and then goes on to number (starting with 0) those
m.locals not in m.params.

/** Represent local variables and parameters */
class Local(val sym: Symbol, val kind: TypeKind, val arg: Boolean) {
var index: Int = -1

[TODO

9 Items not covered in previous sections

9.1 invokedynamic
Just before emitting fields and methods, the following is invoked in BytecodeGenerator . genClass(IClass):

if (clasz.bootstrapClass.isDefined) jclass.setBootstrapClass(clasz.bootstrapClass.get)

For the classfile being generated, method setBootstrapClass adds as classfile at-
tribute a JBootstrapInvokeDynamic attribute in order to support the invokedynamic
instruction. Two sources of information on that:

e New JDK 7 Feature: Support for Dynamically Typed Languages in the
JVM http://java.sun.com/developer/technicalArticles/DynTypeLang/

e http://download. java.net/jdk7/docs/api/java/dyn/MethodHandle.html

9.2 Forwarders

http://gabrielsw.blogspot.com/2008/01/playing-with-scala-interoperation-with.html

13

http://java.sun.com/developer/technicalArticles/DynTypeLang/
http://download.java.net/jdk7/docs/api/java/dyn/MethodHandle.html
http://gabrielsw.blogspot.com/2008/01/playing-with-scala-interoperation-with.html

http://lampsvn.epfl.ch/trac/scala/ticket/363
http://lampsvn.epfl.ch/trac/scala/ticket/1735
Try -Xprint:icode -Xprint-icode and then javap -verbose for this program:

class SuperTest {
def superMethod() { }
}

class Test extends SuperTest{
def useSuper { print(superMethod()) }
}

object Test{
def main(args: Array[String]): Unit = {
val t = new Test
print (t.useSuper)

9.3 GenMSIL’s createDelegateCaller (paramType, resType)

10 Conclusions

Bringing GenMSIL up-to-date with respect to GenJVM involves effort that could be
better spent developing a new phase (that I'll prototype in the next few days) to
emit CLR bytecode directly. The proof of concept will initially leave out some
aspects that can be added easily later (say, generation of method bodies). The
assemblies thus produced can still be explored with the disassembler and with
CFFExplorer. I'm interested in getting early feedback on whether IKVM allows
using CCI seamlessly from the rest of the cross-compiler (previous tests show
no evidence to the contrary). If the prototype works as expected, GenMSIL will
be replaced in the short term using the techniques field-tested in the prototype.

14

http://lampsvn.epfl.ch/trac/scala/ticket/363
http://lampsvn.epfl.ch/trac/scala/ticket/1735

SSBTO[JULIIND 91} SUIPesId I93Je)31l ‘SSeT)HULS * T01eI8USHIP0OI91AG WAL USH UI JUSWSEI] 8p0O)), :/ 9InSIg

{
{
{
(sseToaTnpow-sow ‘ssp7al)sJdspdemdodppe
((oowr ‘ToquAs:2)3ewJot-,, s%, @[nNpow UT puno} ,s%, SSET2 SuTrlsSIXa 03 sJapdJemdos Suippy,,)Sor
} (sn1eA:suspubmuoqous8utiiss| 98 (OOWT)SJUSPJEMUOLUOISIEPTIPUBIST) 4T
} ((3ov4¥31NI"sBetd)Berdsey-Toquis oj B8 TOqUASON =i JOWT) 4T
SELT# pup g9g# sbng aas fs3917Lu0d swpu ou adp aJ4ayil L1 sdapdpmdof 213p1s ppo //
sThpoluoTuedwos " ToquAs "2 = SOlT Tea
{
sseTDJpa31saNsT wAs| 38 sse[dTdwisT wAs] 8% (ITINgow sBeTd Berdsey wAs) w8 (,$, SuTEluod SuTJISO1 aweu-wAs)j
} (3xau-aspydJaiyord-unyiusJddand) 3seydie
= ueaToog :(ToquAS :wWAS)SJapJemJdodJo4a1epIpPuUBIST Jap
(s¢ ou sulb3UO> BWbDU) $SD72 18n37 dol b aq Isnw 11 //
(40332T3E35dNY00T "2 “$SD72L)ITUIATIBISPPE (JOIDOTILISSUTEIUOD D) IT
} osT®
{
{
(sweNTTNn4 ToquAs ">
+ , I!SSETD paUIT YITM 3SThpouw Jo4 SSETd JodJaTw op,)Sor
asT3

f(Butuisol-sounos-2iun22 ‘ToquwAs2)sseTdJdoddTdwnp
(ToquAsoN == sserpuotuedwod ToquAs o) JT
} ((1ToquAs-2)srnponransidolsT) JT

(Jo3d213e3SdNY00T 2 5Sp72[)3ITUIITIEISPPE
‘pIoT43oUBISUISThpOWppE
((ToquAs - >)3TNpolITILISST) 3T
_w (pautieQst ssp7)dpJ1s3100G°Zsp]2 || BuoN =i @INAIPJ43s || (ToqwAs®2)3TNpoWITIEISST) 4T

AT
€5
(414
15-14
est
544
8¥¢T
A4
ovt
14

Eve
(444
v
evt
B6ET
8ET
LET
9gt
SEC
PeT
E€ET
CET
1514
eET
6ct
8¢t
LTt
9Tt
T44
£44

15

	Following the steps of GenMSIL's elder brother: GenJVM
	From IClass to VM-level type
	Nested types

	Translating type members
	Handling static modules
	Module instance field, the GenMSIL story …
	…and now the GenJVM story
	Static initializers
	dumpMirrorClass

	Adding constructors
	Adding fields the GenMSIL way
	Adding outerField and a fake local for debugging purposes

	Adding methods in GenMSIL
	Generics, exception list, and annotations (including those for parameters)

	Translating code blocks
	Items not covered in previous sections
	invokedynamic
	Forwarders
	GenMSIL's createDelegateCaller(paramType, resType)

	Conclusions

